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1. Introduction 

The ability to reason with equations is important in many com­
puter science applications, including algebraic specifications, high­
level programming languages, and automated deduction. Reasoning 
about equations may, for example, involve deciding if an equation 
"'follows" as a consequence of a given set of equations, or if an equa­
tion is "true" in a given model, or what values of the variables satisfy 
a given equation. Knuth's completion procedure (Knuth and Bendix, 
1970). based on prior work of Evans (1951), was originally suggested 
as a means of taking an axiomatization of an equational theory and 
generating a rewrite system that can be used to decide questions of 
validity of identities (or the "word problem") in the given theory. 
In this chapter, we formalize that procedure as an inference system 
and describe some of its more recent applications to other aspects of 
equational reasoning. 

IThis research was supported in part by the National Science Foundation under 
Grant DCR 85-13417. 

Resolution of EquatIOns In 
.... Igebrom: SUU,I urn 
Volllme~ 

31 Copyn"'!!E !989by _"eadem,c Press,lnc. 
A]I nlhtsof reproduction In an~ form reserved, 

ISBN ()..1:!-046371- i 



32 N. Dershowitz 

1.1. Equations 

Let T denote a set of (first-order) terms built out of function sym­
bols taken from a vocabulary (signature) F and variables from a set 
V. An equational system E over T is a set of identities, each of 
which we write here in the form I .... r, where I and r are terms in 
T and variables appearing in them are universally quantified. For 
convenience, we identify any equation I .... r with r .... I; thus, E may 
be thought of as a symmetric binary relation over T. Equations are 
applied to terms by replacing a subterm matching one side of an 
equation with its other side. More precisely, an equation I .... r in E 
may be applied to a term t in T, if there is some substitution (j of 
terms in T for variables in the equation, such that l(j (the result of 
applying (j to I) is the same as some subterm s of t. Let t/p denote 
the subterm s of t rooted at position p within t. The equation is 
applied by replacing the subterm t/p = l(j oft with the other side of 
the equation, r(j, after the same substitution (j of terms for variables 
has been made. The result of this replacement of "equals by equals" 
is denoted t[r(j]p. We write S .... E t or t .... E s to indicate that the 
term t in T is obtainable from the term s in T by a single appli­
cation of some equation in E. A proof in E is any finite sequence 
t, .... E t2 .... E ... ..... E tn (n > 1) of applications of equations in E. 
We write E =9 s = t if there is a proof s ...... t of s = t in E. The 
equational theory (or variety) E is the class of equations provable in 
E. By a theorem of Birkhoff (1935), s = t is provable in this way if, 
and only if, it is true in all models of E, i.e., if s = t is valid for E. 
In symbols, E F= s = t if and only if E =9 s = t. 

For example, the following is an equational system E for an oper­
ation with an identity and inverse; 

x-I -E-+ x 

I-x ...... x 
y-·(y·z) .... z 

where x, y, and z are variables.2 The identity 

2Throughout this cha.pter, we will use these three letters for variables appearing 
in terms. 
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lends itself to the following six-step proof in E: 

x·x ..... E (x-- . (x- . x))· x-

..... E (x-- . (x-· (x· 1)))· x-

-E (x-- . 1) . x-

..... E X ·x 

..... E x--·(x-·l) -E 1 

1.2. Rewrite Systems 

A rewrite (or term-rewriting) system R over a set of terms T is a set 
of directed equations, called rewrite rules, each of the form I - r, 
where I and r are terms in T. Thus, R is a binary relation over T. 
A rule I _ r may be applied to a term t in T if a subterm s at some 
position pint matches the left-hand side I via some substitution 
a. Like equations, a rule is applied by replacing in t the subterm 
s = la = tip with the corresponding right-hand side ra of the rule, 
resulting in t[ra] •. We write s - R t or t ...... R S to indicate that the 
term s in T rewrites to the term tinT by a single application of some 
rule in R, the direction of the arrow distinguishing between applica­
tions of rules from left to right and from right to left, respectively. A 
derivation in R is any (finite or infinite) sequence tl -R t2 -R ... 

of directed applications of rules in R; a proof in R is any finite se­
quence tl +-+R t2 +-+R ..• +-+R tn (n > 0), where each step ti +-+R ti+1 
is a rewrite either from left to right or from right to left. 

If a term t cannot be rewritten, we say that it is irreducible. If 
S -R t and t is irreducible, then we write s -k t and say that t 
is an R-normal form of s, or that s reduces to t. If every term in 
T reduces to an R-normal form, then R is said to be normalizing. 
In practice, one is usually interested in terminating systems. those 
for which infinite derivations tl - R t2 - R ... of terms ti E Tare 
impossible. Only terminating rewrite systems are considered in this 
chapter; such systems are also normalizing. For finite, terminating 
R, the reduction relation -k is decidable. 

The following is an eight-rule system for multiplicative identity 
and inverse (a non-associative fragment of group theory): 
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1· x ~ x x ·1 ~ x 
x - ·X 1 X·X ~ 1 ~ 

1- ~ 1 (x-)- ~ x 
y- . (y. z) ~ z y·(y-·z) ~ z 

Applying those rules to the term (a-- . (a- . (a· 1)))· a- gives the 
graph of possible derivations shown in Fig. 1. In any case. the final 
result is 1 and no further applications of rules are possible, i.e., 1 is 
its unique normal form. 

1.3. Deciding Validity 

For any binary relation -+; we use the notations +-, -., - +, and 
-+. to denote its inverse, symmetric closure, transitive closure, and 
reflexive-transitive closure, respectively. A binary relation ~ has 
the Church-Rosser propertYI if ....,.* is contained. in -* 0 -*. where 
o denotes composition of relations; it is confluent if +-. 0 _. is 
contained in ~. 0 ;-'. These two properties are equivalent (Curry 
and Feys, 1958). We say that a binary relation ~ over a set of terms 
T is monotonic, if s ~ t implies U[80']p ~ u[tO']p for all terms 8. t, 
u in T, substitutions 0', and positions p. An equational step - E, 

then, is the smallest monotonic extension of the symmetric closure 
of a system E of equations and ..... E is the provability relation. The 
rewrite relation ~ R is the smallest monotonic extension of a system 
R ofrules and -R is the derivability relation. Let :-- be a monotonic, 
well·founded (strict) partial ordering on terms.3 We call such an 
ordering a reduction ordering. A system R is terminating if, and 
only if, there exists a reduction ordering containing R. We refer to 
a rewrite system R as confluent if ~ R is confluent; a terminating 
system will be called convergent. If, in addition, R presents the same 
theory as does E (i.e., ..... R = ..... E)' then we say that R is convergent 
(or complete) for E. A finite convergent system R for E is a decision 
procedure for validity in the theory E, since an equation s = t is valid 
in E (symbolized, E ~ s = t or s = E t) if, and only if, it is provable 
in E (i.e., E ~ 8 = t or 8 ..... E t), which is the case, if, and only if. 
reducing 8 and t results in the identical term (i.e., 8 ~k v -k t for 
some v). 

3 Well-founded means that there is no endless descending chain tt ~ t2 ~ ta >­
." of terms. 
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\ 
a·a 

I 

Fig. 1. A graph of derivations. 

To summarize, a rewrite system R provides a decision procedure 
for an equational theory E, if the following four conditions hold: 

a) R presents the same equational theory as E; 
b) R is finite; 
c) R is terminating; 
d) R is confluent. 

For example, the eight-rule rewrite system shown above decides va­
lidity in the three-axiom theory shown at the outset. To determine 
if two terms are always equal. the rules are repeatedly applied to 
both terms until normal forms are obtained. If the normal forms are 
identica!, then, and only then. are the two terms equal in all models 
of the equations. 
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1.4. Completion 

Given a finite set E of equations and a program for computing a re­
duction ordering ~. the completion procedure (Knuth and Bendix, 
1970) deduces consequences of E in its attempt to find a convergent 
system R for the theory presented by E. The central idea of com­
pletion is to limit attention to certain "critical" deductions obtained 
from overlappings of left-hand sides of rules. These overiappings are 
used to generate new ru1es, each of which is a reduction vis-a-vis ~, 
i.e. s ~ t whenever s rewrites to t, and each of which is sound for 
E, i.e., S -e t whenever s rewrites to t. At the same time, rules 
are kept fully simplified: if I - r is a ru1e, then r is a normal form 
for the current system and I is not reducible by other rilles. Such 
a fully-simplified system is said to be reduced. We will reserve the 
adjective canonical for a reduced convergent system. By reducing 
right-hand sides and deleting rules with rewritable left-hand sides. 
a convergent system can always be converted into a canonical one 
(see, e.g., Metivier (1983)). 

RRL (Kapur and Sivakumar, 1983), REVE (Lescanne, 1983). 
FORMEL (Fages, 1984), RRLab (Thomas, 1984), and ERIL (Dick. 
1986) are some current implementations of completion. Collections 
of canonical systems may be found in Butler and Lankford (1980), 
Hu1lot (1980a), and Le Chenadec (1985). Of course, not all equa­
tional theories are decidable, even if they can be presented by a finite 
set of equations (see, for instance, Davis (1958)). Nor can every de­
cidable equational theory be decided via a convergent system (see, 
for instance, Kapur and Narendran (1985b)). But, when completion 
is successfu1, the resu1tant system can make for a very effective de­
cision method. Given the above equational system and an ordering 
in which a term is greater than its proper subterms and 1 is min­
imal, the completion procedure will in fact generate our eight-ru1e 
decision procedure. Most of the afore-mentioned implementations 
provide help in choosing an ordering.4 

In the next two sections we present an abstract version of comple­
tion and some of its extensions. We show how the method is used to 
generate decision procedures and how it is used as a semi-decision 

4We will not usually bother to specify which reduction ordering is used; the 
reader can either take our word that an appropriate one exists, or consult 
Dershowitz (1987) for a survey of methods of proving termination. 
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procedure even when the process does not terminate. Section 4 
(based on Dershowitz (1982b)) surveys applications of completion 
to 

1) compute the congruence closure of sets of equations, 

2) generate solutions of equations, 

3) synthesize recursive programs, 

4) prove theorems for inductively defined structures, and 

5) prove theorems in first-order predicate calculus. 

We conclude with brief mention of some further extensions. 
A broad survey of the history of the ideas in completion and re­

lated procedures is given in Buchberger (1987). Surveys of rewriting 
theory include Huet and Oppen (1980), Benninghofen et al. (1987), 
Klop (1987), and Dershowitz and Jouannaud (1989). 

