
2 Completion and
Its Applications

NACHUM DERSHOWITZ'

Department of Computer Science
University of fllinois at Urbana-Champaign
Urbana, fllinois

1. Introduction

The ability to reason with equations is important in many com­
puter science applications, including algebraic specifications, high­
level programming languages, and automated deduction. Reasoning
about equations may, for example, involve deciding if an equation
"'follows" as a consequence of a given set of equations, or if an equa­
tion is "true" in a given model, or what values of the variables satisfy
a given equation. Knuth's completion procedure (Knuth and Bendix,
1970). based on prior work of Evans (1951), was originally suggested
as a means of taking an axiomatization of an equational theory and
generating a rewrite system that can be used to decide questions of
validity of identities (or the "word problem") in the given theory.
In this chapter, we formalize that procedure as an inference system
and describe some of its more recent applications to other aspects of
equational reasoning.

IThis research was supported in part by the National Science Foundation under
Grant DCR 85-13417.

Resolution of EquatIOns In
.... Igebrom: SUU,I urn
Volllme~

31 Copyn"'!!E !989by _"eadem,c Press,lnc.
A]I nlhtsof reproduction In an~ form reserved,

ISBN ()..1:!-046371- i

32 N. Dershowitz

1.1. Equations

Let T denote a set of (first-order) terms built out of function sym­
bols taken from a vocabulary (signature) F and variables from a set
V. An equational system E over T is a set of identities, each of
which we write here in the form I r, where I and r are terms in
T and variables appearing in them are universally quantified. For
convenience, we identify any equation I r with r I; thus, E may
be thought of as a symmetric binary relation over T. Equations are
applied to terms by replacing a subterm matching one side of an
equation with its other side. More precisely, an equation I r in E
may be applied to a term t in T, if there is some substitution (j of
terms in T for variables in the equation, such that l(j (the result of
applying (j to I) is the same as some subterm s of t. Let t/p denote
the subterm s of t rooted at position p within t. The equation is
applied by replacing the subterm t/p = l(j oft with the other side of
the equation, r(j, after the same substitution (j of terms for variables
has been made. The result of this replacement of "equals by equals"
is denoted t[r(j]p. We write S E t or t E s to indicate that the
term t in T is obtainable from the term s in T by a single appli­
cation of some equation in E. A proof in E is any finite sequence
t, E t2 E E tn (n > 1) of applications of equations in E.
We write E =9 s = t if there is a proof s t of s = t in E. The
equational theory (or variety) E is the class of equations provable in
E. By a theorem of Birkhoff (1935), s = t is provable in this way if,
and only if, it is true in all models of E, i.e., if s = t is valid for E.
In symbols, E F= s = t if and only if E =9 s = t.

For example, the following is an equational system E for an oper­
ation with an identity and inverse;

x-I -E-+ x

I-x x
y-·(y·z) z

where x, y, and z are variables.2 The identity

2Throughout this cha.pter, we will use these three letters for variables appearing
in terms.

Completion and Its Applications 33

lends itself to the following six-step proof in E:

x·x E (x-- . (x- . x))· x-

..... E (x-- . (x-· (x· 1)))· x-

-E (x-- . 1) . x-

..... E X ·x

..... E x--·(x-·l) -E 1

1.2. Rewrite Systems

A rewrite (or term-rewriting) system R over a set of terms T is a set
of directed equations, called rewrite rules, each of the form I - r,
where I and r are terms in T. Thus, R is a binary relation over T.
A rule I _ r may be applied to a term t in T if a subterm s at some
position pint matches the left-hand side I via some substitution
a. Like equations, a rule is applied by replacing in t the subterm
s = la = tip with the corresponding right-hand side ra of the rule,
resulting in t[ra] •. We write s - R t or t R S to indicate that the
term s in T rewrites to the term tinT by a single application of some
rule in R, the direction of the arrow distinguishing between applica­
tions of rules from left to right and from right to left, respectively. A
derivation in R is any (finite or infinite) sequence tl -R t2 -R ...

of directed applications of rules in R; a proof in R is any finite se­
quence tl +-+R t2 +-+R ..• +-+R tn (n > 0), where each step ti +-+R ti+1
is a rewrite either from left to right or from right to left.

If a term t cannot be rewritten, we say that it is irreducible. If
S -R t and t is irreducible, then we write s -k t and say that t
is an R-normal form of s, or that s reduces to t. If every term in
T reduces to an R-normal form, then R is said to be normalizing.
In practice, one is usually interested in terminating systems. those
for which infinite derivations tl - R t2 - R ... of terms ti E Tare
impossible. Only terminating rewrite systems are considered in this
chapter; such systems are also normalizing. For finite, terminating
R, the reduction relation -k is decidable.

The following is an eight-rule system for multiplicative identity
and inverse (a non-associative fragment of group theory):

34 N. Dershowitz

1· x ~ x x ·1 ~ x
x - ·X 1 X·X ~ 1 ~

1- ~ 1 (x-)- ~ x
y- . (y. z) ~ z y·(y-·z) ~ z

Applying those rules to the term (a-- . (a- . (a· 1)))· a- gives the
graph of possible derivations shown in Fig. 1. In any case. the final
result is 1 and no further applications of rules are possible, i.e., 1 is
its unique normal form.

1.3. Deciding Validity

For any binary relation -+; we use the notations +-, -., - +, and
-+. to denote its inverse, symmetric closure, transitive closure, and
reflexive-transitive closure, respectively. A binary relation ~ has
the Church-Rosser propertYI if,.* is contained. in -* 0 -*. where
o denotes composition of relations; it is confluent if +-. 0 _. is
contained in ~. 0 ;-'. These two properties are equivalent (Curry
and Feys, 1958). We say that a binary relation ~ over a set of terms
T is monotonic, if s ~ t implies U[80']p ~ u[tO']p for all terms 8. t,
u in T, substitutions 0', and positions p. An equational step - E,

then, is the smallest monotonic extension of the symmetric closure
of a system E of equations and E is the provability relation. The
rewrite relation ~ R is the smallest monotonic extension of a system
R ofrules and -R is the derivability relation. Let :-- be a monotonic,
well·founded (strict) partial ordering on terms.3 We call such an
ordering a reduction ordering. A system R is terminating if, and
only if, there exists a reduction ordering containing R. We refer to
a rewrite system R as confluent if ~ R is confluent; a terminating
system will be called convergent. If, in addition, R presents the same
theory as does E (i.e., R = E)' then we say that R is convergent
(or complete) for E. A finite convergent system R for E is a decision
procedure for validity in the theory E, since an equation s = t is valid
in E (symbolized, E ~ s = t or s = E t) if, and only if, it is provable
in E (i.e., E ~ 8 = t or 8 E t), which is the case, if, and only if.
reducing 8 and t results in the identical term (i.e., 8 ~k v -k t for
some v).

3 Well-founded means that there is no endless descending chain tt ~ t2 ~ ta >­
." of terms.

Completion and Its Applications 35

\
a·a

I

Fig. 1. A graph of derivations.

To summarize, a rewrite system R provides a decision procedure
for an equational theory E, if the following four conditions hold:

a) R presents the same equational theory as E;
b) R is finite;
c) R is terminating;
d) R is confluent.

For example, the eight-rule rewrite system shown above decides va­
lidity in the three-axiom theory shown at the outset. To determine
if two terms are always equal. the rules are repeatedly applied to
both terms until normal forms are obtained. If the normal forms are
identica!, then, and only then. are the two terms equal in all models
of the equations.

36 N. Dershowitz

1.4. Completion

Given a finite set E of equations and a program for computing a re­
duction ordering ~. the completion procedure (Knuth and Bendix,
1970) deduces consequences of E in its attempt to find a convergent
system R for the theory presented by E. The central idea of com­
pletion is to limit attention to certain "critical" deductions obtained
from overlappings of left-hand sides of rules. These overiappings are
used to generate new ru1es, each of which is a reduction vis-a-vis ~,
i.e. s ~ t whenever s rewrites to t, and each of which is sound for
E, i.e., S -e t whenever s rewrites to t. At the same time, rules
are kept fully simplified: if I - r is a ru1e, then r is a normal form
for the current system and I is not reducible by other rilles. Such
a fully-simplified system is said to be reduced. We will reserve the
adjective canonical for a reduced convergent system. By reducing
right-hand sides and deleting rules with rewritable left-hand sides.
a convergent system can always be converted into a canonical one
(see, e.g., Metivier (1983)).

RRL (Kapur and Sivakumar, 1983), REVE (Lescanne, 1983).
FORMEL (Fages, 1984), RRLab (Thomas, 1984), and ERIL (Dick.
1986) are some current implementations of completion. Collections
of canonical systems may be found in Butler and Lankford (1980),
Hu1lot (1980a), and Le Chenadec (1985). Of course, not all equa­
tional theories are decidable, even if they can be presented by a finite
set of equations (see, for instance, Davis (1958)). Nor can every de­
cidable equational theory be decided via a convergent system (see,
for instance, Kapur and Narendran (1985b)). But, when completion
is successfu1, the resu1tant system can make for a very effective de­
cision method. Given the above equational system and an ordering
in which a term is greater than its proper subterms and 1 is min­
imal, the completion procedure will in fact generate our eight-ru1e
decision procedure. Most of the afore-mentioned implementations
provide help in choosing an ordering.4

In the next two sections we present an abstract version of comple­
tion and some of its extensions. We show how the method is used to
generate decision procedures and how it is used as a semi-decision

4We will not usually bother to specify which reduction ordering is used; the
reader can either take our word that an appropriate one exists, or consult
Dershowitz (1987) for a survey of methods of proving termination.

Completion and Its Applications 37

procedure even when the process does not terminate. Section 4
(based on Dershowitz (1982b)) surveys applications of completion
to

1) compute the congruence closure of sets of equations,

2) generate solutions of equations,

3) synthesize recursive programs,

4) prove theorems for inductively defined structures, and

5) prove theorems in first-order predicate calculus.

We conclude with brief mention of some further extensions.
A broad survey of the history of the ideas in completion and re­

lated procedures is given in Buchberger (1987). Surveys of rewriting
theory include Huet and Oppen (1980), Benninghofen et al. (1987),
Klop (1987), and Dershowitz and Jouannaud (1989).

2. The Completion Procedure

Given the axiomatization G

l·x +-+ x

x- . x +-+ I

(x·y)·z - x·(y·z)

of group theory and an appropriate reduction ordering, the comple­
tion procedure generates the following canonical rewrite system:5

l·x ~ x x·1 ~ x
-x ·x ~ 1 X'x ~ 1

1- ~ 1 x ~ x
y- . (y . z) ~ z y·(y-·z) ~ z
(x·y)·z x· (y . z) (x· y)- y -- ~ ·x

5This traditional axiomatization of abstract groups is the first example Knuth
and Bendix tried out by hand, and the first experiment they ran their program
on. It has become the "canonical" example of completion.

38 N. Dershowitz

Three rules are oriented versions of the given axioms; the rest are the
kind of lemmata one proves early on when learning group theory'"
Actually, more are produced by the procedure, e.g., x-- . y ~ X· y,
but are subsequently simplified away. To prove, for example, that

in group theory, both sides of the equation are reduced. Since

(x- .y)- ·X-

~R (y-. x--)· x-

~R y-' (x-- . x-)

~R y-·1

~R y- <-R (x-· (x· y))-

the identity is valid. On the other hand, the two terms (x- . y-)­
and (y- ·x-)- reduce to the distinct terms y·x and X'y, respectively;
hence they are not equivalent.

2.1. Abstract Completion

Bachmair et al. (1986) have recently put completion in an abstract
framework, an approach we adopt here. (See also Bachmair (1987)
and Bachmair and Dershowitz (1989).) As in traditional proof theory
(cf. Takeuti (1987)), proofs are reduced, in some well-founded sense,
by replacing (locally) maximal subproofs with smaller ones, until a
normal-form proof is obtained. In completion, the axioms used in
proofs are in a constant state of flux; these changes are expressed
as inference rules. which add a dynamic character to establishing
the existence of reducible maximal subproofs. (See Dershowitz and
Okada (1988).)

An inference rule (for our purposes) is a binary relation between
pairs (E; R), where E is a set of equations and R is a set of rewrite
rules. Let ?- be a reduction ordering and I> a well-founded ordering
on terms. We define the following set K B of six inference rules:

6 As Knuth and Bendix wrote, "Without making use of any more ingenuity than
can normally be expected of a computer's brain ... , [the first 65% of] the compu­
tation was done almost as a professional mathematician would have performed
things. "

Completion and Its Applications 39

Delete: (EU{s s}:R) I- (E;R)
Compose: (E:RU{s~t}) I- (E;RU{s~u}) ift ~R U

Simplify: (EU {s t}:R) I- (EU{s u};R) if t ~R u
Orient: (EU {s t}:R) I- (E;RU{s~t}) ifs».t
Collapse: (E;RU {s ~ t}) I- (Eu{u-t};R)

if s ~R u by a rule I ~ r E R with s I> I
Deduce: (E:R) I- (EU{s t}:R) if S +-R U -R t

We write (E: R) I-KB (E': R') if the latter may be obtained from
the former by one application of a rule in K B.

(a) Delete removes a trivial equation s s. An equation x· 1
x . 1, for example, would be a candidate for deletion.

(b) Compose rewrites the right-hand side t of a rule s ~ t, if
possible. For example, given a rule x-- ~ x, the rule (x· 1) .
1 -. x-- . 1 would be replaced by (x· 1) . 1 -. x· l.

(c) Simplify rewrites either side of an equation s t. For exam-
ple, given a rule 1 . x -. x, an equation 1 . 1 1 would be
replaced by 1 l.

(d) Orient turns an equation s t that is orientable (s ». t)
into a rewrite rule. Since 1- is greater than 1 for any reduc­
tion ordering (or an infinite derivation would be possible), the
equation 1- 1 can only be oriented in the direction 1- ~ l.

(e) Collapse reduces the left-hand side of a rule s ~ t and turns
the result into an equation u t, but only when the rule
I ~ r being applied to s is smaller in some sense (embodied
in 1» than the rule being removed. In practice, we use the
(proper) specialization ordering as 1>. In this ordering, s I> I
if a subterm of s is an instance of I (but not vice-versa). For
example, a rule x-- . y ~ x . y collapses to x . y x . y in the
presence of a rule x-- ~ x. The age of the two rules may also
be taken into account when each left-hand side is an instance
of the other, making older rules smaller.

(f) Deduce adds equational consequences to E, but only those
that follow from back-to-back rewrites s - R U and u ~ R t.
For example, the rules x . x- -. 1 and 1 . x -. x can both be
applied to the term 1 . 1-. The first rewrites this term to 1
and the second. to 1-. from which the new equation 1- 1
can be deduced. As we will see, only consequences of certain
"critical" peaks need to be considered.

40 N. Dershowitz

We say that an equation is simplifiable if simplify can be applied to
it, and that a rule is simplifiable if either compose or collapse applies.

It is not hard to see that the first five rules can only be applied
a finite number of times (provided one starts out with finite Eo
and !4J, and with !4J contained in :-). Thus, new equational
consequences should only be generated from existing rules after
all rules and equations have been simplified as much as possible,
and all trivial equations have been deleted. (In practice, these
rules are usually best applied in the given order.)

A completion procedure is any program that takes (i) a finite set
Eo of equations, (ii) a finite set !4J of rules, and (iii) a reduction or­
dering :- containing !4J, and uses the above rules to generate a se­
quence of inferences from (Eo; !4J). Completion derives part of
its power, as compared with "paramodulation" (Robinson and
Wos, 1969), from the restriction of equational deduction to left­
hand sides of rules only. It also saves space by preserving only
fully simplified rules and equations. The results of a finite comple­
tion sequence (Eo;!4J) ~KB (E,;Rd ~KB ... ~KB (En;Rn)
are En and Rn; in general, the results of a possibly infinite com­
pletion sequence (Eo;!4J) ~KB (E,;Rd ~KB'" are the set
Eoo = U'2:0 nj2:' Ej of persisting equations and the set Roc =
U'2:0 nj2:' R j of persisting rules. We say that a completion sequence
is successful, if Eoo is empty and Roo is canonical. Table 1 presents a
successful completion sequence for our first example. Beginning with
three identities, the eight-rule system shown in the previous section
is obtained.

The rules in K B are evidently sound, in that the class of provable
theorems is unchanged by an inference step, i.e., -EUR = -B'uR'
whenever (E; R) ~ KB (E'; R'). Furthermore, as long as R is a subset
of :-, so is R', for which reason we require that !4J C:-. We are
thus assured that the result ROC of any (finite or infinite) successful
completion sequence is terminating and presents the same equational
theory as did Eo U!4J (with !4J considered as equations).

We are particularly interested in the degree of confidence one
can have in the eventual success of specific completion procedures.
We will say that a completion (or similar) procedure is correct
if ROO is canonical whenever Eoo is empty, regardless of whether
the completion sequence is infinite or finite. It is in this sense
that Huet (1981) proved the Knuth-Bendix procedure correct.

Completion and Its Applications 41

i R· E. iufereuce

1'% - %

0 %'1 - %

J -.(,..) - , ... - ,
1 ... - ,

J-~"%)
orient - %

2 R. ,-"b'z) - , orient
1', - %

3
R,

orient
, -("z) - %

-
1 deduce (1,3) • , ., -

5
R.

orient -, ., - 1

• 1 - 1 deduce (1,5) -
7

R.
orient -

I - 1

, , ., - ,., deduce (3,3)

, R,
orient --, ., - J'%

10 1 ., - 1" deduce (7,9)

11
R,

orient 1-'z - ...
12

R,
eompoee (ll,2) 1-'z - ,

13 1'% - , eoliaPH (12,7) .. % - % .implirT (2)
R,

15 delete .. , -- - J dod ... (l~)

17
R,

orient --, - ,
I8 ,., - ,'% <01 ('.17) .. delete

20 J·fr -'%) - % dod.u (3.17)

21
Rn

orient
,.(, -'z) - ,

22 -
1 deduce (1,21) ,., -

23 R ..
orient -,., - 1

Table 1. A successful completion sequence for a fragment of
group theory.

42 N. Dershowitz

Ascertaining correctness is complicated by the simplification of rules
allowed by the inference system. We will say that a procedure is
complete if E OO is always empty and Roo is always canonical; for com­
pleteness, a stronger inference system is generally required. (Correct­
ness and completeness can be weakened to refer only to convergence.
not canonicity, as in Bachmair (1987).)

2.2. Proof Simplification

Each proof step t, EUR ti+1 in a proof t1 -EUR t2 -EuR

... EuR tn, is either an equational step ti -E t';:+b a rewrite step
ti - R ti+" or a backwards rewrite step ti - R ti+ 1· In any case, each
step must be justified by specifying the equation (in E) or rule (in R)
being used, as well as the position at which it is being applied (and
the substitution used). By applying the inference rules in KB, infer­
ring (E'; R') from (E; R), it may be possible to simplify a given proof
in EUR, replacing some proof steps with alternate ones from E'uR'.

In general, our goal is to transform proofs into normalized ones
by completely eliminating certain patterns. To formalize this idea.
we define a relation '* K B between proofs. Let E be a set of equa·
tions closed under equational deduction and R be the subset of E
contained in a reduction ordering ~. By a proof pattern we mean a
schema describing a class of subproofs in (E; R); e.g., to characterize
rewrite proofs in R, we use the pattern s -+:R v -:R t, where s, t.
and v denote arbitrary terms. We refer to the pattern s - R U - R t
as a peak. If a proof contains neither an equational step nor a peak.
it must be a rewrite proof. The proof relation '* K B is defined by the
following set of pairs of patterns-which we will also refer to as K B:

t •• t S -E => S -R V-R

S+-+Et .::::} S-RU-Ev-~t
t •• t S -R W -R :::::> S -R V-R

t • • t S -R W --+R => S -R U -E v-R

S--+Rt => S--+RU-~t
where S -R t by I - rand S -R U by 9 - d and I = 9

S--+Rt => S-Ru-EV-:R t

where S -R t by I - rand S -R U by 9 - d and I [> 9

Completion and Its Applications 43

An equational step may be replaced by a (possibly empty) rewrite
proof or by a rewrite proof with a single simpler equational step at
the bottom of the "valley"; a peak may be replaced by a rewrite
proof, possibly containing an equational step at the bottom; and
a single rewrite step may be replaced by a simpler rewrite prooL
possibly containing an equational step at the bottom. We do not
explicitly distinguish between a proof t, tn and its inver­
sion tn 1,. For example, the last two rules transform the
symmetric step t - R S, too, giving a smaller proof t RuE s.

This proof rewriting system eliminates equational steps, peaks,
and applications of unsimplified rules from proofs, whenever possible.
Furthermore:

Proposition 1. The proof relation '* K B is terminating (Bachmair
et al. {1986}}.

That is, there can be no infinite derivation P, '* K B P2 '* K B

... of proofs Pi in E U R (R itself is terminating). Thus, '*KB

encompasses a well-defined notion of "simplifying" proofs. It can be
applied until further simplification is impossible; its normal forms
are rewrite proofs and proofs containing equations, the two sides of
which are incomparable under ~.

ProoJ- Consider the partial ordering > kb that compares proofs
by comparing multisets of proof steps, where the cost of a proof
step is measured according to the triple ({ s}, I, t) for each rewrite
step s --> R t that is an application of a rule I --> r, and according
to ({ s, t}, I, t) for each application s E t of an equation I r.
Triples are compared lexicographically, using the multiset ordering
~~ induced by the given ordering ~ for the first component, C> for the
second. and ~ for the third, and multisets of triples are compared in
the induced multiset ordering (as defined in Dershowitz and Manna
(1979)). Assuming that ~ is well-founded, this ordering >kb is also
well-founded. It is also monotonic on proofs, i.e., if P >kb Q for two
proofs P and Q of the same equation, then any proof that contains
an instance of P as a subproof is greater under > kb than a similar
proof containing an instance of Q. Since the rules K B are contained
in the monotonic well-founded ordering >kb, the proof relation '*KB

is terminating. 0

The inference system K B and proof relation K B are related by
the following lemma:

44 N. Dershowitz

Reflection Lemma. If (E; R) I-KB (E'; R'), then for every proof P
in E U R there exists a proof P' in E' U R' such that P '*KB P'
(Bachmair {1987}}.

In this way, the inference system I-K B is used to generate rules
needed for '* K B to be applicable. It is not enough, however. to
know that inferences do not make more complex proofs necessary:
we need to establish that applying inference rules to a non-rewrite
proof will actually lead to a strictly simpler proof vis-a-vis '*KB.
Since the latter is terminating, this means that a rewrite proof will
eventually be attained. As we will see, this is only the case when
certain "fairness" conditions are met.

This view of completion as progressively rewriting proofs is advo­
cated in Bachmair et al. (1986), Bachmair (1987), and Bachmair and
Dershowitz (1988) and was expounded on by Jouannaud (1987): the
idea of establishing confluence by normalizing equational proofs ap­
pears also in Kiichlin (1986b); the use of multiset orderings in such
a context was pioneered by Jouannaud and Kirchner (1984).

2.3. Critical Pairs

Since the rule deduce can lead to infinitely long chains of inference,
fairness conditions aim to minimize applications of that rule, while
ensuring that it is not completely ignored. Let I - rand 9 - d
be two rules. We say that 9 overlaps I if there is a non variable
subterm s at a position p of I and a (unifying) substitution u for the
variables of the two rules, such that su = lui p = gu. In that case,
the overlapped term lu can be rewritten to either ru or lu[du]p. The
variables of the overlapping rules are considered disjoint, even if the
two rules are actually one and the same. (Since we are presuming
termination, no left-hand side is just a variable.)

Definition 1. The equation dp. gp.[rp.]p is a critical pair of
two rules I - r and 9 - d (whose variables have been renamed. if
necessary, so that the rules have none in common), if there exists a
most general unifier p. of glp and I for some nonvariable position p
in 9 (Knuth and Bendix (1970)).

For example, x--- . (x . y) y is a critical pair obtained by over­
lapping x-- . y - x . y at the subterm x . y in the left-hand side of
x- . (x . y) - y.

Completion and Its Applications 45

Let cp(R) denote the set of all critical pairs between (not neces­
sarily distinct) rules in Rand -cp(R), the monotonic extension of
those equations.

Critical Pair Lemma. For any rewrite system R and peak
s +-R U -R tt there either exists a rewrite proof s -R v +-R t
or a critical-pair proof s -cp(R) t (Knuth and Bendix {1970)).

In set notation: +-R 0 -R C (-n 0 +-R)U -ep(R)·

Proof. Behold Fig. 2! 0

(a) DiSjoint case.

(b) Variable overlap case. (c) Critical overlap case.

Fig. 2. Proof of Critical Pair Lemma by cases.

It follows from this and Newman's Lemma (Newman (1942); see
Huet (1981)) that a terminating system R is confluent if, and only
if, cp(R), viewed as a relation, is contained in -R 0 -R (Knuth and
Bendix (1970)).

Definition 2. A completion sequence in K B is fair if all persis­
tent critical pairs are generated (cp(R"') is a subset of UE;), no

46 N. Dershowitz

simplifiable rule persists (ROO is reduced), and no equation persists
(EOO is empty).

Rules or equations that differ only in the names of their variables are.
for all intents and purposes, treated as identical. Table 1 only con­
tains deductions from critical pairs; Table 2 extends it to a
point when it becomes fair, by checking all remaining critical
pairs. (Trivial ones. obtained by superposing a left-hand side on
all of itself, are omitted from the tables.) In a more abstract frame­
work, one could define a completion sequence to be fair with
respect to a given set of proof patterns, if for any proof contain­
ing an instance of one of those patterns, there exists a (later)
step at which a strictly simpler proof is possible. See Bachmair
(1987).