2. The Completion Procedure 

Given the axiomatization G 

l·x +-+ x 

x- . x +-+ I 

(x·y)·z - x·(y·z) 

of group theory and an appropriate reduction ordering, the comple­
tion procedure generates the following canonical rewrite system:5 

l·x ~ x x·1 ~ x 
-x ·x ~ 1 X'x ~ 1 

1- ~ 1 x ~ x 
y- . (y . z) ~ z y·(y-·z) ~ z 
(x·y)·z x· (y . z) (x· y)- y -- ~ ·x 

5This traditional axiomatization of abstract groups is the first example Knuth 
and Bendix tried out by hand, and the first experiment they ran their program 
on. It has become the "canonical" example of completion. 
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Three rules are oriented versions of the given axioms; the rest are the 
kind of lemmata one proves early on when learning group theory'" 
Actually, more are produced by the procedure, e.g., x-- . y ~ X· y, 
but are subsequently simplified away. To prove, for example, that 

in group theory, both sides of the equation are reduced. Since 

(x- .y)- ·X-

~R (y-. x--)· x-

~R y-' (x-- . x-) 

~R y-·1 

~R y- <-R (x-· (x· y))-

the identity is valid. On the other hand, the two terms (x- . y-)­
and (y- ·x-)- reduce to the distinct terms y·x and X'y, respectively; 
hence they are not equivalent. 

2.1. Abstract Completion 

Bachmair et al. (1986) have recently put completion in an abstract 
framework, an approach we adopt here. (See also Bachmair (1987) 
and Bachmair and Dershowitz (1989).) As in traditional proof theory 
(cf. Takeuti (1987)), proofs are reduced, in some well-founded sense, 
by replacing (locally) maximal subproofs with smaller ones, until a 
normal-form proof is obtained. In completion, the axioms used in 
proofs are in a constant state of flux; these changes are expressed 
as inference rules. which add a dynamic character to establishing 
the existence of reducible maximal subproofs. (See Dershowitz and 
Okada (1988).) 

An inference rule (for our purposes) is a binary relation between 
pairs (E; R), where E is a set of equations and R is a set of rewrite 
rules. Let ?- be a reduction ordering and I> a well-founded ordering 
on terms. We define the following set K B of six inference rules: 

6 As Knuth and Bendix wrote, "Without making use of any more ingenuity than 
can normally be expected of a computer's brain ... , [the first 65% of] the compu­
tation was done almost as a professional mathematician would have performed 
things. " 
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Delete: (EU{s ..... s}:R) I- (E;R) 
Compose: (E:RU{s~t}) I- (E;RU{s~u}) ift ~R U 

Simplify: (EU {s ..... t}:R) I- (EU{s ..... u};R) if t ~R u 
Orient: (EU {s ..... t}:R) I- (E;RU{s~t}) ifs».t 
Collapse: (E;RU {s ~ t}) I- (Eu{u-t};R) 

if s ~R u by a rule I ~ r E R with s I> I 
Deduce: (E:R) I- (EU{s ...... t}:R) if S +-R U -R t 

We write (E: R) I-KB (E': R') if the latter may be obtained from 
the former by one application of a rule in K B. 

(a) Delete removes a trivial equation s ..... s. An equation x· 1 ..... 
x . 1, for example, would be a candidate for deletion. 

(b) Compose rewrites the right-hand side t of a rule s ~ t, if 
possible. For example, given a rule x-- ~ x, the rule (x· 1) . 
1 -. x-- . 1 would be replaced by (x· 1) . 1 -. x· l. 

(c) Simplify rewrites either side of an equation s ...... t. For exam-
ple, given a rule 1 . x -. x, an equation 1 . 1 ...... 1 would be 
replaced by 1 ...... l. 

(d) Orient turns an equation s ...... t that is orientable (s ». t) 
into a rewrite rule. Since 1- is greater than 1 for any reduc­
tion ordering (or an infinite derivation would be possible), the 
equation 1- ...... 1 can only be oriented in the direction 1- ~ l. 

(e) Collapse reduces the left-hand side of a rule s ~ t and turns 
the result into an equation u ...... t, but only when the rule 
I ~ r being applied to s is smaller in some sense (embodied 
in 1» than the rule being removed. In practice, we use the 
(proper) specialization ordering as 1>. In this ordering, s I> I 
if a subterm of s is an instance of I (but not vice-versa). For 
example, a rule x-- . y ~ x . y collapses to x . y ...... x . y in the 
presence of a rule x-- ~ x. The age of the two rules may also 
be taken into account when each left-hand side is an instance 
of the other, making older rules smaller. 

(f) Deduce adds equational consequences to E, but only those 
that follow from back-to-back rewrites s - R U and u ~ R t. 
For example, the rules x . x- -. 1 and 1 . x -. x can both be 
applied to the term 1 . 1-. The first rewrites this term to 1 
and the second. to 1-. from which the new equation 1- ..... 1 
can be deduced. As we will see, only consequences of certain 
"critical" peaks need to be considered. 
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We say that an equation is simplifiable if simplify can be applied to 
it, and that a rule is simplifiable if either compose or collapse applies. 

It is not hard to see that the first five rules can only be applied 
a finite number of times (provided one starts out with finite Eo 
and !4J, and with !4J contained in :-). Thus, new equational 
consequences should only be generated from existing rules after 
all rules and equations have been simplified as much as possible, 
and all trivial equations have been deleted. (In practice, these 
rules are usually best applied in the given order.) 

A completion procedure is any program that takes (i) a finite set 
Eo of equations, (ii) a finite set !4J of rules, and (iii) a reduction or­
dering :- containing !4J, and uses the above rules to generate a se­
quence of inferences from (Eo; !4J). Completion derives part of 
its power, as compared with "paramodulation" (Robinson and 
Wos, 1969), from the restriction of equational deduction to left­
hand sides of rules only. It also saves space by preserving only 
fully simplified rules and equations. The results of a finite comple­
tion sequence (Eo;!4J) ~KB (E,;Rd ~KB ... ~KB (En;Rn) 
are En and Rn; in general, the results of a possibly infinite com­
pletion sequence (Eo;!4J) ~KB (E,;Rd ~KB'" are the set 
Eoo = U'2:0 nj2:' Ej of persisting equations and the set Roc = 
U'2:0 nj2:' R j of persisting rules. We say that a completion sequence 
is successful, if Eoo is empty and Roo is canonical. Table 1 presents a 
successful completion sequence for our first example. Beginning with 
three identities, the eight-rule system shown in the previous section 
is obtained. 

The rules in K B are evidently sound, in that the class of provable 
theorems is unchanged by an inference step, i.e., -EUR = -B'uR' 
whenever (E; R) ~ KB (E'; R'). Furthermore, as long as R is a subset 
of :-, so is R', for which reason we require that !4J C:-. We are 
thus assured that the result ROC of any (finite or infinite) successful 
completion sequence is terminating and presents the same equational 
theory as did Eo U!4J (with !4J considered as equations). 

We are particularly interested in the degree of confidence one 
can have in the eventual success of specific completion procedures. 
We will say that a completion (or similar) procedure is correct 
if ROO is canonical whenever Eoo is empty, regardless of whether 
the completion sequence is infinite or finite. It is in this sense 
that Huet (1981) proved the Knuth-Bendix procedure correct. 
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i R· E. iufereuce 

1'% - % 

0 %'1 - % 

J -.(,..) - , ... - , 
1 ... - , 

J-~"%) 
orient - % 

2 R. ,-"b'z) - , orient 
1', - % 

3 
R, 

orient 
, -("z) - % 

-
1 deduce (1,3) • , ., -

5 
R. 

orient -, ., - 1 

• 1 - 1 deduce (1,5) -
7 

R. 
orient -

I - 1 

, , ., - ,., deduce (3,3) 

, R, 
orient --, ., - J'% 

10 1 ., - 1" deduce (7,9) 

11 
R, 

orient 1-'z - ... 
12 

R, 
eompoee (ll,2) 1-'z - , 

13 1'% - , eoliaPH (12,7) .. % - % .implirT (2) 
R, 

15 delete .. , -- - J dod ... (l~) 

17 
R, 

orient --, - , 
I8 ,., - ,'% <01 ...... ('.17) .. delete 

20 J·fr -'%) - % dod.u (3.17) 

21 
Rn 

orient 
,.(, -'z) - , 

22 -
1 deduce (1,21) ,., -

23 R .. 
orient -,., - 1 

Table 1. A successful completion sequence for a fragment of 
group theory. 



42 N. Dershowitz 

Ascertaining correctness is complicated by the simplification of rules 
allowed by the inference system. We will say that a procedure is 
complete if E OO is always empty and Roo is always canonical; for com­
pleteness, a stronger inference system is generally required. (Correct­
ness and completeness can be weakened to refer only to convergence. 
not canonicity, as in Bachmair (1987).) 

2.2. Proof Simplification 

Each proof step t, ...... EUR ti+1 in a proof t1 -EUR t2 -EuR 

... ...... EuR tn, is either an equational step ti -E t';:+b a rewrite step 
ti - R ti+" or a backwards rewrite step ti - R ti+ 1· In any case, each 
step must be justified by specifying the equation (in E) or rule (in R) 
being used, as well as the position at which it is being applied (and 
the substitution used). By applying the inference rules in KB, infer­
ring (E'; R') from (E; R), it may be possible to simplify a given proof 
in EUR, replacing some proof steps with alternate ones from E'uR'. 

In general, our goal is to transform proofs into normalized ones 
by completely eliminating certain patterns. To formalize this idea. 
we define a relation '* K B between proofs. Let E be a set of equa· 
tions closed under equational deduction and R be the subset of E 
contained in a reduction ordering ~. By a proof pattern we mean a 
schema describing a class of subproofs in (E; R); e.g., to characterize 
rewrite proofs in R, we use the pattern s -+:R v -:R t, where s, t. 
and v denote arbitrary terms. We refer to the pattern s - R U - R t 
as a peak. If a proof contains neither an equational step nor a peak. 
it must be a rewrite proof. The proof relation '* K B is defined by the 
following set of pairs of patterns-which we will also refer to as K B: 

t •• t S -E => S -R V-R 

S+-+Et .::::} S-RU-Ev-~t 
t •• t S -R W -R :::::> S -R V-R 

t • • t S -R W --+R => S -R U -E v-R 

S--+Rt => S--+RU-~t 
where S -R t by I - rand S -R U by 9 - d and I = 9 

S--+Rt => S-Ru-EV-:R t 

where S -R t by I - rand S -R U by 9 - d and I [> 9 
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An equational step may be replaced by a (possibly empty) rewrite 
proof or by a rewrite proof with a single simpler equational step at 
the bottom of the "valley"; a peak may be replaced by a rewrite 
proof, possibly containing an equational step at the bottom; and 
a single rewrite step may be replaced by a simpler rewrite prooL 
possibly containing an equational step at the bottom. We do not 
explicitly distinguish between a proof t, ........... tn and its inver­
sion tn ........... 1,. For example, the last two rules transform the 
symmetric step t - R S, too, giving a smaller proof t .... RuE s. 