For any given completion sequence (Eo;~) I-KB (E,;RIlI-KB
... , we let +-+i stand for +-+ E.uR., i.e., for a proof step in either Ei or
Ro.

Proof Normalization Theorem. If a completion sequence (Eo:~)
I-KB (E, ;RIlI-KB ." is fair, thenforanyproofs-: t inE,URo,
there is a rewrite proof s -k= v -k= t in ROO {Huet {1981}}.

Huet (1981) proves this for a specific completion procedure; the
following proof is more general:

Proof. The proof is by induction with respect to the well-founded
ordering =? k B' Suppose that s -: t is not a persistent rewrite proof
s -R= v -R= t. Then it must be reducible by =?KB, either on
account of a peak (using the Critical Pair Lemma) or the application
of a nonpersisting step. Thus, s +-+i t ~i<B s +-+j t for some step
j and by induction s -Roo W -ROO t for some w. Since ROO is
normalizing, we have w -k= v for some v. (Bachmair et aI., (1986)).
o

Thus, an n-step completion sequence succeeds if it is fair, i.e .. if En
is empty, R." is reduced, and each of the latter's critical pairs already
appeared in some E,. We say that it fails at step n if no fair sequence
has, as a prefix, the sequence generated up to that point: in that case
there is little point continuing. Thus. a completion procedure may
be said to be fair if it is successful whenever possible, i.e .. if it only
generates fair or failing sequences. Assuming the procedure never

Completion and Its Applications 47

, R. E. inferences

2. 1 - 1 dedu~ (1,2)

25 delete

28 l-'(l'z) - Z dedu~ (2,3)

27 1'("') - Z .implif'y (7)

28-29 ,'1 - ,
Z - Z .impIiC,. (2,2) ,

30 delete

31 1', - , , , '1 - , deduee (3,5)

32-33 , - , .impliCy (17,1) .. , -'("z) - , delete ,

35 ... - 1 deduee (5,7)
- 1 30 . " - 1 - 1 .implify (1)

•
37 delete:

-
3, 1 - 1 , -, - , deduc.e: (17,17)

3' delete:
--

40 • - • 1 " - , deduce (2,21)

"
41-4.2 , - , .impliCy (7,2) .. ,,(, -"~I - , delete:

" .. - deduce (3,21) J 'z - J "
-

(5 ", - 1 delete

"
- ,.-'1 deduce (3,23) " , --

47 , - - .impliC,. (I) ,
48 delete

Table 2, A fair continuation of Table 1.

discriminates against any critical pair or simplifiable rule or equation,
the only possible reason for failure is an unorientable equation,

Practically speaking, what this means is that the deduce rule is
restricted to generating critical pairs, of which there can only be

i ,

48 N. Dershowitz

finitely many at any given time. Each time a new rule is generated
(by orient), it can give rise to new critical pairs formed with the old
rules or with itself. All those pairs need eventually to be simplified
or oriented, unless the new rule itself is later simplified, in which
case it becomes no longer necessary to consider them. A marking
scheme is generally used to keep track of which rules still need to be
overlapped with which; see, for instance, Huet (1981).

For any given equational theory, there can be only one (finite or in­
finite) canonical rewrite system whose rewrite relation is contained
in a given reduction ordering (Butler and Lankford (1980), Lank­
ford and Ballantyne (1983), and Metivier (1983)). This uniqueness
result is up to renaming of variables and depends on the systems
being reduced. Thus, two successful derivations (finite or infinite),
given the same inputs, must result in the identical canonical sys­
tem. It follows that, if there exists a finite canonical R contained in
a reduction ordering >- and whose equational theory is Eo, then a
fair procedure (given >- and starting with Eo) can either succeed­
providing a decision procedure R.,. = R for validity in the theory- or
fail (on account of unorientable equations), but cannot have only in­
finite fair sequences (Dershowitz et al. (1988)). The procedures given
in Knuth and Bendix (1970) and Huet (1981)-though correct-are
not fair in our sense, since they sometimes abort upon generating
an unorientable critical pair, even if choosing a different pair might ,
result in success. When they do not abort, they are fair, and find
a canonical system if one exists.7 A completion procedure need not
abort, however, unless all critical pairs are unorientable and unsim­
plifiable (as, for instance, is the case with the inefficient procedure
given in Dershowitz (1982b)).

2.4. Semi-Deciding Validity

We have seen how completion generates a decision procedure when­
ever it succeeds after a finite number of steps. Completion is also
applicable to theorem-proving tasks when it does not terminate with
a convergent system. By the Proof Normalization Theorem, the

7It is somewhat unfair to categorize Huet's procedure as unfair. since it was Huet
who introduced (a weaker notion of) "fairness" in the context of completion,
allowing, however, for unnecessary abortion.

Completion and Its Applications 49

(possibly infinite) result Roo of a fair completion sequence must be
canonical (as first shown by Huet (1981)). Since, by soundness,
-~ = -0, completion provides a semi-decision procedure for valid­
ity in the given theory-when it does not fail. That is, if s = EoUR" t,
then, for any unfailing sequence, there is some step n when it is pos­
sible to ascertain that s -+kn v -kn t for some v. For example,
given the decidable theory"

(x·y)·z - x·(y·z)

(x·x) - x

of bands (idempotent sentigroups), and a straightforward ordering,
completion generates an infinite set R"" of rules, including:

(x·y)·z -+ x·(y·z)

(x· x) -+ x

x·(x·z) -+ x·z

x· (y. (x . y)) -+ x·y

x· (y . (x . (y . z))) -+ x·(y·z)

x·(y·(z·(y·(x·(y·(z·x)))))) -+ x·(y·(z·x))

To prove that

((x· ((y. z). y)). x)· ((y. z)· x) = (x· y). (y. ((x· y). (z· x)))

in this theory, the two sides are reduced by the partial system shown
above. Since they both reduce to x· (y. (z . x)), the equation is valid.
But, since Roo is infinite, it does not constitute a decision procedure.

The use of completion as an equational theorem prover can be
rephrased in a refutational framework, as in Lankford (1975):

Corollary 1. Let sand t be two terms and s' and t' their Skolem·
ized versions (i. e., with their variables treated as constants). Let
Roo be the result of a fair completion sequence starting from

'See Siekmann and Szab6 (1982).

50 N. Dershowitz

(E:{eq(x,x) ~ T,eq(s',t') ~ F}), whereeq is a new binary symbol,
T and F are new constants, and any equality term eq(u, v) is greater
(under the given reduction ordering) than F which is greater than T.
Then s = E t if, and only if, ROO contains the contradiction F ~ T.

Completion is, however, an incomplete theorem proving method.
on account of its potential for failure (but see Section 3.2). Note that
the rules eq(x, x) -. T and eq(s', t') ~ F in the initial set playa very
limited role in the completion process. The first persists until the
very end: the second gets repeatedly collapsed into new variable-free
rules of the form eq(u. v) ~ F. Critical pairs involving eq(u, v) ~
F are either trivial (if both rules are of this form), superfluous (if
they can be generated by collapsing u or v). or lead directly to a
contradiction (when u and v are identical).

3. Extensions

In this section we touch upon various difficulties that may befall
completion and indicate some proposed solutions.

3.1. Nontermination

The outcome of completion strongly depends on the choice of reduc­
tion ordering used to orient equations (see, for example, Lescanne
(1986) or Gnaedig (1987)). Though implementations of completion
typically provide the user with help in finding an ordering (see. in
particular, Detlefs and Forgaard (1985) and Martin (1987)), choosing
one that leads to success after a finite number of steps remains prob­
lematic. For example, the orientation of the first equation makes the
difference between finding or not finding a finite convergent system
for the following theory Eo:9

'See Lescanne (1984).

(x· y)­

(x·y)·z

y ·x

x·(y·z)

Completion and Its Applications 51

On the one hand. we have the finite successful completion sequence

(Eo;0) I-KB ({(X·Y)·Z~X·(Y·Z)};{(X·y)--y-·x-})

I-KB (0; {(x· y). z - x· (y. z). (x· y)- - y-' x-});

on the other. there is an infinite (albeit successful) one;

(Eo; 0) I-KB

I-KB

I-KB

I-KB

1-1<s

I-KB

({ (x· y) . z ~ x . (y. z)}; {y- . x- - (x· yn)

(0; {(x· y) . z - x . (y . z). y- . x- - (x· y)-})

({ (x . y)- . z ~ x- . (y- . z)};

{(x· y). z - x· (y. z), y- . x- - (x· y)-})

(0; {(x· y)-. z - x-· (y-' z),

(x·y)·z-x·(y·z),y- ·x- - (x'y)-))

(0; {(x· y)--. z - x--· (y--. z),

(x· y)- . z - x- . (y- . z)}.

(x· y). z - x· (y. z), y- . x- _ (x· y)-})

Indeed, the class of orderings used in the above-mentioned imple­
mentations is insufficient for proving termination of all terminating
systems. For the purposes of generating a canonical system (as op­
posed to the use of completion as a theorem prover), one can delay
testing for termination until all critical pairs have been considered.
In this approach, an equation is oriented into a new rule, as long as
the enlarged system is not known to be nonterminating. Of course,
we are no longer assured that the result is terminating and must
be careful not to simplify an equation or rule without limit. Along
these lines, Plaisted (1986) suggests using the necessary but insuffi­
cient condition for nontermination that R' be homeomorphically self­
embedding. whereas Purdom (1987) suggests using the sufficient but
unnecessary condition that R' be obviously looping. (See Plaisted
(1985a) for the definitions of "self-embedding" and "looping" and
proofs that they are, in general. undecidable properties of rewrite
systems.)

3.2. Unfailing Completion

It is possible for some completion sequences to fail while others suc­
ceed (Avenhaus. 1985; Dershowitz et aI.. 1988). For example. let >-

52 N. Dershowitz

be a reduction ordering in which k is greater than m and n, which are
themselves incomparable, but are both greater than c, and terms are
greater than their proper subterms. We have a successful sequence:

({k - m,k n,f(k) +-+c};{f(m) ~ m})

I-KB ({k - n,j(k) - e}; {k ~ m,f(m) ~ m})

I-kB ({m-n,m-e}; {k~m,f(m)~m})

I-KB {{m-n}; {m~e,k~m,f(m)~m})

I-kB ({f(e) -c,e-n}; {m~e,k~e})

I-kB (0; {f(e) ~ e,n ~ e,m ~ e,k ~ c}),

as well as a failing one:

({k - m,k - n,f(k) -e};{f(m) ~m})

I-KB ({k - m, f(k) - e}; {k ~ n, f(m) ~ m})

I-i<-s ({n - m}; {f(n) ~ e, k ~ n, f(m) ~ m}).

Thus, it may be advisable to implement completion with backtrack­
ing to explore alternative sequences upon failure.

For a given reduction ordering >- and equational theory E, there
exists a (not necessarily finite) convergent system for E contained
in >- if, and only if, each congruence class of terms equal under E
has a unique minimal element vis-a-vis >- (Avenhaus, 1985). Un­
fortunately, even when such a system exists, it may be the case
that the zero-step sequence (E; 0) is already a failure-and back­
tracking would be to no avail (Dershowitz et ai., 1988). For ex­
ample, with the same ordering as above, no fair sequence exists
for Eo = {f(n) +-+ e, f(m) - m, m - n}, despite the existence
of R = {f(e) ~ e, m ~ e, n ~ c}. Note that a stronger order­
ing (one that makes m and n comparable) would lead to success in
this case, but that this too is not always possible (replace m and n
by the inherently incomparable terms, g(x) and h(y), respectively).
Knuth and Bendix (1970) suggest circumventing such failures by in­
troducing a new minimal function symbol (in the above case, a con­
stant, say k) and adding new rules equating the problematic terms
to a term headed by the new symbol (in our case, m ~ k and
n ~ k) and having the terms' variables as its immediate subterms.
The resulting rewrite system ({m ~ k,n ~ k,e ~ k,f(k) ~ k})

Completion and Its Applications 53

would no longer represent the same equational theory as the origi­
nal axioms (it is, rather, a conservative extension thereof), but
could still be used as a decision procedure for the latter. This ap­
proach1 however 1 often degenerates into an infinite succession of
new symbols, particularly in the presence of "permuters," identi­
ties whose sides differ only in the location of variables. For
example, the equation x . y y . x cannot be oriented by any
reduction ordering, and replacing it by the rules x . y - k(x, y)
and y. x - k(x, y) just leads to the equally problematic critical pair
k(x. y) k(y, x).

Were the reduction ordering :- on T that is supplied to the pro­
cedure total (or at least total on each class of equivalent terms),
then all equations would be orientable, and failure could be avoid­
ed. Unfortunately, as we have just seen, that cannot, in general,
be the case. On the other hand, it is always possible to define a
total reduction ordering on variable-free terms. Taking advan­
tage of the existence of such an ordering, one can overcome the
problem of unorientable equations (containing variables). This is
the "unfailing" method described in Hsiang and Rusinowitch
(1987) and Bachmair et al. (1989), which is based on the
early, more general methods suggested by Brown (1975), Lank­
ford (1975), and Plaisted (personal communication). The older
methods treat unorientable equations s +-+ t as two rules, s - t
and t - s, for the purposes of critical pair generation (like para­
modulation), but refrain from their careless use for simplifying
equations or rules. The newer methods treat such an equation
as (perhaps infinitely) many oriented instances by incorporating
inferences:

Paramodulate: (E; R) I- (E U {s +-+ t}; R)

if S +-+E U E t and s,t tu

With this rule, an equation s t is inferred only if it results from
a subproof S E U E t, some instances of which may be a peale
Only critical subproofs, as defined by appropriate fairness conditions,
need to be generated. Under reasonable assumptions, the unfailing
completion procedure is complete. See Bachmair et al. (1989) for a
treatment within the inference-rule framework.

54 N. Dershowitz

3.3. Associative-Commutative Completion

To handle some common problematic identities. such as commuta­
tivity (with or without associativity), reasonably efficiently, special­
purpose completion procedures have been designed. Let A be an
equational system; for any rewrite system R. we define a rewrite re­
lation ~ R/ A on A-congruence classes. Thus, we write S ~ R/ A t if
s -:4. U -R v +-+:4. t for some terms u and v. Vv~e are particularly
interested in the AC equational system, consisting of two axioms:

f(x,y) - f(y.x)

f(f(x, y), z) - f(x,J(y, z))

for each function symbol f in some subset of the binary symbols in :F.
So as to limit deductions to "critical" ones, the definition of overlap is
extended to include cases in which two rules can be applied near the
top of the same term (Lankford and Ballantyne, 1977b). Functions
that are only commutative can be handled similarly (Lankford and
Ballantyne, 1977 a).

Let >- be a reduction ordering and t> a well-founded ordering on
terms, both of which are compatible with an equational system A.
By compatibility with A, we mean that u A S >- t A v implies
u >- v and U A s t> t A v implies U t> v. We define the following
set K B / A of inference rules:

Delete:

Compose:

Simplify:

Orient:

Collapse:

Extend:

Deduce:

(EU {s t};R) I- (E;R)

(E;RU{s ~ t}) I- (E;RU{s u})

(EU {s t};R) I- (EU{s u};R)

(EU{s t};R) I- (E;RU{s t})

(E;RU {s ~ t}) I- (EU {u t};R)

if S -A t
ift R/A u

ift R/A u

ifs>-t

if~R/A u by amle / r E Rwith s t> /

(E:R) I-(E;Ru{t s}) ifs-Ru At

(E;R) I- (EU{s t};R) ifs-Ru~R/At

(a) Delete removes an equation between terms that are equal
in A.

(lr-d) Compose, simplify. and orient, are analogous to their coun­
terparts in K B.

Completion and Its Applications 55

(e) Collapse simplifies left-hand sides according to the special­
ization ordering I> "'modulo'" A; that is, s I> / if a (not nec­
essarily proper) subterm of s is equivalent under A to an
instance of L but not vice-versa. We also require that all
the A steps used in applying I - r to s are strictly below
the top of s.

(f) Extend adds consequences of R resulting from A steps. For
example. an AC -extended version of x . x - x is x . (x . z) ~
x· z.

(g) Deduce adds equational consequences to E, including those
that require some A steps. For example, from x·x- ~ 1 and
x ·1- x, one can deduce 1- -1, since 1·1- -AC 1-·1.

We write (E; R) I-KBIA (E'; R') if the latter may be obtained from
the former by one application of a rule in K B I A. When A is empty.
this inference system is identical with that for standard completion.
As with standard completion, we wish to limit application of the in­
ference rules, extend and deduce, to "critical" situations, at the same
time ensuring that nonrewrite proofs will eventually be simplified.

Peterson and Stickel (1981) introduced a new relation - A\R,

which is weaker than -RIA' It may be defined by the set of rules

A\R = {s ~ r: s -A I and I - r E R}

which includes (perhaps infinitely many) A-variants of left-hand sides
of rules in R. A rule in A \R is applied not only to exact instances of
an s, but also when the subterms matching different instances of the
same variable in s are equal in A. Thus, s -A\R s[ro-]. if sip -A /0-
for some position p in s and rule I - r in R. Computing this
relation for AC requires associative-commutative pattern matching
(StickeL 1981). For example, if x . x - x is a rule in Rand . is
associative and commutative, then (a ' b) . (b . a) - AC\R a . band
(a· (b· b)) . a -RIAC a· (b· b), but (a· (b· b)) . ap AC\R a· (b· b).
The notions of "irreducible term" and "reduced systems" may be
extended to refer to this new rewrite relation.

Our goal is to transform any proof s -EoURoUA t into a normalized
proof of the form s -~\RX U -A v +-~\ROQ t. in which sand tare
reduced by the above relation to A-equivalent terms u and v. If R'"
is finite, and an A-matching algorithm is available, then this gives
us a means of testing validity in Eo U Ro U A. In the set cPA(R), we

56 N. Dersbowitz

include all critical pairs obtained by overlapping A-variants of rules
in R on rules in R (there is no need to overlap a variant on a variant).
That is, dlJ - 91J[TIJ]p is in cPA(R) if 9 -+ d and 1-+ T are rules in R,
p is the position of a nonvariable subterm of 9, and IJ is a most general
substitution (most generaL with respect to subsumption modulo A)
such that 91J/P -A IIJ, where variables in the two rules have been
made disjoint. A non-normal proof might also have a "cliff" of the
form s <-R U A t. By eXA(R) we denote the set of extended rules
obtained by overlapping variants of rules in R on equations in A.
That is, dlJ -+ 91J[TIJ]p is in eXA(R) if 9 - d is an equation in A,
I -+ T is a rule in R, p is the position of a nonvariable subterm of 9,
and IJ is a most general substitution such that 91J/P -A IIJ, where
variables in the two equations have been made disjoint.

Definition 3. A completion sequence in K B / A is fair if all per­
sistent critical pairs are considered (cPA(ROO) is a subset of the
A-variants of UEi), all persistent critical extensions are considered
(exA(ROC) is a subset of the A-variants of UR;), no simplifiable rule
persists (ROC is reduced), and no equation persists (Eoo is empty).

Extended Critical Pair Lemma. FOT any rewrite system R, equa­
tional system A, and peak or cliff s <-RUA U -+A\R t, there ex­
ists a rewrite proof S -+A\R v ~A W A\R t, a critical-pair proof
s A\CPA(R) t, or extended-rule proof s -+A/eXA(R) V -A t (Jouan­
naud, 1983).

The critical-pair and extended-rule proofs may involve A steps below
their variable positions only.

Extended Proof Nonnalization Theorem. If a completion sequence
(Eo;Ro) I-KB/A (E,;R,) I-KB/A ... is fair, then for any proof
S -R,uE,uA t, there is a rewrite proof s -~\ROO U -A V -~\ROO t
for ROO (Jouannaud and Kirchner, 1986).

Jouannaud and Kirchner prove this for a specific completion proce­
dure; Bachmair and Dershowitz (1987a) prove it for any implemen­
tation of K B / A.

In practice, for the purposes of AC-completion, rules are flattened
by removing nested occurrences of associative-commutative symbols.

Completion and Its Applications 57

An associative-commutative unification algorithm (Livesey and Siek­
mann. 1976; Stickel. 1981; Fages. 1987) is used, in place of the stan­
dard (syntactic) unification algorithm, to generate the critical pairs
in CPAc(R;), and associative-commutative matching is used to ap­
ply rules. For each rule f(s, t) r in R; headed by an associative­
commutative function symbol f, an extended rule frs, f(t, z))
f(r,z) is added and flattened out to f(s,t,z) f(r,z); extensions
of extended rules are redundant. Analogous with standard comple­
tion, the result ROO of a successful K B / AC sequence is unique up
to AC-variants and renamings of variables, for any given reduction
ordering (Lankford and Ballantyne, 1983).

Additional aspects of completion modulo equational theories are
considered in Huet (1980), Jouannaud and Kirchner (1986), and
Bachmair and Dershowitz (1987a). Huet deals with the left-linear
case, when only one occurrence of each variable appears on a left­
hand side. Jouannaud and Kirchner analyze exactly which critical
pairs are necessary when some rules are left-linear and others are
not; Bachmair and Dershowitz take the inference rule and proof­
pattern approach and generalize previous results. In particular, the
well-founded specialization ordering modulo A, used for simplify­
ing left-hand sides, may be separated into a strict subterm ordering
modulo A and a proper subsumption ordering (not modulo A). An
alternative approach to completion modulo a congruence is to "pro­
tect" certain variants of extended rules; for a discussion of the rela­
tive merits of extension vs. protection, see Jouannaud and Kirchner
(1986) and Bachmair (1987). Different approaches are looked at in
Gobel (1983), Jouannaud et al. (1983), and Pedersen (1985). The
existence of unification algorithms for particular equational theories
is surveyed in Siekmann (1984); general-purpose unification proce­
dures are discussed in Kirchner (1985). The question of unique­
ness of reduced modulo systems is dealt with in Dershowitz et al.
(1988).

3.4. Critical Pair Criteria

As described in Section 2.3, fairness of a completion sequence re­
quires that all persistent critical pairs be generated. and promises
success of the sequence. It is possible to require that fewer pairs
be generated and still guarantee success; such a weaker fairness

58 N. Dershowitz

requirement is called a critical pair criterion. A criterion is
correct if we can still ensure that every fair completion sequence
(in the weakened sense) leads to rewrite-only proofs in RX. Various
critical pair criteria have been investigated recently in Winkler and
Buchberger (1983), Winkler (1985), Kiichlin (1986a), Pottier (1987).
Bachmair and Dershowitz (1988). and Kapur et al. (1988).

Two main approaches have been proposed:

(a) The connectedness criterion ignores any critical pair s - t
derived from an overlap s = TI-' ~R. II-' -R. II-'[dl-'Jp = t of
rules for which there exists an alternative proof s -R.uE. t
such that each term in the latter proof is smaller vis-a-vis - +
than II-'. A special case of such a criterion is used implicitly
in the marking scheme of Huet (1981). More generally. it
is unnecessary to generate any critical pair for which there
already existed a proof smaller under the ordering> kb used in
the proof of termination of ~ K B·

(b) The compositeness criterion ignores critical pairs for which
the overlapped term II-' can be rewritten at a position strictly
below the point p of overlap. A special case of this criterion
is used in Lankford and Ballantyne (1979).

AC-completion is closely related to the Gaussian-like elimination
methods for solving the word problem for polynomial ideals; see
Buchberger (1987) for a discussion. The connectedness criterion was
motivated by concepts first appearing in that context (Buchberger
(1979)). Critical pair criteria for the AC case are looked at in Ka­
pur et al. (1988), Winkler (1984), Bachmair and Dershowitz (1987a;
1988), and Kiichlin (1986b).

4. Applications

In this section. we describe some of the varied applications of rewrite
methods to equational reasoning. Most of our examples involve
associative-commutative completion: for them. we flatten associa­
tive-commutative terms and ignore symmetric extensions of rules
obtained from the axiom of commutativity. We show only selected

Completion and Its Applications 59

equations and rules. not full computations. Though completion is
used in each case to achieve the desired goaL an unfailing completion
method could be applied instead.

Let 9 denote the variable-free terms in T; such terms are called
ground. For applications. we are often interested in the ground con­
fluence of a given system R. A system has this restricted confluence
property. if s -j, u ~j, t. for any ground terms s. t. and u in g. im­
plies the existence of a ground term v in 9 such that s - j, v - j, t.
A system is "ground convergent" if it is terminating and ground con­
fiuent. A critical pair criterion for the ground case is described in
Kiichlin (1987).

4.1- Congruence Closures

As was pointed out in Section 3.2, there is, in general, no reduc­
tion ordering that can orient all critical pairs. However, when all
equations are ground, such an ordering is possible.lO With such an
ordering, failure is impossible. Moreover, completion is guaranteed
to succeed after a finite number of steps, resulting in a decision pro­
cedure for the initial set of ground equations (Lankford. 1975). In­
deed, validity in an equational theory presentable as a finite number
of ground equations is decidable (Ackermann, 1954).

Theorem 1- Given a total reduction ordering on ground terms and
a finite set Eo of ground terms, the result ROC of any sequence from
(Eo; 0) generated by a fair completion procedure is finite and canon­
ical (Lankford, 1975).

In other words. ground completion is complete.