This proof rewriting system eliminates equational steps, peaks, 
and applications of unsimplified rules from proofs, whenever possible. 
Furthermore: 

Proposition 1. The proof relation '* K B is terminating (Bachmair 
et al. {1986}}. 

That is, there can be no infinite derivation P, '* K B P2 '* K B 

... of proofs Pi in E U R (R itself is terminating). Thus, '*KB 

encompasses a well-defined notion of "simplifying" proofs. It can be 
applied until further simplification is impossible; its normal forms 
are rewrite proofs and proofs containing equations, the two sides of 
which are incomparable under ~. 

ProoJ- Consider the partial ordering > kb that compares proofs 
by comparing multisets of proof steps, where the cost of a proof 
step is measured according to the triple ({ s}, I, t) for each rewrite 
step s --> R t that is an application of a rule I --> r, and according 
to ({ s, t}, I, t) for each application s .... E t of an equation I .... r. 
Triples are compared lexicographically, using the multiset ordering 
~~ induced by the given ordering ~ for the first component, C> for the 
second. and ~ for the third, and multisets of triples are compared in 
the induced multiset ordering (as defined in Dershowitz and Manna 
(1979)). Assuming that ~ is well-founded, this ordering >kb is also 
well-founded. It is also monotonic on proofs, i.e., if P >kb Q for two 
proofs P and Q of the same equation, then any proof that contains 
an instance of P as a subproof is greater under > kb than a similar 
proof containing an instance of Q. Since the rules K B are contained 
in the monotonic well-founded ordering >kb, the proof relation '*KB 

is terminating. 0 

The inference system K B and proof relation K B are related by 
the following lemma: 
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Reflection Lemma. If (E; R) I-KB (E'; R'), then for every proof P 
in E U R there exists a proof P' in E' U R' such that P '*KB P' 
(Bachmair {1987}}. 

In this way, the inference system I-K B is used to generate rules 
needed for '* K B to be applicable. It is not enough, however. to 
know that inferences do not make more complex proofs necessary: 
we need to establish that applying inference rules to a non-rewrite 
proof will actually lead to a strictly simpler proof vis-a-vis '*KB. 
Since the latter is terminating, this means that a rewrite proof will 
eventually be attained. As we will see, this is only the case when 
certain "fairness" conditions are met. 

This view of completion as progressively rewriting proofs is advo­
cated in Bachmair et al. (1986), Bachmair (1987), and Bachmair and 
Dershowitz (1988) and was expounded on by Jouannaud (1987): the 
idea of establishing confluence by normalizing equational proofs ap­
pears also in Kiichlin (1986b); the use of multiset orderings in such 
a context was pioneered by Jouannaud and Kirchner (1984). 

2.3. Critical Pairs 

Since the rule deduce can lead to infinitely long chains of inference, 
fairness conditions aim to minimize applications of that rule, while 
ensuring that it is not completely ignored. Let I - rand 9 - d 
be two rules. We say that 9 overlaps I if there is a non variable 
subterm s at a position p of I and a (unifying) substitution u for the 
variables of the two rules, such that su = lui p = gu. In that case, 
the overlapped term lu can be rewritten to either ru or lu[du]p. The 
variables of the overlapping rules are considered disjoint, even if the 
two rules are actually one and the same. (Since we are presuming 
termination, no left-hand side is just a variable.) 

Definition 1. The equation dp. ..... gp.[rp.]p is a critical pair of 
two rules I - r and 9 - d (whose variables have been renamed. if 
necessary, so that the rules have none in common), if there exists a 
most general unifier p. of glp and I for some nonvariable position p 
in 9 (Knuth and Bendix (1970)). 

For example, x--- . (x . y) ..... y is a critical pair obtained by over­
lapping x-- . y - x . y at the subterm x . y in the left-hand side of 
x- . (x . y) - y. 
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Let cp(R) denote the set of all critical pairs between (not neces­
sarily distinct) rules in Rand -cp(R), the monotonic extension of 
those equations. 

Critical Pair Lemma. For any rewrite system R and peak 
s +-R U -R tt there either exists a rewrite proof s -R v +-R t 
or a critical-pair proof s -cp(R) t (Knuth and Bendix {1970)). 

In set notation: +-R 0 -R C (-n 0 +-R)U -ep(R)· 

Proof. Behold Fig. 2! 0 

(a) DiSjoint case. 

(b) Variable overlap case. (c) Critical overlap case. 

Fig. 2. Proof of Critical Pair Lemma by cases. 

It follows from this and Newman's Lemma (Newman (1942); see 
Huet (1981)) that a terminating system R is confluent if, and only 
if, cp(R), viewed as a relation, is contained in -R 0 -R (Knuth and 
Bendix (1970)). 

Definition 2. A completion sequence in K B is fair if all persis­
tent critical pairs are generated (cp(R"') is a subset of UE;), no 
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simplifiable rule persists (ROO is reduced), and no equation persists 
(EOO is empty). 

Rules or equations that differ only in the names of their variables are. 
for all intents and purposes, treated as identical. Table 1 only con­
tains deductions from critical pairs; Table 2 extends it to a 
point when it becomes fair, by checking all remaining critical 
pairs. (Trivial ones. obtained by superposing a left-hand side on 
all of itself, are omitted from the tables.) In a more abstract frame­
work, one could define a completion sequence to be fair with 
respect to a given set of proof patterns, if for any proof contain­
ing an instance of one of those patterns, there exists a (later) 
step at which a strictly simpler proof is possible. See Bachmair 
(1987). 

For any given completion sequence (Eo;~) I-KB (E,;RIlI-KB 
... , we let +-+i stand for +-+ E.uR., i.e., for a proof step in either Ei or 
Ro. 

Proof Normalization Theorem. If a completion sequence (Eo:~) 
I-KB (E, ;RIlI-KB ." is fair, thenforanyproofs-: t inE,URo, 
there is a rewrite proof s -k= v -k= t in ROO {Huet {1981}}. 

Huet (1981) proves this for a specific completion procedure; the 
following proof is more general: 

Proof. The proof is by induction with respect to the well-founded 
ordering =? k B' Suppose that s -: t is not a persistent rewrite proof 
s -R= v -R= t. Then it must be reducible by =?KB, either on 
account of a peak (using the Critical Pair Lemma) or the application 
of a nonpersisting step. Thus, s +-+i t ~i<B s +-+j t for some step 
j and by induction s -Roo W -ROO t for some w. Since ROO is 
normalizing, we have w -k= v for some v. (Bachmair et aI., (1986)). 
o 

Thus, an n-step completion sequence succeeds if it is fair, i.e .. if En 
is empty, R." is reduced, and each of the latter's critical pairs already 
appeared in some E,. We say that it fails at step n if no fair sequence 
has, as a prefix, the sequence generated up to that point: in that case 
there is little point continuing. Thus. a completion procedure may 
be said to be fair if it is successful whenever possible, i.e .. if it only 
generates fair or failing sequences. Assuming the procedure never 
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, R. E. inferences 

2. 1 - 1 dedu~ (1,2) 

25 delete 

28 l-'(l'z) - Z dedu~ (2,3) 

27 1'("') - Z .implif'y (7) 

28-29 ,'1 - , 
Z - Z .impIiC,. (2,2) , 

30 delete 

31 1', - , , , '1 - , deduee (3,5) 

32-33 , - , .impliCy (17,1) .. , -'("z) - , delete , 

35 ... - 1 deduee (5,7) 
- 1 30 . " - 1 - 1 .implify (1) 

• 
37 delete: 

-
3, 1 - 1 , -, - , deduc.e: (17,17) 

3' delete: 
--

40 • - • 1 " - , deduce (2,21) 

" 
41-4.2 , - , .impliCy (7,2) .. ,,(, -"~I - , delete: 

" .. - deduce (3,21) J 'z - J " 
-

(5 ", - 1 delete 

" 
- ,.-'1 deduce (3,23) " , --

47 , - - .impliC,. (I) , 
48 delete 

Table 2, A fair continuation of Table 1. 

discriminates against any critical pair or simplifiable rule or equation, 
the only possible reason for failure is an unorientable equation, 

Practically speaking, what this means is that the deduce rule is 
restricted to generating critical pairs, of which there can only be 

i , 
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finitely many at any given time. Each time a new rule is generated 
(by orient), it can give rise to new critical pairs formed with the old 
rules or with itself. All those pairs need eventually to be simplified 
or oriented, unless the new rule itself is later simplified, in which 
case it becomes no longer necessary to consider them. A marking 
scheme is generally used to keep track of which rules still need to be 
overlapped with which; see, for instance, Huet (1981). 

For any given equational theory, there can be only one (finite or in­
finite) canonical rewrite system whose rewrite relation is contained 
in a given reduction ordering (Butler and Lankford (1980), Lank­
ford and Ballantyne (1983), and Metivier (1983)). This uniqueness 
result is up to renaming of variables and depends on the systems 
being reduced. Thus, two successful derivations (finite or infinite), 
given the same inputs, must result in the identical canonical sys­
tem. It follows that, if there exists a finite canonical R contained in 
a reduction ordering >- and whose equational theory is Eo, then a 
fair procedure (given >- and starting with Eo) can either succeed­
providing a decision procedure R.,. = R for validity in the theory- or 
fail (on account of unorientable equations), but cannot have only in­
finite fair sequences (Dershowitz et al. (1988)). The procedures given 
in Knuth and Bendix (1970) and Huet (1981)-though correct-are 
not fair in our sense, since they sometimes abort upon generating 
an unorientable critical pair, even if choosing a different pair might , 
result in success. When they do not abort, they are fair, and find 
a canonical system if one exists.7 A completion procedure need not 
abort, however, unless all critical pairs are unorientable and unsim­
plifiable (as, for instance, is the case with the inefficient procedure 
given in Dershowitz (1982b)). 