Proof. On account of the totality of the ordering, all critical pairs
can be oriented, and no sequence can fail. Since there are no vari­
ables. the inference rule, deduce, is never needed: all critical pairs
are covered by collapse. If a rule g - d overlaps a rule I ~ r, the
latter collapses into the pair I[djp - r, which is oriented into either
/[djp ~ r or r - I[djp. In either case. the left-hand side of the new
rule is smaller under the reduction ordering than the left-hand side

10 A total "simplification ordering" is needed; see Dershowitz (1982a).

60 N. Dershowitz

I of the rule it displaces. Since the ordering is well-founded and Eo
is finite, the completion process must terminate. 0

For example, the equations

f(f(f(f(f(c))))) - c

f(f(f(c))) - c

generate the following completion sequence:

f(f(f(f(f(c))))) - c

f(f(f(c))) - c

f(f(c)) - c

f(f(c)) - c

ftc) - c

ftc) - c

The result is the one rule system

ftc) - c

under which any two congruent terms reduce to the same term.
This computation, by completion, of the "congruence closure" of

a finite set of ground terms is reminiscent of the algorithm used in
Nelson and Oppen (1980). Normal forms serve as names for classes
that are eventually "merged" into congruence classes, each named by
the minimal term in its class. Adding nonground rules can, of course,
cause completion not to succeed within any finite number of steps,
as can happen when "demons" are incorporated in the congruence
closure computation (cf. Marcus (1984)).

4.2. Meta-Unification

Let E be an equational theory over a set of terms T. An equation
s = t is satisfiable in the free model T of E, if there is a substitution
t7 of terms in T for the variables of sand t such that the equation
becomes valid in E, i.e., s<r =E t<r. In that case we say that sand t
are "unifiable" in E via <r, or that s = t has a solution <r in E.

Proposition 2. An equation is satisfiable in the free model of an
equational theory E if, and only if, it is satisfiable in all models of
E (with nonempty universe).

Completion and Its Applications 61

Proof. If an equation s = t is satisfiable in the free model of E,
then there is a substitution a of terms for the variables Xi of sand t
such that sa = ta is true in all models A of E, i.e., for all assignments
v of values (in the universe of A) to the variables of sa and ta, the
value [sa)v of sa is equal to the value [ta)v of ta. It follows that
for all models A, there is an assignment J1, (assigning to each Xi the
value [x;)v) such that [s] .. = [t] .. in A. In other words, the equation
s = t is satisfiable in A. 0

The completion procedure may be used to solve equations. We
have the following theorem showing how to use completion to deter­
mine satisfiability:

Theorem 2. Let Roo be the result of a fair completion sequence from
(E;{eq(x,x) - T,eq(s,t) - F}), where eq is a new binary symbol,
T and F are new constants, and any equality term eq(u, v) is greater
(under the given reduction ordering) than F which is greater than T.
The equation s = t is solvable in E if, and only if, the contradiction
F - T is a member of ROO {Lankford, 1975}.

Proof. If sa - E t(7, then (by fairness) the proof T -
eq(S(7, sa) - E eq(S(7, t(7) - F will eventually simplify to a rewrite
proof T -k~ v -k~ F. Since T is minimal, and F cannot be
larger than any (equality) term it is paired with, there must be a
rule F-T in Roo. 0

Since the equality symbol does not appear in E, the left-hand side
of rules generated from eq(s, t) - F can never overlap a subterm
of a left-hand side of a rule descending solely from E. Note that
the fairness criteria need only ensure that R"'" is ground confluent,
since a proof of contradiction from E U {eq(x, x) - T, eq(s, t) - F}
containing only ground terms is always possible when the equation
is satisfiable (and 9 is nonempty).

For example, say one wishes to find x and y such that X· Y = 1 in
commutative group theory. where· is associative and commutative.
Completion can proceed as follows:

62

1· x

x'x

eq(x, x)

eq(x . y, 1)

1· x

eq(y,l)

eq(y. 1)

F(l.l)

eq(l,l)

F(x,x-)

eq(l,l)

F(y-,y)
1-

x

x·x .y

(x· y)-

x

1

T

F(x, y)

x

F(l, y)

F(l, y)

T

1

F(x, x-)

T
F(y- ,y)

T

1

x

y

x 'y

N. Dershowitz

Variables have been placed as arguments to F to keep track of the
satisfying substitutions. Completion thus generates three solutions:
0'1 = {x 1, y I}, 0'2 = {y x-}, and 0'3 = {x y-}. In
the process, completion has also generated the following canonical
system AC\G for commutative groups:

l·x ~ x

X'x ~ 1
1- ~ 1

x ~ x
-X'x .y ~ y

(x· y)- -
~ x 'y

For each of the solutions 0',. we have (x· y)O', ~ AC\G 1.
As pointed out in Fages (1983a), insisting on simplifying rules

may result in equations or rules that determine recurrence relations

Completion and Its Applications 63

between solutions, rather than an explicit, complete set of solutions.
Consider, for example, the following completion sequence

g(f(y)) ~ g(y)

eq(g(z),g(O)) ~ F(z)

eq(x,x) ~ T

F(O) ~ T

eq(g(y), g(O)) ~ F(f(y))

F(f(y)) ~ F(y)

The two generated rules implicitly determine the (complete) set of
solutions for z in g(y) = g(O): {z O,z J(O),z J(f(O)), ... }.
This aspect of completion is exploited in Rety et al. (1985).

If instead of equations E, completion starts off with a convergent
set of rules R and a soluble goal eq(s, t) ~ F(xJ,"" x n), where the
Xi are the variables in sand t, then it cannot fail before finding a solu­
tion and deriving a contradiction. All critical pairs needed for a proof
of contradiction are of the form eq(u, v) ~ F(wJ,"" wn) and are
orientable from left to right. (Since R is confluent, there is no need
to generate critical pairs between its rules.) The effect of completion.
in this case, is to narrow sand t until a substitution (j is generated
which equates the two terms in the theory presented by R. Thus,
narrowing, as defined by Slagle (1974) and used for this purpose by
Fay (1979) and Lankford and Ballantyne (1979), is a restricted form
of completion (as was understood in Lankford (1975) and is noted
in Dershowitz (1985a) and Rety et al. (1985)). Since the equality
symbol is presumed not to appear in R, any critical pair between
a rule I ~ r in R and a generated rule eq(u, v) ~ F(wJ,"" wn),

must involve an overlap of I on a (not necessarily proper) nonvari­
able subterm u!p of u or v!p of v. The resultant critical pair can
be oriented into a new rule, eq(u[r!,]p, v!') ~ F(Wl!' , wn !') or
(u!" v[r!']p) ~ F(Wl!',"" wn!')' This step corresponds exactly to
narrowing, as defined in Hullot (1980b); using R to collapse the left­
hand side (which is optional from the point of view of generating
contradictions) gives the result of Fay's narrowing operation. As in­
dicated by Dershowitz (1985a) and others, ground confluence of R
suffices for the purposes of narrowing.

64 N. Dershowitz

4.3. Synthesis

Like other theorem-proving methods, completion and its variants
can be applied to the task of program synthesis from specifications
(Dershowitz, 1985a,b). The completion procedure itself folds defini­
tions, introducing recursive calls, thereby. Thus, program synthesis
may be thought of as generating an executable (usually recursive)
definition of the set of solutions to a given specification. (Cf. the
methodologies of, e.g., Burstall and Darlington (1977), Manna and
Waldinger (1980), Clark (1981), and Hogger (1981).)

Assume that we wish to synthesize a rewrite system for some func­
tion f(Xl,"" xn). The synthesized system must reduce any term
composed of the defined function f and primitive symbols to a term
consisting wholly of primitives. The following definition is useful:

Definition 4. A term t is ground reducible for a rewrite system R
over a set of terms T if every ground instance of t in T is rewritable
by R.

A program for f, then, is a rewrite system each rule of which follows
from the specification of f and for which the term f(Xl,"" Xn) is
ground reducible (the Xi are variables).

In another context, it has been shown that

Proposition 3. Ground reducibility is decidable when R is finite
(Plaisted, J985b).

See also Kapur et al. (1987). When R is left-linear, then deciding
ground reducibility can be done more efficiently (Jouannaud and
Kounalis, 1986). In the left-linear case, ground reducibility is known
to be decidable for rewriting modulo AC as well. Kounalis (1985)
considers rewriting modulo a congruence, in general. In the special
case where all irreducible forms are constructor terms, ground re­
ducibility is more easily testable. This case had been considered by
Nipkow and Weikum (1982) (for left-linear systems) and Dershowitz
(1985a) (for the general case), using the idea of a "test set," first
suggested in Plaisted (1980). Sufficient criteria had been given ear­
lier in Bidoit (1981), Huet and Hullot (1982), and Padawitz (1983);
see also Thiel (1984). New results are in Coman (1986) and Kapur
et al. (1986). Ground reducibility has important implications for
the question of "sufficient completeness" of algebraic specifications

Completion and Its Applications 65

of data types (as defined in Guttag and Horning (1978)); see the
above references.

The completion procedure is given a set E of equations, speci­
fying the required properties of f and necessary properties of the
problem domain. The reduction ordering supplied to the procedure
should ensure that terrns containing specification symbols are greater
than corresponding terrns containing the defined symbol, which in
turn should be greater than the corresponding primitive terms. This
serves to guarantee that specification symbols will not appear in the
synthesized program.

Theorem 3. Suppose there exists a rewrite program for a defined
function f that is valid for some specification E of f and is contained
in a reduction ordering >-. Then the result ROO of any fair completion
sequence from (E; 0), using >-, will contain a rewrite progmm for f
(Dershowitz, 1985a).

Proof. Let R constitute such a program for f. Both sides of all
identities of E reduce under ROO to the same term. In particular, at
some stage n, all rules I - r of R will follow from Rn. At that point,
I -k

n
v <-k

n
r and any term rewritable by R is also rewritable by

Rn, since the reduction ordering precludes r -t l. In particular,
all ground terms containing f are reducible. Thus, Rn contains a
program for f. 0

For example, consider the specification

x+x - double(x)

of a function to double a nonnegative integer and suppose we are
given the following facts about addition:

x+O -t x

x+s(y) - s(x+y)

where + is associative and commutative. The defined symbol symbol
is double; it is specified using +. The generated system must make
double (x) ground reducible; it must compute normal forms of ground
terms (not containing +) using only the primitive function sand
constant O. The completion sequence

66 N. Dershowitz

double(O) ~ 0

double(O) ---> 0

double(s(y)) ~ s(s(y+y))

double(s(y)) ~ s(s(double(y)))

double(s(y)) ---> s(s(double(y)))

includes the two rule program

double(O) ---> 0

double(s(y)) ---> s(s(double(y)))

Any ground term constructed from double, s, and 0 must contain an
instance of one of these left-hand sides.

Were + not asserted to be commutative, completion would slowly
generate an infinite number of specific values, e.g. double (s(8(0))) --->

s(s(s(s(O)))), despite the existence of the above, finite
program. In general, rules in a program need not be true in all
models of the specifications, only in the "intended" model. Thus,
verifying the correctness of a rewrite system (such as this one for
noncommutative +) really amounts to proving the consistency
of the program with its specifications. Completion-based meth­
ods for consistency proofs are described below; synthesizing pro­
grams whose rules are not deductive, equational consequen­
ces, but are, rather, inductive consequences, is investigated in Der­
showitz and Pinchover (1989).

A (ground) convergent system may also be used to narrow equa­
tional goals, in the spirit of "logic programming" (Kowalski, 1974).
Narrowing-based programming languages have been proposed by
Dershowitz and Josephson (1984), Goguen and Meseguer (1984),
Dershowitz (1985a), Fribourg (1985), Reddy (1985). and others. In
Dershowitz (1985b), the synthesis of logic programs using the com­
pletion procedure is also illustrated.

4.4. Proof by Consistency

Musser (1980) first suggested using completion to prove theorems
in the initial model of an equational theory; such proofs normally
require structural induction (see Goguen (1980)). This approach

Completion and Its Applications 67

has been dubbed "inductionless induction" by Lankford (1981) and
.. "proof by consistency" by Kapur and Musser (1987).
- An equation S = t is valid in the initial algebra I(E) (the "stan-

dard model") of an equational theory E if it holds, in E, for all
substitutions 17 of ground terms for its variables. We write S =I(E) t
to indicate that S(J =E t(J for all ground 17. Goguen (1980) showed
that for any convergent system R, the ground normal forms consti­
tute an algebra that is initial for the theory presented by R. In that
sense rewriting is a "correct" implementation of initial al­
gebra semantics.

Were a convergent system R to include rules that reduce any valid
ground equation eq(g, d) to T and invalid ones to F (for some equali­
ty symbol eq), then letting (Eo; Ra) be ({ S - t}; R) and complet­
ing fairly, would generate the contradiction F - T whenever
S = t is not an identity in the initial model of R. This is the
method of Musser (1980) (see also Goguen (1980), Huet and
Oppen (1980), and Kapur (1980)); its correctness follows direct­
ly from the fairness of completion, since, if S # I(R) t, then
F ~k, eq(s(J, t(J) -Eo eq(t(J, t(J) -ko T, for some ground 17,

would be a proof of a contradiction. Huet and Hullot (1982) re-
~ fined this method for the important case when the set of ground

normal forms is the set of all ground terms constructed from a
restricted set C C F of function symbols, called constructoTs, i.e.,
for which the constructor algebra is initial. A contradiction, then, is
indicated by any clash between constructors. The inference rule

Contradiction:
(E U {J(s" ... , Sn) - g(t, ,In)}; R) I- (0; {F - T})

if I' = g and I, 9 E C
may be added (explicitly or implicitly) to completion. In addition,
the inference rule

Decompose:
(E U {J(SI, ... , Sn) - I(t" ... , tn)}; R)

I- (EU{Si - ti: i = 1, ... ,n}:R) if I EC

can be used to speed up the proof process. This idea was generalized
in Paul (1984).

Lankford (1981) formalized the method: one proves consistency
by showing that the ground normal forms of a convergent system
R for E and the result R'" of completion are the same. (Lankford

-t includes restrictions on the form of rules, inherited from Huet and

68 N. Dershowitz

Hullot.) Dershowitz (1982b) and Remy (1982) first noted the connec­
tion between inductive theorem proving and the notion of reducibil­
ity of all ground instances.11 Jouannaud and Kounalis (1986) rec­
ognized the centrality of this notion and coined the term "inductive
reducibility";'2 we prefer to use "ground re ducibility" (suggested by
Kiichlin (1987) and already used above) for this concept.

Proposition 4. Let an equational theory E admit a convergent re­
write system R. An equation s = t is valid in the initial model
J(E) of E if, and only if, no equality between two distinct ground
R-normal forms follows from E and s ... t (Dershowitz (J982b)).

This result extended the original method by allowing any contradic­
tory equality between irreducible ground terms to indicate invalidity.

Proof. If sa oFE ta, for some ground substitution a, then the R­
normal forms of sa and ta are distinct ground terms whose equality
follows from E and s ... t. Conversely, if g and d are ground terms
that are equal only if s = t, then some ground instance sa ... ta of
s ... t, that does not hold in E alone, must be necessary for a proof
of the inconsistency g = d. 0

Theorem 4. Let H be a set of equational hypotheses. Suppose R is
ground convergent for E and let ROO be the result of a fair completion
sequence starting from (H; R). Every left-hand side of ROO is ground
R-reducible if, and only if, s = I(E) t for all s - t in H (Dershowitz
(J982b)).

This was first proved for convergent R; Remy and Zhang (1984)
pointed out that only ground confluence is needed.

Proof. Suppose la is a ground instance of a left-hand of a
rule I -> r in ROO that is R-irreducible. Since R U ROC is terminat­
ing, the R-normal form of ra cannot be La and an inconsistency
exists. On the other hand. if s ->koo v -koo t for two distinct
R-irreducible ground terms sand t, then at least one of them

llRemy's (1982) conditions for inconsistency confused reducibility (in general)
with ground reducibility; see, however. Kirchner (1984).
121n earlier work, they called it "quasi-reducibility."

Completion and Its Applications 69

must be reducible by a rule in Roo with a ground reducible left­
hand side. D

If the completion procedure yields a (possibly infinite) convergent
rewrite system Roo such that the previously irreducible ground terms
are still irreducible, then the equations in H are valid in the initial
model. Of course, when Roo is infinite, testing for ground reducibility
is no longer feasible. If completion ever generates an equation (not
just a rule) that has as an instance an equality between two distinct
irreducible ground terms, then too H is not valid in I(E); if the pro­
cedure fails without producing such an equation, then nothing can
be said about H (Dershowitz (1982b)). An extension of this method
to proving non-orientable equations is described in Jouannaud and
Kounalis (1986).

This method applies to AC-completion as well (see Goguen (1980)
and Lankford (1981)), providing the basis for the experiments re­
ported in Huet and Oppen (1980) and Huet and Hullot (1982). More
in this area is included in Jouannaud and Kounalis (1986). Kirch­
ner (1984) considers the general completion modulo A case. The
proof by consistency method has also been generalized in Kapur and
Musser (1986, 1987); see also Paul (1984). In Plaisted (1982) it was
shown how completion may be used to prove the existence of initial
algebra semantics for error conditions.

As an example, consider the canonical system AC\R containing: 13

x+O -; x

xxO -; 0

xxI -; x

xx(y+z) -; (xxy)+(xxz)
0

2:> -; 0
i=l

1

2:> -; 1
i=l
x+1 x

I> -; L i + (x + 1)
i=l i=l

13From Huet and Oppen (1980).

70 N. Dershowitz

where both + and x are associative and commutative. Adding the
hypothesis

z
(1 + 1) x 2:; - x x (x + 1)

i=l

and completing, generates the rules
z x

(2:i)+(2:;) ~ (xxx)+x
i=l i=l

x x
(2: ;) + (2: i) + z ~ (x x x) + x + z
i=l i=l

(the second is an extension of the first), but no more. Since the
left-hand sides are both ground reducible by ~ AC\R, the theorem is
proved.

Proof by consistency has been proposed as an alternative to other
automated approaches to inductive theorem proving. Indeed, in the
opinion of this writer (see also the discussion in Fribourg (1987)),
it bears a measure of resemblance with some of the heuristics in­
corporated in the methodology of Boyer and Moore (1979). "Cross­
fertilization" of goals~in the latter's terminology~corresponds

roughly with critical pair generation; "unfolding," with equation
simplification; and "throwing away equalities," with rule simplifi­
cation. The reduction ordering supplied to completion suggests the
"induction scheme" and restricts the locations for induction to vari­
able occurrences on the left-hand side. But completion has some
drawbacks, notably its insistence on simultaneously "inducting" on
all "unflawed" occurrences of variables on left-hand sides. Fribourg
(1986) points out that not all critical pairs need be considered (since
ground confluence depends only on ground terms and since R itself
is confluent) and that fairness need only guarantee ground conflu­
ence of ROO; see also Gobel (1985). In particular, only critical pairs
that involve a selected induction term in an hypothesis need be gen­
erated (provided that critical pairs at that position will cover all
ground instances). Gobel (1987) and Kiichlin (1987) adapt the sub­
connectedness criterion to the ground case. These results may allow
for better-tailored proofs by consistency. An unfailing version and
improved results in this area are contained in Bachmair (1988).

Suppose we are given the system

x+o - x
x+s(y) ~ s(x+y)

Completion and Its Applications 71

and try to prove associativity:

(x+y)+z +-+ x+(y+z).

(Commutativity of + is also unknown.) Depending on the reduction
ordering, completion mayor may not prove the hypothesis. On the
one hand, we have the successful sequence:

x+(y+z) ~ (x+y)+z

x+y +-+ (x+y)+O

x+y +-+ x+y

x+s(y+z) +-+ (x+y)+s(z)

x+s(y+z) +-+ s((x + y) + z)

s(x+(y+z)) +-+ s((x+y)+z)

s((x+y)+z) +-+ s((x+y) +z)

where all generated equations simplify to a trivial one. On the other
hand, with a different ordering, we have an infinite sequence:

(x+y)+z ~ x+ (y+z)

s(x+y)+z +-+ x+(s(y)+z)

s(x+y)+z ~ x+(s(y)+z)

s(s(x + y)) + z ~ x + (s(s(y)) + z)

One might argue that the first choice of ordering is more appropri­
ate, since-in orienting rules-it only considers the second argument
of +, that argument on which the recursive definition of + is
based. Alternatively. once can place the blame on the overlap­
ping of the second rule for + on the y variable in the hypothesis.
The method of Fribourg (1986) could. therefore, be used to only
generate critical pairs at the position of x. as was the case with
the first ordering.

As pointed out in Lankford (1981). neither completion nor other
inductive methods are good at coming up with the theorem itself,
or suggesting lemmata needed for its proof. Some hope for progress
in this direction may lie in the recent work of Kirchner (1987) on
inferring meta-rules from infinite completion sequences. See also
Dershowitz and Pinchover (1989).

72 N. Dershowitz

4.5. First-Order Theorem-Proving

Hsiang (1982) first suggested using a canonical rewrite system for
Boolean algebra in a resolution-like theorem-proving strategy. Let
AC\BA be the following canonical system: l4

~x ~ xffJT

xVy ~ (xl\y)ffJxffJy

x=>y ~ (xl\y)ffJxffJT

xl\T ~ x

x 1\ F ~ F

xl\x ~ x

xffJF ~ x

xffJx ~ F

(xffJy)l\z ~ (x 1\ z) ffJ (y 1\ z)

xl\xl\y ~ x 1\ Y

xffJxffJy ~ Y

where --, is "not," /\ is "and," V is "inclusive-or," e is "exclusive­
or," :J is "'implication," T is "true," and F is "false." Both I\. and
ffJ are associative and commutative. (The last two are extended
rules.) With this system, all propositional tautologies reduce to T
and contradictions, to F. The following, for example, is a rewrite
proof of DeMorgan's Law:

(~x) V (~y)

~BA (x ffJ T) V (y ffJ T)

~BA ((x ffJ T) 1\ (y ffJ T)) ffJ x ffJ T ffJ Y ffJ T

~BA (x 1\ (y ffJ T)) ffJ (T 1\ y) ffJ T)) ffJ x ffJ T ffJ y ffJ T

~AC\BA (x 1\ y) ffJ (x 1\ T) ffJ (T 1\ y)

14This is based on Boolean rings as in Stone (1936); cf. Watts and Cohen (1980).
The exclusive-or normal form has also been credited to Zhegalkin (1927), who
also worked on Boolean rings. The two equational theories, viz. Boolean rings
with unit and Boolean algebras, are equivalent, in that the operations of one can
be defined in terms of those of the other.

Completion and Its Applications

EB (T II T) EB x EB T EB Y EB T

~AC\BA (x II y) EB x EB y EB T EB x EB T EB y EB T

~AC\BA (xlly)EBT-BA ~(xlly)

73

Note that by incorporating the logical capabilities of AC\BA with
the techniques of meta-unification, Boolean combinations of equa­
tions may be solved.

A formula r in first-order predicate calculus is valid, if, and only
if, the closed Skolemized version (\tVI ... \tvn)s of its negation ~r is
false under Herbrand interpretations. 15

Theorem 5. Let ROO be the result of a fair AC -completion sequence
starting from ({s T}; BA). where s is a quantifier-free formula
and any (non-trivial) formula is greater (under the given reduction
ordering) than F which is greater than T. Then the closed formula
(\tv I ... \tvn)s is unsatisfiable if, and only if, ROO contains the con­
tradiction F ~ T (Hsiang and Dershowitz (1983)).

Proof. If the formula is unsatisfiable, then, by Herbrand's Theo­
rem, a finite conjunction of instances sa, of s reduces to F under
AC\BA. Hence, we have

F +-<4C\BA 80"1/\" -/\ sO"n +-+* T /\ - _./\ T ~BA T

and, by fairness, completion will generate rules under which F re­
duces to T. The only possible such rule is F T. 0

For example, to prove that

(\ty3z)~[P(z,y) _ (\tx)~(p(z,x) IIp(x,z))]

is valid, one can show that its Skolemized negation,

(\tz\tx)({p(z,c):l ~[p(z,x) IIp(x,z)]}

II {[P(z,f(z)) IIp(f(z),z)] Vp(z,c)}),

15 Skolemization is the process of replacing an existentially quantified subformula
of the form (3v)t with t[f(ul, ... , urn)], where the U 1 are the universally quan­
tified variables in t whose scope includes (3v)t[v] and all occurrences of v in t
bound by the deleted quantifier (3v) have been replaced by f(Ul, ... ,urn). The
formula is then closed. by adding universal quantifiers (ltv) for all free variables
v. (See, e.g., Chang and Lee, 1973.)

14 N. Dershowitz

is unsatisfiable, where J is a unary Skolem function and c, a Skolem
constant. Adding the above assertion to the SA system and com­
pleting gives!6

{p(z,c)::l [P(z,x) IIp(x,z)]}

II {[P(z, J(z)) IIp(f(z), z)] V p(z,c)} - T

[P(z, c) II p(z, x) II p(x, z)]

Ell [P(z,J(z)) IIp(f(z),z)]lIp(z,c)

Ell [P(z,J(z)) II p(f(z), z)] Ell p(z, c) - T

[p(f(z), z) II p(z, J(z))] Ell p(z, c) - T

[P(f(z), z) II p(z,J(z))] Ell p(z, c) Ell y - TEll Y

p(f(z), z) /\ p(z, J(z)) - TEll p(z, c)

[P(z, c) II p(z, x) II p(x, z)] Ell T - T

[P(y,c) IIp(c,y)] EIlT - T

TEll p(c, c) Ell T - T

p(c, c) - T

[T /\ p(c, c)] Ell T - T

p(c, c) Ell T - T

TEIlT - T

F - T

x - T

Notice that the inference rules (deduce, collapse, and orient) au­
tomatically replace a rule of the form s Ell t - u with s - t Ell u,
whenever s >- tEll u. Also, a rule of the form slit - T begets s - T
and t - T. Thus. with a reasonable ordering, s V t - T would be
replaced by s /\ t - s Ell t Ell T and s ::l t - T by s /\ t - s.

The above method is not refutationally complete, however, because
of the potential failure of a completion sequence. For example, with
the trivial ordering (T less than anything else) and the inconsistent
set of rules

pEllqEllT - T

pEllrEllT - T

qffiT --+ T

16For a compara.ble proof by resolution. see Example 2-38 in Manna (1974).