2.4. Semi-Deciding Validity 

We have seen how completion generates a decision procedure when­
ever it succeeds after a finite number of steps. Completion is also 
applicable to theorem-proving tasks when it does not terminate with 
a convergent system. By the Proof Normalization Theorem, the 

7It is somewhat unfair to categorize Huet's procedure as unfair. since it was Huet 
who introduced (a weaker notion of) "fairness" in the context of completion, 
allowing, however, for unnecessary abortion. 



Completion and Its Applications 49 

(possibly infinite) result Roo of a fair completion sequence must be 
canonical (as first shown by Huet (1981)). Since, by soundness, 
-~ = -0, completion provides a semi-decision procedure for valid­
ity in the given theory-when it does not fail. That is, if s = EoUR" t, 
then, for any unfailing sequence, there is some step n when it is pos­
sible to ascertain that s -+kn v -kn t for some v. For example, 
given the decidable theory" 

(x·y)·z - x·(y·z) 

(x·x) - x 

of bands (idempotent sentigroups), and a straightforward ordering, 
completion generates an infinite set R"" of rules, including: 

(x·y)·z -+ x·(y·z) 

(x· x) -+ x 

x·(x·z) -+ x·z 

x· (y. (x . y)) -+ x·y 

x· (y . (x . (y . z))) -+ x·(y·z) 

x·(y·(z·(y·(x·(y·(z·x)))))) -+ x·(y·(z·x)) 

To prove that 

((x· ((y. z). y)). x)· ((y. z)· x) = (x· y). (y. ((x· y). (z· x))) 

in this theory, the two sides are reduced by the partial system shown 
above. Since they both reduce to x· (y. (z . x)), the equation is valid. 
But, since Roo is infinite, it does not constitute a decision procedure. 

The use of completion as an equational theorem prover can be 
rephrased in a refutational framework, as in Lankford (1975): 

Corollary 1. Let sand t be two terms and s' and t' their Skolem· 
ized versions (i. e., with their variables treated as constants). Let 
Roo be the result of a fair completion sequence starting from 

'See Siekmann and Szab6 (1982). 
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(E:{eq(x,x) ~ T,eq(s',t') ~ F}), whereeq is a new binary symbol, 
T and F are new constants, and any equality term eq( u, v) is greater 
(under the given reduction ordering) than F which is greater than T. 
Then s = E t if, and only if, ROO contains the contradiction F ~ T. 

Completion is, however, an incomplete theorem proving method. 
on account of its potential for failure (but see Section 3.2). Note that 
the rules eq(x, x) -. T and eq(s', t') ~ F in the initial set playa very 
limited role in the completion process. The first persists until the 
very end: the second gets repeatedly collapsed into new variable-free 
rules of the form eq( u. v) ~ F. Critical pairs involving eq( u, v) ~ 
F are either trivial (if both rules are of this form), superfluous (if 
they can be generated by collapsing u or v). or lead directly to a 
contradiction (when u and v are identical). 

3. Extensions 

In this section we touch upon various difficulties that may befall 
completion and indicate some proposed solutions. 

3.1. Nontermination 

The outcome of completion strongly depends on the choice of reduc­
tion ordering used to orient equations (see, for example, Lescanne 
(1986) or Gnaedig (1987)). Though implementations of completion 
typically provide the user with help in finding an ordering (see. in 
particular, Detlefs and Forgaard (1985) and Martin (1987)), choosing 
one that leads to success after a finite number of steps remains prob­
lematic. For example, the orientation of the first equation makes the 
difference between finding or not finding a finite convergent system 
for the following theory Eo:9 

'See Lescanne (1984). 

(x· y)­

(x·y)·z 

y ·x 

x·(y·z) 
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On the one hand. we have the finite successful completion sequence 

(Eo;0) I-KB ({(X·Y)·Z~X·(Y·Z)};{(X·y)--y-·x-}) 

I-KB (0; {(x· y). z - x· (y. z). (x· y)- - y-' x-}); 

on the other. there is an infinite (albeit successful) one; 

(Eo; 0) I-KB 

I-KB 

I-KB 

I-KB 

1-1<s 

I-KB 

({ (x· y) . z ~ x . (y. z)}; {y- . x- - (x· yn) 

(0; {(x· y) . z - x . (y . z). y- . x- - (x· y)-}) 

({ (x . y)- . z ~ x- . (y- . z)}; 

{(x· y). z - x· (y. z), y- . x- - (x· y)-}) 

(0; {(x· y)-. z - x-· (y-' z), 

(x·y)·z-x·(y·z),y- ·x- - (x'y)-)) 

(0; {(x· y)--. z - x--· (y--. z), 

(x· y)- . z - x- . (y- . z)}. 

(x· y). z - x· (y. z), y- . x- _ (x· y)-}) 

Indeed, the class of orderings used in the above-mentioned imple­
mentations is insufficient for proving termination of all terminating 
systems. For the purposes of generating a canonical system (as op­
posed to the use of completion as a theorem prover), one can delay 
testing for termination until all critical pairs have been considered. 
In this approach, an equation is oriented into a new rule, as long as 
the enlarged system is not known to be nonterminating. Of course, 
we are no longer assured that the result is terminating and must 
be careful not to simplify an equation or rule without limit. Along 
these lines, Plaisted (1986) suggests using the necessary but insuffi­
cient condition for nontermination that R' be homeomorphically self­
embedding. whereas Purdom (1987) suggests using the sufficient but 
unnecessary condition that R' be obviously looping. (See Plaisted 
(1985a) for the definitions of "self-embedding" and "looping" and 
proofs that they are, in general. undecidable properties of rewrite 
systems.) 

3.2. Unfailing Completion 

It is possible for some completion sequences to fail while others suc­
ceed (Avenhaus. 1985; Dershowitz et aI.. 1988). For example. let >-
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be a reduction ordering in which k is greater than m and n, which are 
themselves incomparable, but are both greater than c, and terms are 
greater than their proper subterms. We have a successful sequence: 

({k - m,k ...... n,f(k) +-+c};{f(m) ~ m}) 

I-KB ({k - n,j(k) - e}; {k ~ m,f(m) ~ m}) 

I-kB ({m-n,m-e}; {k~m,f(m)~m}) 

I-KB {{m-n}; {m~e,k~m,f(m)~m}) 

I-kB ({f(e) -c,e-n}; {m~e,k~e}) 

I-kB (0; {f(e) ~ e,n ~ e,m ~ e,k ~ c}), 

as well as a failing one: 

({k - m,k - n,f(k) -e};{f(m) ~m}) 

I-KB ({k - m, f(k) - e}; {k ~ n, f(m) ~ m}) 

I-i<-s ({n - m}; {f(n) ~ e, k ~ n, f(m) ~ m}). 

Thus, it may be advisable to implement completion with backtrack­
ing to explore alternative sequences upon failure. 

For a given reduction ordering >- and equational theory E, there 
exists a (not necessarily finite) convergent system for E contained 
in >- if, and only if, each congruence class of terms equal under E 
has a unique minimal element vis-a-vis >- (Avenhaus, 1985). Un­
fortunately, even when such a system exists, it may be the case 
that the zero-step sequence (E; 0) is already a failure-and back­
tracking would be to no avail (Dershowitz et ai., 1988). For ex­
ample, with the same ordering as above, no fair sequence exists 
for Eo = {f(n) +-+ e, f(m) - m, m - n}, despite the existence 
of R = {f(e) ~ e, m ~ e, n ~ c}. Note that a stronger order­
ing (one that makes m and n comparable) would lead to success in 
this case, but that this too is not always possible (replace m and n 
by the inherently incomparable terms, g(x) and h(y), respectively). 
Knuth and Bendix (1970) suggest circumventing such failures by in­
troducing a new minimal function symbol (in the above case, a con­
stant, say k) and adding new rules equating the problematic terms 
to a term headed by the new symbol (in our case, m ~ k and 
n ~ k) and having the terms' variables as its immediate subterms. 
The resulting rewrite system ({m ~ k,n ~ k,e ~ k,f(k) ~ k}) 
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would no longer represent the same equational theory as the origi­
nal axioms (it is, rather, a conservative extension thereof), but 
could still be used as a decision procedure for the latter. This ap­
proach1 however 1 often degenerates into an infinite succession of 
new symbols, particularly in the presence of "permuters," identi­
ties whose sides differ only in the location of variables. For 
example, the equation x . y ..... y . x cannot be oriented by any 
reduction ordering, and replacing it by the rules x . y - k(x, y) 
and y. x - k(x, y) just leads to the equally problematic critical pair 
k(x. y) ..... k(y, x). 

Were the reduction ordering :- on T that is supplied to the pro­
cedure total (or at least total on each class of equivalent terms), 
then all equations would be orientable, and failure could be avoid­
ed. Unfortunately, as we have just seen, that cannot, in general, 
be the case. On the other hand, it is always possible to define a 
total reduction ordering on variable-free terms. Taking advan­
tage of the existence of such an ordering, one can overcome the 
problem of unorientable equations (containing variables). This is 
the "unfailing" method described in Hsiang and Rusinowitch 
(1987) and Bachmair et al. (1989), which is based on the 
early, more general methods suggested by Brown (1975), Lank­
ford (1975), and Plaisted (personal communication). The older 
methods treat unorientable equations s +-+ t as two rules, s - t 
and t - s, for the purposes of critical pair generation (like para­
modulation), but refrain from their careless use for simplifying 
equations or rules. The newer methods treat such an equation 
as (perhaps infinitely) many oriented instances by incorporating 
inferences: 

Paramodulate: (E; R) I- (E U {s +-+ t}; R) 

if S +-+E U ..... E t and s,t tu 

With this rule, an equation s ..... t is inferred only if it results from 
a subproof S ..... E U ..... E t, some instances of which may be a peale 
Only critical subproofs, as defined by appropriate fairness conditions, 
need to be generated. Under reasonable assumptions, the unfailing 
completion procedure is complete. See Bachmair et al. (1989) for a 
treatment within the inference-rule framework. 
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3.3. Associative-Commutative Completion 

To handle some common problematic identities. such as commuta­
tivity (with or without associativity), reasonably efficiently, special­
purpose completion procedures have been designed. Let A be an 
equational system; for any rewrite system R. we define a rewrite re­
lation ~ R/ A on A-congruence classes. Thus, we write S ~ R/ A t if 
s -:4. U -R v +-+:4. t for some terms u and v. Vv~e are particularly 
interested in the AC equational system, consisting of two axioms: 

f(x,y) - f(y.x) 

f(f(x, y), z) - f(x,J(y, z)) 

for each function symbol f in some subset of the binary symbols in :F. 
So as to limit deductions to "critical" ones, the definition of overlap is 
extended to include cases in which two rules can be applied near the 
top of the same term (Lankford and Ballantyne, 1977b). Functions 
that are only commutative can be handled similarly (Lankford and 
Ballantyne, 1977 a). 