Completion and Its Applications 75

completion will generate unorientable equations like

q Ell T r Ell T,

but not the contradiction F - T. For completeness, an unfailing
version would be required. Hsiang (1985) has shown how converting
C to its clausal form C, /\C2 /\·· ·/\Cn , adding a rule C,EllT - F for
each clause C" and then running the AC -completion procedure with
the trivial order is guaranteed not to fail. The proof of complete­
ness, however, does not fully cover simplification of rules. Hsiang
also gave a criterion for disregarding critical pairs that do not de­
rive from at least one rule that is a sum, and for restricting the
amount of associative-commutative unification necessary in comput­
ing critical pairs. Related work is in Paul (1985). An important
aspect of Hsiang's approach is the ability to incorporate convergent
systems for specific domain theories; see also Fages (1983b). A gen­
eral extension to first-order predicate calculus with equality is in
Hsiang (1987). Kapur and Narendran (1985a) propose a nonclausal
method that uses B A and includes inferences based On cancellation;
its refutational completeness needs to be established. The additional
inference rule is

Cancel: (E U {s Ell u tEll u}; R) f- (E U {s t}; R)
Bachmair and Dershowitz (1987b) present a method that incorpo­
rates simplification and prove it complete.

5. Conclusion

In this chapter, we have examined the completion procedure, some
of its multifaceted extensions, and its main areas of application. We
have viewed the procedure and its extensions. as inference engines
which use a limited amount of "forward reasoning" (Le., deduction),
trying to churn out enough equational consequences of the given
axioms to guarantee that for any equational proof, there will even­
tually be one that uses only "backward reasoning" (i.e., reduction).
The applications highlight the advantages inherent in the sense of
direction gained from the incorporation of a well-defined notion of
"simplicity .. ,

Recently. the completion concept has been further extended to
"conditional" equations and rules, where the applicability of an iden­
tity or rewrite is predicated on the fulfillment of some condition(s).

76 N. Dershowitz

Conditional equations are very important in applications, such as
data type specification and functional programming languages. A
pioneering study of conditional rewriting was Brand et al. (1978);
other works in this area are Remy (1982) and Kaplan (1984) (see Ka­
plan and Remy (1989)); an overview of results on the Church-Rosser
property for conditional systems may be found in Dershowitz et al.
(1988). Various completion-like approaches to conditional equations
and Horn clauses are described in Brown (1975), Jouannaud and
Waldmann (1986), Paul (1986), Ganzinger (1987), Kounalis and
Rusinowitch (1987), Bachmair et al. (1989), and Kaplan (1988).
More general refutationally-complete combinations of resolution and
completion are described in Lankford (1975), Peterson (1983), Hsiang
and Rusinowitch (1986), and Rusinowitch (1987).

Acknowledgement

I gratefully acknowledge the comments of my friends, Leo Bachmair,
Jieh Hsiang, Jean-Pierre Jouannaud, Dallas Lankford, Pierre Les­
canne, David Plaisted, Jean-Luc Remy, and Mitsuhiro Oksda.

References

Ackermann, W. (1954). Solvable Ca3es of the Decision Problem. North-Holland,
Amsterdam.

Avenhaus, J. (1985). "On the termination of the Knuth-Bendix completion
algorithm," Report 120/84, Universitat Kaiserslautern. Kaiserslautern, West
Germany.

Bachmair, L. (1987). "Proof methods for equational theories," Ph.D. Thesis,
Department of Computer Science, University of Illinois, Urbana, Ill.

Bachmair, L. (1988). "Proof by consistency in equational theories," Proceedings
of the Third Symposium on Logic in Computer Science, Edinburgh, Scotland,
July 1988, 228-233.

Bachmair, L., and Dershowitz, N. (1987a). "Completion for rewriting modulo a
congruence," Proceedings of the Second International Conference on Rewriting
Techniques and Applications, Bordeaux, France, May 1987, 192-203. (Avail­
a.ble as Vol. 256, Lecture Notes in Computer Science. Springer, Berlin; revised
version to appear in Theoretical Computer Science, 1988).

Bachmair, L., and Dershawitz. N. (1987b). "Inference rules far rewrite-based
first-order theorem proving." Proceedings of the Second SympoSium on LogiC
in Computer Science. Ithaca. NY. June 1987, 331-337.

Bachmair. L., and Dershowitz. N. (1988). "Critical pair criteria for completion."
1. Symbolic Computation 6 (1), 1-18. (Previous version appeared as "Critical

Completion and Its Applications 77

pair criteria for the Knuth-Bendix completion procedure," Proceedings of the
1986 ACM Symposium on Symbolic and Algebraic Computation, Waterloo,
Ontario, July 1986, 215-217.)

Bachmair, L., Dershowitz, N., and Hsiang, J. (1986). "Orderings for equational
proofs," Proceedings of the Symposium on Logic in Computer Science, Cam­
bridge, MA, June 1986, 346-357.

Bachmair, L., Dershowitz, N., and Plaisted, D. A. (1989). "Completion without
failure," Resolution of Equations in Algebraic Structures. Academic Press,
Boston.

Benninghofen, B., Kemmerich, S., and Richter, M. M. {1987}. "Systems of
Reductions," Lecture Notes in Computer Science 277, Springer, Berlin.

Bidoit, M. (1981). "Une methode de presentation de types abstraits: Applica­
tions," These, Universite de Paris-Sud, Orsay, France.

Birkhoff, G. (1935). "On the structure of abstract algebras," Proceedings of the
Cambridge Philosophical Society 31, 433-454.

Boyer, R. S., and Moore, J. S. (1979). A Computational Logic. Academic Press,
New York.

Brand, D., Darringer, J. A., and Joyner, W. J., Jr. (1978). "Completeness
of conditional reductions," Report RC 7404, IBM T. J. Watson Research
Center, Yorktown Heights, NY.

Brown, T. C., Jr. (1975). "A structured design-method for specialized proof
procedures," Ph.D. Thesis, California Institute of Technology, Pasadena, CA.

Buchberger, B. (1979). "A criterion for detecting unnecessary reductions in the
construction of Grebner bases," Proceedings of the European Conference on
Symbolic and Algebraic Computing, 3-21. (Available as Vol. 72, Lecture Notes
in Computer Science, Springer, Berlin.)

Buchberger, B. (1987). "History and basic features of the critical-pair/com­
pletion procedure," J. Symbolic Computation 3 (1 & 2), 3-38. (Previous
version appeared as "Basic features and development of the critical pair /
completion procedure," Proceedings of the First International Conference on
Rewriting Techniques and Applications, Dijon, France, May 1985, 1-45.)

Burstali, R. M., and Darlington, J. (1977). "A transformation system for de­
veloping recursive programs," J. of the Association for Computing Machinery
24(1), 44-67.

Butler, G., and Lankford, D. S. (1980). "Experiments with computer imple­
mentations of procedures which often derive decision algorithms for the word
problem in abstract algebras," Memo MTP-7, Department of Mathematics,
Louisiana Tech. University, Ruston, LA.

Chang, C. L., and Lee, R. C. (1973). Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York.

Clark, K. L. (1981). "The synthesis and verification oflogic programs," Research
Report DOC 81/36, Department of Computing, Imperial College, London,
England.

Comon, H. (1986). "Sufficient completeness, term rewriting systems and 'anti­
unification'," Proceedings of the Eight International Conference on Automated
Deduction, Oxford, England. (Available as Vol. 230, Lecture Notes in Com­
puter Science, Springer, Berlin.)

Curry. H. B .. and Feys, R. (1958). Combinatory Logic. North-Holland. Amster­
dam.

Davis, M. (1958). Computability and Unsolvability. McGraw-Hill. New York.
Dershowitz. N. (1982a). "Orderings for term-rewriting systems," Theoretical

78 N. Dershowitz

Computer Science 17(3), 279-301. (Previous version in the Proceedings of
the Symposium on Foundations of Computer Science, San Juan, PR, 123-
131, October 1979.)

Dershowitz, N. (1982b). "Applications of the Knuth-Bendix completion proce­
dure," Proceedings of the Seminaire d'lnformatique Theorique, Paris France,
95-111.

Dersbowitz, N. (1985a). "Computing with rewrite systems," Information and
Control 64(2/3), 122-157. (Previous version in the Proceedings of the NSF
Workshop on the Rewrite Rule Laboratory, Schenectady, NY, pp. 269-298,
September 1983.)

Dershowitz, N. (1985b). "Synthesis by completion," Proceedings of the Ninth
International Joint Conference on Artificial Intelligence. Los Angeles, CA,
208-214.

Dershowitz, N. CI987}. "Termination of rewriting," J. of Symbolic Computa­
hon 3(1 & 2), 69-115; 4(3), 409-410. (Previous version appeared. as "Ter­
mination," Proceedings of the First International Conference on Rewriting
Techmques and Applications, Dijon, France, May 1985.)

Dershowitz, N., and Josephson, N. A. (1984). "Logic programming by comple­
tion," Proceedings of the Second International Logic Programming Conference,
Uppsala, Sweden, 313~320.

Dershowitz, N., and Jouannaud, J.-P. (1989). "Rewrite systems," in Handbook
of Theoretical Computer Science (A. Meyer, M. Nivat, M. Paterson, D. Perrin,
eds.). North-Holland, Amsterdam. (To appear.)

Dershowitz, N., and Manna, Z. (1979). "Proving termination with multiset
orderings," Communications of the ACM 22(8), 465-476. (Previous version
in the Proceedings of the International Colloquium on Automata, Languages
and Programming, Graz, 188-202, July 1979.)

Dershowitz, N., and Okada, M. (1988). "Proof-theoretic techniques and the the­
ory of rewriting," Proceedings of the Third Symposium on Logic in Computer
Science, Edinburgh, Scotland, 104-11l.

Dershowitz, N., and Pinchover, E. (1989). "Inductive synthesis of equational
programs." Submitted.

Dershowitz, N., Marcus, L., and Tarlecki, A. (1988). "Existence, uniqueness,
and construction of rewrite systems," SIAM J. on Computing 17(4), 629-639.
(Previous version appeared as "Existence and construction of rewrite systems,"
N. Dershowitz and L. Marcus. The Aerospace Corporation, December 1982.)

Detlefs, D., and Forgaard, R. (1985). "A procedure for automatically proving the
termination of a set of rewrite rules," Proceedings of the First International
Conference on Rewriting Techniques and Applications, Dijon, France, 255-
270. (Available as Vol. 202, Lecture Notes in Computer Science, Springer,
Berlin, September 1985.)

Dick, A. J. J. (1986). "ERlL-Equational reasoning: An interactive laboratory,"
Report No. RAL8601O, Rutherford Appleton Laboratory, Chilton, U.K.

Evans. T. (1951). "On multiplicative systems defined. by generators and rela­
tions. I," Proceedings of the Cambridge Philosophical Society 47, 637-649.

Fages. F. (1983a). "Note sur l'unification des termes de premier ordre finis et infi­
nis," Rapport 83-29. Laboratoire Informatique Theorique et Programmation.
Universite de Paris VII, Paris. France.

Fages. F. (1983b). "Formes canoniques dans les algebres booleennes. et appli­
cation a la demonstration automatique en logique de premier ordre." These.
Universite de Paris VI. Paris, France.

Completion and Its Applications 79

Fages, F. (1984a). "Le systeme KB: manuel de reference: presentation et bil­
iographie. mise en oeuvre." Report R. G. 10.84. Greco de Programmation,
Bordeaux. France.

Fages, F. (1984b). "Associative-commutative unification," J. Symbolic Com­
putation 3(3), 257-275. (Previous version in the Proceedings of the Seventh
Intemational Conference on Automated Deduction, Napa. CA. 194-208, May
1984.)

Fay, M. (1979). "First-order unification in an equational theory," Proceedings of
the Fourth Workshop on Automated Deduction, Austin, TX, 161-167.

Fribourg, L. (1985). "SLOG: A logic programming language interpreter based
on clausal superposition and rewriting," Proceedings of the IEEE Symposium
on LOglC Programming, Boston, MA, 172-184.

Fribourg, L. (1986). "A strong restriction of the inductive completion proce­
dure," Proceedings of the Thirteenth EATCS International Conference on
Automata, Languages and Programming, Rennes, France, 105-115. (Avail­
able as Vol. 226, Lecture Notes in Computer Science, Springer, Berlin.)

Fribourg, L. (1987). "On the use of conditional rewrite rules in classical auto­
mated reasoning," Proceedings of the First International Workshop on Con­
ditional Rewriting. Orsay, France. (To appear in Lecture Notes in Computer
Science,. Springer, Berlin.)

Ganzinger, H. (1987). A completion procedure for conditional equational spec­
ifications. Fachbereich Informatik, Universitat Dormund, Dortmund, West
Germany.

Gnaedig, I. (1987). "Knuth-Bendix procedure and nondeterministic behavior­
An example," Bulletin of the European Association for Theoretical Computer
Science 32, 86-92.