Let >- be a reduction ordering and t> a well-founded ordering on 
terms, both of which are compatible with an equational system A. 
By compatibility with A, we mean that u .... A S >- t .... A v implies 
u >- v and U .... A s t> t .... A v implies U t> v. We define the following 
set K B / A of inference rules: 

Delete: 

Compose: 

Simplify: 

Orient: 

Collapse: 

Extend: 

Deduce: 

(EU {s .... t};R) I- (E;R) 

(E;RU{s ~ t}) I- (E;RU{s ..... u}) 

(EU {s .... t};R) I- (EU{s .... u};R) 

(EU{s .... t};R) I- (E;RU{s ..... t}) 

(E;RU {s ~ t}) I- (EU {u .... t};R) 

if S -A t 
ift ..... R/A u 

ift ..... R/A u 

ifs>-t 

if~R/A u by amle / ..... r E Rwith s t> / 

(E:R) I-(E;Ru{t ..... s}) ifs-Ru .... At 

(E;R) I- (EU{s .... t};R) ifs-Ru~R/At 

(a) Delete removes an equation between terms that are equal 
in A. 

(lr-d) Compose, simplify. and orient, are analogous to their coun­
terparts in K B. 
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(e) Collapse simplifies left-hand sides according to the special­
ization ordering I> "'modulo'" A; that is, s I> / if a (not nec­
essarily proper) subterm of s is equivalent under A to an 
instance of L but not vice-versa. We also require that all 
the A steps used in applying I - r to s are strictly below 
the top of s. 

(f) Extend adds consequences of R resulting from A steps. For 
example. an AC -extended version of x . x - x is x . (x . z) ~ 
x· z. 

(g) Deduce adds equational consequences to E, including those 
that require some A steps. For example, from x·x- ~ 1 and 
x ·1- x, one can deduce 1- -1, since 1·1- -AC 1-·1. 

We write (E; R) I-KBIA (E'; R') if the latter may be obtained from 
the former by one application of a rule in K B I A. When A is empty. 
this inference system is identical with that for standard completion. 
As with standard completion, we wish to limit application of the in­
ference rules, extend and deduce, to "critical" situations, at the same 
time ensuring that nonrewrite proofs will eventually be simplified. 

Peterson and Stickel (1981) introduced a new relation - A\R, 

which is weaker than -RIA' It may be defined by the set of rules 

A\R = {s ~ r: s -A I and I - r E R} 

which includes (perhaps infinitely many) A-variants of left-hand sides 
of rules in R. A rule in A \R is applied not only to exact instances of 
an s, but also when the subterms matching different instances of the 
same variable in s are equal in A. Thus, s -A\R s[ro-]. if sip -A /0-
for some position p in s and rule I - r in R. Computing this 
relation for AC requires associative-commutative pattern matching 
(StickeL 1981). For example, if x . x - x is a rule in Rand . is 
associative and commutative, then (a ' b) . (b . a) - AC\R a . band 
(a· (b· b)) . a -RIAC a· (b· b), but (a· (b· b)) . ap AC\R a· (b· b). 
The notions of "irreducible term" and "reduced systems" may be 
extended to refer to this new rewrite relation. 

Our goal is to transform any proof s -EoURoUA t into a normalized 
proof of the form s -~\RX U -A v +-~\ROQ t. in which sand tare 
reduced by the above relation to A-equivalent terms u and v. If R'" 
is finite, and an A-matching algorithm is available, then this gives 
us a means of testing validity in Eo U Ro U A. In the set cPA(R), we 
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include all critical pairs obtained by overlapping A-variants of rules 
in R on rules in R (there is no need to overlap a variant on a variant). 
That is, dlJ - 91J[TIJ]p is in cPA(R) if 9 -+ d and 1-+ T are rules in R, 
p is the position of a nonvariable subterm of 9, and IJ is a most general 
substitution (most generaL with respect to subsumption modulo A) 
such that 91J/P -A IIJ, where variables in the two rules have been 
made disjoint. A non-normal proof might also have a "cliff" of the 
form s <-R U ..... A t. By eXA(R) we denote the set of extended rules 
obtained by overlapping variants of rules in R on equations in A. 
That is, dlJ -+ 91J[TIJ]p is in eXA(R) if 9 - d is an equation in A, 
I -+ T is a rule in R, p is the position of a nonvariable subterm of 9, 
and IJ is a most general substitution such that 91J/P -A IIJ, where 
variables in the two equations have been made disjoint. 

Definition 3. A completion sequence in K B / A is fair if all per­
sistent critical pairs are considered (cPA(ROO) is a subset of the 
A-variants of UEi), all persistent critical extensions are considered 
(exA(ROC ) is a subset of the A-variants of UR;), no simplifiable rule 
persists (ROC is reduced), and no equation persists (Eoo is empty). 

Extended Critical Pair Lemma. FOT any rewrite system R, equa­
tional system A, and peak or cliff s <-RUA U -+A\R t, there ex­
ists a rewrite proof S -+A\R v ~A W ....... A\R t, a critical-pair proof 
s .... A\CPA(R) t, or extended-rule proof s -+A/eXA(R) V -A t (Jouan­
naud, 1983). 

The critical-pair and extended-rule proofs may involve A steps below 
their variable positions only. 

Extended Proof Nonnalization Theorem. If a completion sequence 
(Eo;Ro) I-KB/A (E,;R,) I-KB/A ... is fair, then for any proof 
S -R,uE,uA t, there is a rewrite proof s -~\ROO U -A V -~\ROO t 
for ROO (Jouannaud and Kirchner, 1986). 

Jouannaud and Kirchner prove this for a specific completion proce­
dure; Bachmair and Dershowitz (1987a) prove it for any implemen­
tation of K B / A. 

In practice, for the purposes of AC-completion, rules are flattened 
by removing nested occurrences of associative-commutative symbols. 
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An associative-commutative unification algorithm (Livesey and Siek­
mann. 1976; Stickel. 1981; Fages. 1987) is used, in place of the stan­
dard (syntactic) unification algorithm, to generate the critical pairs 
in CPAc( R;), and associative-commutative matching is used to ap­
ply rules. For each rule f( s, t) ...... r in R; headed by an associative­
commutative function symbol f, an extended rule frs, f(t, z)) ...... 
f(r,z) is added and flattened out to f(s,t,z) ...... f(r,z); extensions 
of extended rules are redundant. Analogous with standard comple­
tion, the result ROO of a successful K B / AC sequence is unique up 
to AC-variants and renamings of variables, for any given reduction 
ordering (Lankford and Ballantyne, 1983). 

Additional aspects of completion modulo equational theories are 
considered in Huet (1980), Jouannaud and Kirchner (1986), and 
Bachmair and Dershowitz (1987a). Huet deals with the left-linear 
case, when only one occurrence of each variable appears on a left­
hand side. Jouannaud and Kirchner analyze exactly which critical 
pairs are necessary when some rules are left-linear and others are 
not; Bachmair and Dershowitz take the inference rule and proof­
pattern approach and generalize previous results. In particular, the 
well-founded specialization ordering modulo A, used for simplify­
ing left-hand sides, may be separated into a strict subterm ordering 
modulo A and a proper subsumption ordering (not modulo A). An 
alternative approach to completion modulo a congruence is to "pro­
tect" certain variants of extended rules; for a discussion of the rela­
tive merits of extension vs. protection, see Jouannaud and Kirchner 
(1986) and Bachmair (1987). Different approaches are looked at in 
Gobel (1983), Jouannaud et al. (1983), and Pedersen (1985). The 
existence of unification algorithms for particular equational theories 
is surveyed in Siekmann (1984); general-purpose unification proce­
dures are discussed in Kirchner (1985). The question of unique­
ness of reduced modulo systems is dealt with in Dershowitz et al. 
(1988). 

3.4. Critical Pair Criteria 

As described in Section 2.3, fairness of a completion sequence re­
quires that all persistent critical pairs be generated. and promises 
success of the sequence. It is possible to require that fewer pairs 
be generated and still guarantee success; such a weaker fairness 
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requirement is called a critical pair criterion. A criterion is 
correct if we can still ensure that every fair completion sequence 
(in the weakened sense) leads to rewrite-only proofs in RX. Various 
critical pair criteria have been investigated recently in Winkler and 
Buchberger (1983), Winkler (1985), Kiichlin (1986a), Pottier (1987). 
Bachmair and Dershowitz (1988). and Kapur et al. (1988). 

Two main approaches have been proposed: 

(a) The connectedness criterion ignores any critical pair s - t 
derived from an overlap s = TI-' ~R. II-' -R. II-'[dl-'Jp = t of 
rules for which there exists an alternative proof s -R.uE. t 
such that each term in the latter proof is smaller vis-a-vis - + 
than II-'. A special case of such a criterion is used implicitly 
in the marking scheme of Huet (1981). More generally. it 
is unnecessary to generate any critical pair for which there 
already existed a proof smaller under the ordering> kb used in 
the proof of termination of ~ K B· 

(b) The compositeness criterion ignores critical pairs for which 
the overlapped term II-' can be rewritten at a position strictly 
below the point p of overlap. A special case of this criterion 
is used in Lankford and Ballantyne (1979). 

AC-completion is closely related to the Gaussian-like elimination 
methods for solving the word problem for polynomial ideals; see 
Buchberger (1987) for a discussion. The connectedness criterion was 
motivated by concepts first appearing in that context (Buchberger 
(1979)). Critical pair criteria for the AC case are looked at in Ka­
pur et al. (1988), Winkler (1984), Bachmair and Dershowitz (1987a; 
1988), and Kiichlin (1986b). 

4. Applications 

In this section. we describe some of the varied applications of rewrite 
methods to equational reasoning. Most of our examples involve 
associative-commutative completion: for them. we flatten associa­
tive-commutative terms and ignore symmetric extensions of rules 
obtained from the axiom of commutativity. We show only selected 
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equations and rules. not full computations. Though completion is 
used in each case to achieve the desired goaL an unfailing completion 
method could be applied instead. 

Let 9 denote the variable-free terms in T; such terms are called 
ground. For applications. we are often interested in the ground con­
fluence of a given system R. A system has this restricted confluence 
property. if s -j, u ~j, t. for any ground terms s. t. and u in g. im­
plies the existence of a ground term v in 9 such that s - j, v - j, t. 
A system is "ground convergent" if it is terminating and ground con­
fiuent. A critical pair criterion for the ground case is described in 
Kiichlin (1987). 

4.1- Congruence Closures 

As was pointed out in Section 3.2, there is, in general, no reduc­
tion ordering that can orient all critical pairs. However, when all 
equations are ground, such an ordering is possible.lO With such an 
ordering, failure is impossible. Moreover, completion is guaranteed 
to succeed after a finite number of steps, resulting in a decision pro­
cedure for the initial set of ground equations (Lankford. 1975). In­
deed, validity in an equational theory presentable as a finite number 
of ground equations is decidable (Ackermann, 1954). 

Theorem 1- Given a total reduction ordering on ground terms and 
a finite set Eo of ground terms, the result ROC of any sequence from 
(Eo; 0) generated by a fair completion procedure is finite and canon­
ical (Lankford, 1975). 

In other words. ground completion is complete. 

Proof. On account of the totality of the ordering, all critical pairs 
can be oriented, and no sequence can fail. Since there are no vari­
ables. the inference rule, deduce, is never needed: all critical pairs 
are covered by collapse. If a rule g - d overlaps a rule I ~ r, the 
latter collapses into the pair I[djp - r, which is oriented into either 
/[djp ~ r or r - I[djp. In either case. the left-hand side of the new 
rule is smaller under the reduction ordering than the left-hand side 

10 A total "simplification ordering" is needed; see Dershowitz (1982a). 
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I of the rule it displaces. Since the ordering is well-founded and Eo 
is finite, the completion process must terminate. 0 

For example, the equations 

f(f(f(f(f(c))))) - c 

f(f(f(c))) - c 

generate the following completion sequence: 

f(f(f(f(f(c)))) ) - c 

f(f(f(c))) - c 

f(f(c)) - c 

f(f(c)) - c 

ftc) - c 

ftc) - c 

The result is the one rule system 

ftc) - c 

under which any two congruent terms reduce to the same term. 
This computation, by completion, of the "congruence closure" of 

a finite set of ground terms is reminiscent of the algorithm used in 
Nelson and Oppen (1980). Normal forms serve as names for classes 
that are eventually "merged" into congruence classes, each named by 
the minimal term in its class. Adding nonground rules can, of course, 
cause completion not to succeed within any finite number of steps, 
as can happen when "demons" are incorporated in the congruence 
closure computation (cf. Marcus (1984)). 

4.2. Meta-Unification 

Let E be an equational theory over a set of terms T. An equation 
s = t is satisfiable in the free model T of E, if there is a substitution 
t7 of terms in T for the variables of sand t such that the equation 
becomes valid in E, i.e., s<r =E t<r. In that case we say that sand t 
are "unifiable" in E via <r, or that s = t has a solution <r in E. 

Proposition 2. An equation is satisfiable in the free model of an 
equational theory E if, and only if, it is satisfiable in all models of 
E (with nonempty universe). 
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Proof. If an equation s = t is satisfiable in the free model of E, 
then there is a substitution a of terms for the variables Xi of sand t 
such that sa = ta is true in all models A of E, i.e., for all assignments 
v of values (in the universe of A) to the variables of sa and ta, the 
value [sa)v of sa is equal to the value [ta)v of ta. It follows that 
for all models A, there is an assignment J1, (assigning to each Xi the 
value [x;)v) such that [s] .. = [t] .. in A. In other words, the equation 
s = t is satisfiable in A. 0 

The completion procedure may be used to solve equations. We 
have the following theorem showing how to use completion to deter­
mine satisfiability: 

Theorem 2. Let Roo be the result of a fair completion sequence from 
(E;{eq(x,x) - T,eq(s,t) - F}), where eq is a new binary symbol, 
T and F are new constants, and any equality term eq( u, v) is greater 
(under the given reduction ordering) than F which is greater than T. 
The equation s = t is solvable in E if, and only if, the contradiction 
F - T is a member of ROO {Lankford, 1975}. 

Proof. If sa - E t(7, then (by fairness) the proof T -
eq( S(7, sa) - E eq( S(7, t(7) - F will eventually simplify to a rewrite 
proof T -k~ v -k~ F. Since T is minimal, and F cannot be 
larger than any (equality) term it is paired with, there must be a 
rule F-T in Roo. 0 

Since the equality symbol does not appear in E, the left-hand side 
of rules generated from eq(s, t) - F can never overlap a subterm 
of a left-hand side of a rule descending solely from E. Note that 
the fairness criteria need only ensure that R"'" is ground confluent, 
since a proof of contradiction from E U {eq(x, x) - T, eq(s, t) - F} 
containing only ground terms is always possible when the equation 
is satisfiable (and 9 is nonempty). 

For example, say one wishes to find x and y such that X· Y = 1 in 
commutative group theory. where· is associative and commutative. 
Completion can proceed as follows: 
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1· x 

x'x 

eq(x, x) 

eq(x . y, 1) 

1· x 

eq(y,l) 

eq(y. 1) 

F(l.l) 

eq(l,l) 

F(x,x-) 

eq(l,l) 

F(y-,y) 
1-

x 

x·x .y 

(x· y)-

x 

1 

T 

F(x, y) 

x 

F(l, y) 

F(l, y) 

T 

1 

F(x, x-) 

T 
F(y- ,y) 

T 

1 

x 

y 

x 'y 

N. Dershowitz 

Variables have been placed as arguments to F to keep track of the 
satisfying substitutions. Completion thus generates three solutions: 
0'1 = {x ...... 1, y ...... I}, 0'2 = {y ...... x-}, and 0'3 = {x ...... y-}. In 
the process, completion has also generated the following canonical 
system AC\G for commutative groups: 

l·x ~ x 

X'x ~ 1 
1- ~ 1 

x ~ x 
-X'x .y ~ y 

(x· y)- -
~ x 'y 

For each of the solutions 0',. we have (x· y)O', ~ AC\G 1. 
As pointed out in Fages (1983a), insisting on simplifying rules 

may result in equations or rules that determine recurrence relations 
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between solutions, rather than an explicit, complete set of solutions. 
Consider, for example, the following completion sequence 

g(f(y)) ~ g(y) 

eq(g(z),g(O)) ~ F(z) 

eq(x,x) ~ T 

F(O) ~ T 

eq(g(y), g(O)) ~ F(f(y)) 

F(f(y)) ~ F(y) 

The two generated rules implicitly determine the (complete) set of 
solutions for z in g(y) = g(O): {z ...... O,z ...... J(O),z ...... J(f(O)), ... }. 
This aspect of completion is exploited in Rety et al. (1985). 

If instead of equations E, completion starts off with a convergent 
set of rules R and a soluble goal eq(s, t) ~ F(xJ,"" x n ), where the 
Xi are the variables in sand t, then it cannot fail before finding a solu­
tion and deriving a contradiction. All critical pairs needed for a proof 
of contradiction are of the form eq(u, v) ~ F(wJ,"" wn ) and are 
orientable from left to right. (Since R is confluent, there is no need 
to generate critical pairs between its rules.) The effect of completion. 
in this case, is to narrow sand t until a substitution (j is generated 
which equates the two terms in the theory presented by R. Thus, 
narrowing, as defined by Slagle (1974) and used for this purpose by 
Fay (1979) and Lankford and Ballantyne (1979), is a restricted form 
of completion (as was understood in Lankford (1975) and is noted 
in Dershowitz (1985a) and Rety et al. (1985)). Since the equality 
symbol is presumed not to appear in R, any critical pair between 
a rule I ~ r in R and a generated rule eq(u, v) ~ F(wJ,"" wn ), 

must involve an overlap of I on a (not necessarily proper) nonvari­
able subterm u!p of u or v!p of v. The resultant critical pair can 
be oriented into a new rule, eq(u[r!,]p, v!') ~ F(Wl!' .... , wn !') or 
(u!" v[r!']p) ~ F(Wl!',"" wn!')' This step corresponds exactly to 
narrowing, as defined in Hullot (1980b); using R to collapse the left­
hand side (which is optional from the point of view of generating 
contradictions) gives the result of Fay's narrowing operation. As in­
dicated by Dershowitz (1985a) and others, ground confluence of R 
suffices for the purposes of narrowing. 
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4.3. Synthesis 

Like other theorem-proving methods, completion and its variants 
can be applied to the task of program synthesis from specifications 
(Dershowitz, 1985a,b). The completion procedure itself folds defini­
tions, introducing recursive calls, thereby. Thus, program synthesis 
may be thought of as generating an executable (usually recursive) 
definition of the set of solutions to a given specification. (Cf. the 
methodologies of, e.g., Burstall and Darlington (1977), Manna and 
Waldinger (1980), Clark (1981), and Hogger (1981).) 

Assume that we wish to synthesize a rewrite system for some func­
tion f(Xl,"" xn). The synthesized system must reduce any term 
composed of the defined function f and primitive symbols to a term 
consisting wholly of primitives. The following definition is useful: 

Definition 4. A term t is ground reducible for a rewrite system R 
over a set of terms T if every ground instance of t in T is rewritable 
by R. 

A program for f, then, is a rewrite system each rule of which follows 
from the specification of f and for which the term f(Xl,"" Xn) is 
ground reducible (the Xi are variables). 

In another context, it has been shown that 

Proposition 3. Ground reducibility is decidable when R is finite 
(Plaisted, J985b). 

See also Kapur et al. (1987). When R is left-linear, then deciding 
ground reducibility can be done more efficiently (Jouannaud and 
Kounalis, 1986). In the left-linear case, ground reducibility is known 
to be decidable for rewriting modulo AC as well. Kounalis (1985) 
considers rewriting modulo a congruence, in general. In the special 
case where all irreducible forms are constructor terms, ground re­
ducibility is more easily testable. This case had been considered by 
Nipkow and Weikum (1982) (for left-linear systems) and Dershowitz 
(1985a) (for the general case), using the idea of a "test set," first 
suggested in Plaisted (1980). Sufficient criteria had been given ear­
lier in Bidoit (1981), Huet and Hullot (1982), and Padawitz (1983); 
see also Thiel (1984). New results are in Coman (1986) and Kapur 
et al. (1986). Ground reducibility has important implications for 
the question of "sufficient completeness" of algebraic specifications 
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of data types (as defined in Guttag and Horning (1978)); see the 
above references. 

The completion procedure is given a set E of equations, speci­
fying the required properties of f and necessary properties of the 
problem domain. The reduction ordering supplied to the procedure 
should ensure that terrns containing specification symbols are greater 
than corresponding terrns containing the defined symbol, which in 
turn should be greater than the corresponding primitive terms. This 
serves to guarantee that specification symbols will not appear in the 
synthesized program. 

Theorem 3. Suppose there exists a rewrite program for a defined 
function f that is valid for some specification E of f and is contained 
in a reduction ordering >-. Then the result ROO of any fair completion 
sequence from (E; 0), using >-, will contain a rewrite progmm for f 
(Dershowitz, 1985a). 

Proof. Let R constitute such a program for f. Both sides of all 
identities of E reduce under ROO to the same term. In particular, at 
some stage n, all rules I - r of R will follow from Rn. At that point, 
I -k

n 
v <-k

n 
r and any term rewritable by R is also rewritable by 

Rn, since the reduction ordering precludes r -t l. In particular, 
all ground terms containing f are reducible. Thus, Rn contains a 
program for f. 0 

For example, consider the specification 

x+x - double(x) 

of a function to double a nonnegative integer and suppose we are 
given the following facts about addition: 

x+O -t x 

x+s(y) - s(x+y) 

where + is associative and commutative. The defined symbol symbol 
is double; it is specified using +. The generated system must make 
double (x) ground reducible; it must compute normal forms of ground 
terms (not containing +) using only the primitive function sand 
constant O. The completion sequence 
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double(O) ~ 0 

double(O) ---> 0 

double(s(y)) ~ s(s(y+y)) 

double(s(y)) ~ s(s(double(y))) 

double(s(y)) ---> s(s(double(y))) 

includes the two rule program 

double(O) ---> 0 

double(s(y)) ---> s(s(double(y))) 

Any ground term constructed from double, s, and 0 must contain an 
instance of one of these left-hand sides. 

Were + not asserted to be commutative, completion would slowly 
generate an infinite number of specific values, e.g. double (s( 8(0))) ---> 

s(s(s(s(O)))), despite the existence of the above, finite 
program. In general, rules in a program need not be true in all 
models of the specifications, only in the "intended" model. Thus, 
verifying the correctness of a rewrite system (such as this one for 
noncommutative +) really amounts to proving the consistency 
of the program with its specifications. Completion-based meth­
ods for consistency proofs are described below; synthesizing pro­
grams whose rules are not deductive, equational consequen­
ces, but are, rather, inductive consequences, is investigated in Der­
showitz and Pinchover (1989). 

A (ground) convergent system may also be used to narrow equa­
tional goals, in the spirit of "logic programming" (Kowalski, 1974). 
Narrowing-based programming languages have been proposed by 
Dershowitz and Josephson (1984), Goguen and Meseguer (1984), 
Dershowitz (1985a), Fribourg (1985), Reddy (1985). and others. In 
Dershowitz (1985b), the synthesis of logic programs using the com­
pletion procedure is also illustrated. 

4.4. Proof by Consistency 

Musser (1980) first suggested using completion to prove theorems 
in the initial model of an equational theory; such proofs normally 
require structural induction (see Goguen (1980)). This approach 
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has been dubbed "inductionless induction" by Lankford (1981) and 
.. "proof by consistency" by Kapur and Musser (1987). 
- An equation S = t is valid in the initial algebra I(E) (the "stan-

dard model") of an equational theory E if it holds, in E, for all 
substitutions 17 of ground terms for its variables. We write S =I(E) t 
to indicate that S(J =E t(J for all ground 17. Goguen (1980) showed 
that for any convergent system R, the ground normal forms consti­
tute an algebra that is initial for the theory presented by R. In that 
sense rewriting is a "correct" implementation of initial al­
gebra semantics. 

Were a convergent system R to include rules that reduce any valid 
ground equation eq(g, d) to T and invalid ones to F (for some equali­
ty symbol eq), then letting (Eo; Ra) be ({ S - t}; R) and complet­
ing fairly, would generate the contradiction F - T whenever 
S = t is not an identity in the initial model of R. This is the 
method of Musser (1980) (see also Goguen (1980), Huet and 
Oppen (1980), and Kapur (1980)); its correctness follows direct­
ly from the fairness of completion, since, if S # I(R) t, then 
F ~k, eq(s(J, t(J) -Eo eq(t(J, t(J) -ko T, for some ground 17, 

would be a proof of a contradiction. Huet and Hullot (1982) re-
~ fined this method for the important case when the set of ground 

normal forms is the set of all ground terms constructed from a 
restricted set C C F of function symbols, called constructoTs, i.e., 
for which the constructor algebra is initial. A contradiction, then, is 
indicated by any clash between constructors. The inference rule 

Contradiction: 
(E U {J(s" ... , Sn) - g(t, .. .. ,In)}; R) I- (0; {F - T}) 

if I' = g and I, 9 E C 
may be added (explicitly or implicitly) to completion. In addition, 
the inference rule 

Decompose: 
(E U {J(SI, ... , Sn) - I(t" ... , tn )}; R) 

I- (EU{Si - ti: i = 1, ... ,n}:R) if I EC 

can be used to speed up the proof process. This idea was generalized 
in Paul (1984). 

Lankford (1981) formalized the method: one proves consistency 
by showing that the ground normal forms of a convergent system 
R for E and the result R'" of completion are the same. (Lankford 

-t includes restrictions on the form of rules, inherited from Huet and 
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Hullot.) Dershowitz (1982b) and Remy (1982) first noted the connec­
tion between inductive theorem proving and the notion of reducibil­
ity of all ground instances.11 Jouannaud and Kounalis (1986) rec­
ognized the centrality of this notion and coined the term "inductive 
reducibility";'2 we prefer to use "ground re ducibility" (suggested by 
Kiichlin (1987) and already used above) for this concept. 

Proposition 4. Let an equational theory E admit a convergent re­
write system R. An equation s = t is valid in the initial model 
J(E) of E if, and only if, no equality between two distinct ground 
R-normal forms follows from E and s ... t (Dershowitz (J982b)). 

This result extended the original method by allowing any contradic­
tory equality between irreducible ground terms to indicate invalidity. 

Proof. If sa oFE ta, for some ground substitution a, then the R­
normal forms of sa and ta are distinct ground terms whose equality 
follows from E and s ... t. Conversely, if g and d are ground terms 
that are equal only if s = t, then some ground instance sa ... ta of 
s ... t, that does not hold in E alone, must be necessary for a proof 
of the inconsistency g = d. 0 

Theorem 4. Let H be a set of equational hypotheses. Suppose R is 
ground convergent for E and let ROO be the result of a fair completion 
sequence starting from (H; R). Every left-hand side of ROO is ground 
R-reducible if, and only if, s = I(E) t for all s - t in H (Dershowitz 
(J982b)). 

This was first proved for convergent R; Remy and Zhang (1984) 
pointed out that only ground confluence is needed. 

Proof. Suppose la is a ground instance of a left-hand of a 
rule I -> r in ROO that is R-irreducible. Since R U ROC is terminat­
ing, the R-normal form of ra cannot be La and an inconsistency 
exists. On the other hand. if s ->koo v -koo t for two distinct 
R-irreducible ground terms sand t, then at least one of them 

llRemy's (1982) conditions for inconsistency confused reducibility (in general) 
with ground reducibility; see, however. Kirchner (1984). 
121n earlier work, they called it "quasi-reducibility." 
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must be reducible by a rule in Roo with a ground reducible left­
hand side. D 

If the completion procedure yields a (possibly infinite) convergent 
rewrite system Roo such that the previously irreducible ground terms 
are still irreducible, then the equations in H are valid in the initial 
model. Of course, when Roo is infinite, testing for ground reducibility 
is no longer feasible. If completion ever generates an equation (not 
just a rule) that has as an instance an equality between two distinct 
irreducible ground terms, then too H is not valid in I(E); if the pro­
cedure fails without producing such an equation, then nothing can 
be said about H (Dershowitz (1982b)). An extension of this method 
to proving non-orientable equations is described in Jouannaud and 
Kounalis (1986). 

This method applies to AC-completion as well (see Goguen (1980) 
and Lankford (1981)), providing the basis for the experiments re­
ported in Huet and Oppen (1980) and Huet and Hullot (1982). More 
in this area is included in Jouannaud and Kounalis (1986). Kirch­
ner (1984) considers the general completion modulo A case. The 
proof by consistency method has also been generalized in Kapur and 
Musser (1986, 1987); see also Paul (1984). In Plaisted (1982) it was 
shown how completion may be used to prove the existence of initial 
algebra semantics for error conditions. 

As an example, consider the canonical system AC\R containing: 13 

x+O -; x 

xxO -; 0 

xxI -; x 

xx(y+z) -; (xxy)+(xxz) 
0 

2:> -; 0 
i=l 

1 

2:> -; 1 
i=l 
x+1 x 

I> -; L i + (x + 1) 
i=l i=l 

13From Huet and Oppen (1980). 
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where both + and x are associative and commutative. Adding the 
hypothesis 

z 
(1 + 1) x 2:; - x x (x + 1) 

i=l 

and completing, generates the rules 
z x 

(2:i)+(2:;) ~ (xxx)+x 
i=l i=l 

x x 
(2: ;) + (2: i) + z ~ (x x x) + x + z 
i=l i=l 

(the second is an extension of the first), but no more. Since the 
left-hand sides are both ground reducible by ~ AC\R, the theorem is 
proved. 

Proof by consistency has been proposed as an alternative to other 
automated approaches to inductive theorem proving. Indeed, in the 
opinion of this writer (see also the discussion in Fribourg (1987)), 
it bears a measure of resemblance with some of the heuristics in­
corporated in the methodology of Boyer and Moore (1979). "Cross­
fertilization" of goals~in the latter's terminology~corresponds 

roughly with critical pair generation; "unfolding," with equation 
simplification; and "throwing away equalities," with rule simplifi­
cation. The reduction ordering supplied to completion suggests the 
"induction scheme" and restricts the locations for induction to vari­
able occurrences on the left-hand side. But completion has some 
drawbacks, notably its insistence on simultaneously "inducting" on 
all "unflawed" occurrences of variables on left-hand sides. Fribourg 
(1986) points out that not all critical pairs need be considered (since 
ground confluence depends only on ground terms and since R itself 
is confluent) and that fairness need only guarantee ground conflu­
ence of ROO; see also Gobel (1985). In particular, only critical pairs 
that involve a selected induction term in an hypothesis need be gen­
erated (provided that critical pairs at that position will cover all 
ground instances). Gobel (1987) and Kiichlin (1987) adapt the sub­
connectedness criterion to the ground case. These results may allow 
for better-tailored proofs by consistency. An unfailing version and 
improved results in this area are contained in Bachmair (1988). 

Suppose we are given the system 

x+o - x 
x+s(y) ~ s(x+y) 
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and try to prove associativity: 

(x+y)+z +-+ x+(y+z). 

(Commutativity of + is also unknown.) Depending on the reduction 
ordering, completion mayor may not prove the hypothesis. On the 
one hand, we have the successful sequence: 

x+(y+z) ~ (x+y)+z 

x+y +-+ (x+y)+O 

x+y +-+ x+y 

x+s(y+z) +-+ (x+y)+s(z) 

x+s(y+z) +-+ s((x + y) + z) 

s(x+(y+z)) +-+ s((x+y)+z) 

s((x+y)+z) +-+ s((x+y) +z) 

where all generated equations simplify to a trivial one. On the other 
hand, with a different ordering, we have an infinite sequence: 

(x+y)+z ~ x+ (y+z) 

s(x+y)+z +-+ x+(s(y)+z) 

s(x+y)+z ~ x+(s(y)+z) 

s(s(x + y)) + z ~ x + (s(s(y)) + z) 

One might argue that the first choice of ordering is more appropri­
ate, since-in orienting rules-it only considers the second argument 
of +, that argument on which the recursive definition of + is 
based. Alternatively. once can place the blame on the overlap­
ping of the second rule for + on the y variable in the hypothesis. 
The method of Fribourg (1986) could. therefore, be used to only 
generate critical pairs at the position of x. as was the case with 
the first ordering. 

As pointed out in Lankford (1981). neither completion nor other 
inductive methods are good at coming up with the theorem itself, 
or suggesting lemmata needed for its proof. Some hope for progress 
in this direction may lie in the recent work of Kirchner (1987) on 
inferring meta-rules from infinite completion sequences. See also 
Dershowitz and Pinchover (1989). 
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4.5. First-Order Theorem-Proving 

Hsiang (1982) first suggested using a canonical rewrite system for 
Boolean algebra in a resolution-like theorem-proving strategy. Let 
AC\BA be the following canonical system: l4 

~x ~ xffJT 

xVy ~ (xl\y)ffJxffJy 

x=>y ~ (xl\y)ffJxffJT 

xl\T ~ x 

x 1\ F ~ F 

xl\x ~ x 

xffJF ~ x 

xffJx ~ F 

(xffJy)l\z ~ (x 1\ z) ffJ (y 1\ z) 

xl\xl\y ~ x 1\ Y 

xffJxffJy ~ Y 

where --, is "not," /\ is "and," V is "inclusive-or," e is "exclusive­
or," :J is "'implication," T is "true," and F is "false." Both I\. and 
ffJ are associative and commutative. (The last two are extended 
rules.) With this system, all propositional tautologies reduce to T 
and contradictions, to F. The following, for example, is a rewrite 
proof of DeMorgan's Law: 

(~x) V (~y) 

~BA (x ffJ T) V (y ffJ T) 

~BA ((x ffJ T) 1\ (y ffJ T)) ffJ x ffJ T ffJ Y ffJ T 

~BA (x 1\ (y ffJ T)) ffJ (T 1\ y) ffJ T)) ffJ x ffJ T ffJ y ffJ T 

~AC\BA (x 1\ y) ffJ (x 1\ T) ffJ (T 1\ y) 

14This is based on Boolean rings as in Stone (1936); cf. Watts and Cohen (1980). 
The exclusive-or normal form has also been credited to Zhegalkin (1927), who 
also worked on Boolean rings. The two equational theories, viz. Boolean rings 
with unit and Boolean algebras, are equivalent, in that the operations of one can 
be defined in terms of those of the other. 
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EB (T II T) EB x EB T EB Y EB T 

~AC\BA (x II y) EB x EB y EB T EB x EB T EB y EB T 

~AC\BA (xlly)EBT-BA ~(xlly) 

73 

Note that by incorporating the logical capabilities of AC\BA with 
the techniques of meta-unification, Boolean combinations of equa­
tions may be solved. 

A formula r in first-order predicate calculus is valid, if, and only 
if, the closed Skolemized version (\tVI ... \tvn)s of its negation ~r is 
false under Herbrand interpretations. 15 

Theorem 5. Let ROO be the result of a fair AC -completion sequence 
starting from ({s .... T}; BA). where s is a quantifier-free formula 
and any (non-trivial) formula is greater (under the given reduction 
ordering) than F which is greater than T. Then the closed formula 
(\tv I ... \tvn)s is unsatisfiable if, and only if, ROO contains the con­
tradiction F ~ T (Hsiang and Dershowitz (1983)). 

Proof. If the formula is unsatisfiable, then, by Herbrand's Theo­
rem, a finite conjunction of instances sa, of s reduces to F under 
AC\BA. Hence, we have 

F +-<4C\BA 80"1/\" -/\ sO"n +-+* T /\ - _./\ T ~BA T 

and, by fairness, completion will generate rules under which F re­
duces to T. The only possible such rule is F ..... T. 0 

For example, to prove that 

(\ty3z)~[P(z,y) _ (\tx)~(p(z,x) IIp(x,z))] 

is valid, one can show that its Skolemized negation, 

(\tz\tx)({p(z,c):l ~[p(z,x) IIp(x,z)]} 

II {[P(z,f(z)) IIp(f(z),z)] Vp(z,c)}), 

15 Skolemization is the process of replacing an existentially quantified subformula 
of the form (3v)t with t[f(ul, ... , urn)], where the U 1 are the universally quan­
tified variables in t whose scope includes (3v)t[v] and all occurrences of v in t 
bound by the deleted quantifier (3v) have been replaced by f( Ul, ... ,urn). The 
formula is then closed. by adding universal quantifiers (ltv) for all free variables 
v. (See, e.g., Chang and Lee, 1973.) 
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is unsatisfiable, where J is a unary Skolem function and c, a Skolem 
constant. Adding the above assertion to the SA system and com­
pleting gives!6 

{p(z,c)::l [P(z,x) IIp(x,z)]} 

II {[P(z, J(z)) IIp(f(z), z)] V p(z,c)} - T 

[P(z, c) II p(z, x) II p(x, z)] 

Ell [P(z,J(z)) IIp(f(z),z)]lIp(z,c) 

Ell [P(z,J(z)) II p(f(z), z)] Ell p(z, c) - T 

[p(f(z), z) II p(z, J(z))] Ell p(z, c) - T 

[P(f(z), z) II p(z,J(z))] Ell p(z, c) Ell y - TEll Y 

p(f(z), z) /\ p(z, J(z)) - TEll p(z, c) 

[P( z, c) II p( z, x) II p( x, z)] Ell T - T 

[P(y,c) IIp(c,y)] EIlT - T 

TEll p(c, c) Ell T - T 

p(c, c) - T 

[T /\ p(c, c)] Ell T - T 

p(c, c) Ell T - T 

TEIlT - T 

F - T 

x - T 

Notice that the inference rules (deduce, collapse, and orient) au­
tomatically replace a rule of the form s Ell t - u with s - t Ell u, 
whenever s >- tEll u. Also, a rule of the form slit - T begets s - T 
and t - T. Thus. with a reasonable ordering, s V t - T would be 
replaced by s /\ t - s Ell t Ell T and s ::l t - T by s /\ t - s. 

The above method is not refutationally complete, however, because 
of the potential failure of a completion sequence. For example, with 
the trivial ordering (T less than anything else) and the inconsistent 
set of rules 

pEllqEllT - T 

pEllrEllT - T 

qffiT --+ T 

16For a compara.ble proof by resolution. see Example 2-38 in Manna (1974). 
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completion will generate unorientable equations like 

q Ell T .... r Ell T, 

but not the contradiction F - T. For completeness, an unfailing 
version would be required. Hsiang (1985) has shown how converting 
C to its clausal form C, /\C2 /\·· ·/\Cn , adding a rule C,EllT - F for 
each clause C" and then running the AC -completion procedure with 
the trivial order is guaranteed not to fail. The proof of complete­
ness, however, does not fully cover simplification of rules. Hsiang 
also gave a criterion for disregarding critical pairs that do not de­
rive from at least one rule that is a sum, and for restricting the 
amount of associative-commutative unification necessary in comput­
ing critical pairs. Related work is in Paul (1985). An important 
aspect of Hsiang's approach is the ability to incorporate convergent 
systems for specific domain theories; see also Fages (1983b). A gen­
eral extension to first-order predicate calculus with equality is in 
Hsiang (1987). Kapur and Narendran (1985a) propose a nonclausal 
method that uses B A and includes inferences based On cancellation; 
its refutational completeness needs to be established. The additional 
inference rule is 

Cancel: (E U {s Ell u .... tEll u}; R) f- (E U {s .... t}; R) 
Bachmair and Dershowitz (1987b) present a method that incorpo­
rates simplification and prove it complete. 

5. Conclusion 

In this chapter, we have examined the completion procedure, some 
of its multifaceted extensions, and its main areas of application. We 
have viewed the procedure and its extensions. as inference engines 
which use a limited amount of "forward reasoning" (Le., deduction), 
trying to churn out enough equational consequences of the given 
axioms to guarantee that for any equational proof, there will even­
tually be one that uses only "backward reasoning" (i.e., reduction). 
The applications highlight the advantages inherent in the sense of 
direction gained from the incorporation of a well-defined notion of 
"simplicity .. , 

Recently. the completion concept has been further extended to 
"conditional" equations and rules, where the applicability of an iden­
tity or rewrite is predicated on the fulfillment of some condition(s). 
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Conditional equations are very important in applications, such as 
data type specification and functional programming languages. A 
pioneering study of conditional rewriting was Brand et al. (1978); 
other works in this area are Remy (1982) and Kaplan (1984) (see Ka­
plan and Remy (1989)); an overview of results on the Church-Rosser 
property for conditional systems may be found in Dershowitz et al. 
(1988). Various completion-like approaches to conditional equations 
and Horn clauses are described in Brown (1975), Jouannaud and 
Waldmann (1986), Paul (1986), Ganzinger (1987), Kounalis and 
Rusinowitch (1987), Bachmair et al. (1989), and Kaplan (1988). 
More general refutationally-complete combinations of resolution and 
completion are described in Lankford (1975), Peterson (1983), Hsiang 
and Rusinowitch (1986), and Rusinowitch (1987). 
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