Gobel, R. (1983). "A completion procedure for globally finite term rewriting
systems," Proceedings of an NSF Workshop on the Rewrite Rule Laboratory,
Schenectady, NY, 155-203. (Available as Report 84GENOO8, General Electric
Research and Development, April 1984.)

Gobel, R. (1985). "A specialized Knuth-Bendix algorithm for inductive proofs,"
Proceedings of the Conference on Combmatorial Algorithms in Algebraic
Structures, Kaiserslautern, West Germany.

Gobel, R. (1987). "Ground confluence," Proceedi.ngs of the Second International
Conference on Rewriting Techniques and Applications, Bordeaux, France,
156--167. (Available as VoL 256, Lecture Notes in Computer Science, Springer,
Berlin.)

Goguen, J. A. (1980). "How to prove algebraic inductive hypotheses without
induction," Proceedings of the Fifth Conference on Automated Deduction, Les
Arcs, France, 356--373. (Available as Vol. 87, Lecture Notes in Computer
Science, Springer, Berlin.)

Goguen, J. A., and Meseguer, J. (1984). "Equality, types, modules and (why
not?) generics for logic programming," Logic Programming 1 (2), 179-210.

Guttag, J., and Horning, J. J. (1978). "The algebraic specification of abstract
data types," Acta Informatica 10 (1) 27-52.

Hogger, C. J. (1981). "Derivation of logic programs," J. of the Association for
Computing Machinery 28(2}, 372-392.

Hsiang, J. (1982). "Topics in automated theorem proving and program gener­
ation," Ph.D. Thesis, Report R-82-1113, Department of Computer Science,
University of Illinois. Urbana. IL.

80 N. Dershowitz

Hsiang, J. (1985). "Refutational theorem proving using term-rewriting systems,"
Artificial Intelligence 25, 255-300.

Hsiang, J. (1987). "Rewrite method for theorem proving in first order theory with
equality," J. of Symbolic Computation 3(1 & 2), 133-151. (Previous version
appeared as "Two results in term rewriting theorem proving," Proceedings of
the First International Conference. on Rewriting Techniques and Applications,
Dijon, France, 301-324, May 1985.)

Hsiang, J., and Dershowitz, N. (1983). "Rewrite methods for clausal and nOD­

cla.usal theorem proving," Proceedings of the Tenth EATCS International
Conference on Automata, Languages and Programming, Barcelona, Spain,
331-346. (Available as Vol. 154, Lecture Nates in Computer Science, Springer,
Berlin.)

Hsiang, J., and Rusinowitch, M. (1986). "A new method for establishing refu­
tational completeness in theorem proving," Proceedings of the Eighth Inter­
national Conference on Automated Deduction, Oxford, England, 141-152.
(Available as Vol. 230, Lecture Notes in Computer Science, Springer, Berlin.)

Hsiang, J., and Rusinowitch, M. (1987). "On word problems in equational the­
ories," Proceedings of the Fourteenth EATCS International Conference on
Automata, Languages and Programming, Karlsruhe, West Germany, 54--71.
(Available as Vol. 267, Lecture Notes in Computer Science, Springer, Berlin.)

Huet, G. (1980). "Confluent reductions: Abstract properties and applications
to term rewriting systems," J. of the Association for Computing Machinery
27(4), 797-821. (Previous version in the Proceedings of the Symposium on
Foundations of Computer Science, Providence, Rl, 3Q-45, October 1977.)

Huet, G. (1981). "A complete proof of correctness of the Knuth-Bendix com­
pletion algorithm," J. of Computer and System Sciences 23(1), 11-21.

Huet, G., and Hullot, J.-M. (1982). "Proofs by induction in equational theories
with constructors," J. of Computer and System Sciences 25, 239--266. (Pre­
vious version in the Proceedings of the Twenty-First Annual Symposium on
Foundations of Computer Science, Lake Placid, NY, 96-107, October 1980.)

Huet, G., and Oppen, D. C. (1980). "Equations and rewrite rules: A survey,"
In Formal Language Theory: Perspectives and Open Problems (R. Book, 00.).
Academic Press, New York, 349--405.

Hullot, J.-M. (1980a). "A catalogue of canonical term rewriting systems," CSL-
113, SRI International, Menlo Park, CA.

Hullot, J.-M. (1980b). '''Canonical forms and unification," Proceedings of the
Fifth Conference on Automated Deduction, Les Arcs, France, 318-334.

Jouannaud, J.-P. (1983). "Confluent and coherent sets of reductions with equa­
tions: Application to proofs in abstract data types," Proceedings of the Eighth
Colloquium on Trees in Algebra and Programming, 269-283. (Available as
Vol. 59, Lecture Notes in Computer Science, Springer, Berlin.)

Jouannaud, J.-P. (1987). "Proof methods for completion procedures," Presented
at the Second International Conference on Rewriting Techmques and Appli­
cations, Bordeaux, France.

Jouannaud, J.-P., and Kirchner, H. (1986). "Completion of a set of rules mod­
ulo a set of equations,'· SIAM J. on Computing 15. 1155-1194. (Previous
version in the Proceedings of the Eleventh A eM Symposium on Prmciples of
Programming Languages, Salt Lake City, UT, 83-92, January 1984.)

Jouannaud, J.-P., and Kounalis, E. (1986). "'Automatic proofs by induction in
equational theories without constructors," Proceedings of the Symposium on

Completion and Its Applications 81

Logic in Computer Science, Cambridge, MA, 358-366. (Revised version to
appear in Information and Computation.)

Jouannaud, J.-P., and Waldmann, B. (1986). "Reductive conditional term rewrit­
ing systems," Proceedings of the Third IFIP Working Conference on Formal
Description of Programming Concepts, Ebberup, Denmark.

Jouannaud, J.-P., Kirchner, R., and Remy, J. L. (1983). "Church-Rosser pro~
erties of weakly terminating term rewriting systems," Proceedings of the Eight
International Joint Conference on Artificial Intelligence. Karlsruhe, West
Germany, 90\1-915_

Kaplan, S. (1984). "Conditional rewrite rules," Theoretical Computer Science
33,175--193_

Kaplan, S. (1988). "Simplifying condition term rewriting systems unification,
termination, and confluence," J. of Symbolic Computation 4(3), 295-334.

Kaplan, S., and Remy, J.-L. (1988). "Completion algorithms for conditional
rewriting systems," ResolutJon of Equations in Algebraic Structures. Aca­
demic Press. New York.

Kapur. D. (1980). "Towards a theory of abstract data types," Report LCS-TR-
237, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA.

Kapur, D., and Musser, D. R. (1986). "Inductive reasoning with incomplete
specifications," Proceedings of the Symposium on Logic in Computer Science,
Cambridge, MA, 367-377_

Kapur. D., and Musser, D. R. (1987). "Proof by consistency," Artificial Intelli­
gence 31(2), 125-377. (Previous version in the Proceedings of the NSF Work­
shop on the Rewrite Rule Laboratory, Schenectady, NY. 245-267, September
1983_)

Kapur, D., and Narendran, P. (1985a). "An equational approach to theorem
proving in first-order predicate calculus," Proceedings of the Ninth Interna­
tional Joint Conference on Artificial Intelligence, Los Angeles, CA, .1146-
1153_

Kapur, D., and Narendran, P. (1985b). "A finite Thue system with decidable
word problem and without equivalent finite canonical system," Theoretical
Computer Science 35, 337-344.

Kapur, D., and Sivakumar, G. (1983). "Experiments with and architecture
of RRL, a rewrite rule laboratory," Proceedings of an NSF Workshop on
the Rewrite Rule Laboratory, Schenectady, NY, 33-56. (AVailable as Report
84GENOO8, General Electric Research and Development. April 1984.)

Kapur, D., Musser, D. R., and Narendran, P. (1988). "Only prime superpositions
need be considered for the Knuth-Bendix procedure," J. Symbolic Computa­
tion 4, 19-36.

Kapur, D., Narendran, P., and Zhang, H. (1986). "Proof by induction using
test sets," Proceedings of the Eight International Conference on Automated
Deduction, Oxford. England, 99-117. (Available as Vol. 230, Lecture Notes in
Computer Science. Springer, Berlin.)

Kapur, D., Narendran. P .. and Zhang, H. (1987). "On sufficient completeness
and related properties of term rewriting systems." Acta Informatica 24(4).
395-416_

Kirchner. C. (1985). "Methodes et outHs de conception systematique d'algo­
rithmes d'unification dans les theories equationnelles," These d'Etat. Univer­
site de Nancy, Nancy. France.

82 N. Dershowitz

Kirchner, H. (1984). "A general inductive completion algorithm and application
to abstract data types," Proceedings of the Seventh International Conference
on Automated Deduction, Napa, CA, 282-302. (Available as Vol. 170, Lecture
Notes in Computer Science, Springer, Berlin.)

Kirchner, H. (1987). "Schematization of infinite sets of rewrite rules: Application
to the divergence of completion processes," Proceedings of the Serond Inter­
national COnference on Rewriting Techniques and Applications, Bordeaux.
France, 180-191. (Available as Vol. 256, Lecture Notes in Computer Science.
Springer, Berlin.)

KIap, J. W. (1987). "Term rewriting systems: A tutorial," Bulletin of the Eu­
ropean Association for Theoretical Computer Science 32, 143-183.

Knuth, D. E., and Bendix, P. B. (1970). "Simple word problems in universal
algebras," In Computational Problems in Abstract Algebra (J. Leech, ed.).
Pergamon Press, Oxford, U.K., 263-297.

Kounalis, E. (1985). "Validation de specifications algebriques par completion
inductive," These d'Etat, Universite de Nancy, Nancy, France.

Kounalis, E., and Rusinowitch, M. (1987). "On word problems in Horn theories,"
Proceedings of the First International Workshop on Conditional Rewriting,
Orsay, France, 144-160. (Available as Vol. 308, Lecture Notes in Computer
Science, Springer, Berlin.)

Kowalski, R. A. (1974). "Predicate logic as programming language," Proceedings
of the IFIP Congress, Amsterdam, The Netherlands, 569-574.

Kiichlin, W. (198630). "A generalized Knuth-Bendix algorithm," Technical Re­
port 86-01, Department of Mathematics, Swiss Federal Institute of Technology,
Zurich, Switzerland.

Kiichlin, W. (1986b). "Equational Completion by proof transformation," Ph.D.
Thesis, Department of Mathematics, Swiss Federal Institute of Technology,
Zurich, Switzerland.

Kiichlin, W. (1987). '"Inductive completion by ground proof transfQrmation,"
Technical Report 87-08, Department of Computer and Information Sciences,
University of Delaware, Newark, DE.

Lankford, D. S. (1975). "Canonical inference," Memo ATP-32, Automatic The­
orem Proving Project, University of Texas, Austin, TX.

Lankford, D. S. (1981). "A simple explanation of ind uctionless ind uction," Memo
MTP-14, Department of Mathematics, Louisiana Tech. University, Ruston,
LA.

Lankford, D. S., and Ballantyne, A. M. (1977a). "Decision procedures for simple
equational theories with commutative axioms: Complete sets of commuta­
tive reductions," Memo ATP-35, Department of Mathematics and Computer
sciences, University of Texas, Austin, TX.

Lankford, D. S., and Ballantyne, A. M. (1977b). "Decision procedures for sim­
ple equational theories with commutative-associative axioms: Complete sets
of commutative-associative reductions," Memo ATP-39, Department of Math­
ematics and Computer Sciences, University of Texas, Austin, TX.

Lankford, D. S., Ballantyne, A. M. (1979). "The refutation completeness of
blocked permutative narrowing and resolution." Proceedings of the Fourth
Workshop on Automated Deduction, Austin, TX. 53-59.

Lankford, D. S., and Ballantyne, A. M. (1983). "On the uniqueness of term
rewriting systems," Unpublished note, Department of Mathematics, Louisiana
Tech. University, Ruston. LA.

Completion and Its Applications 83

LeChenadec, P. (1985). Canonical Forms in Finitely Presented Algebras. Pit­
man-Wiley, London.

Lescanne, P. (1983). "Computer experiments with the REVE term rewriting
system generator," Proceedings of the Tenth ACM Symposium on Principles
of Programming Languages, Austin, TX, 99-108.

Lescanne, P. (1984). "Term rewriting systems and algebra," Proceedings of the
Seventh International Conference on Automated Deduction, Napa, CA. 166-
174. (Available as Vol. 170, Lecture Notes in Computer SCience, Springer,
Berlin.)

Lescanne, P. (1986). "Divergence of the Knuth-Bendix procedure and termina­
tion orderings," Bulletin of the European Association for Theoretical Com­
puter Science 30, 80---84.

Livesey. M., and Siekmann, J. (1976). "Unification of A+C-terms (bags) and
A+C+I-terms (sets)," Intern. Ber. Nr. 5/76. lnst. fiir Informatik, University
Karlsruhe, Karlsruhe, West Germany.

Manna, Z. (1974). Mathematical Theory of Computation. McGraw-HilL New
York.

Manna, Z., and Waldinger, R J. (1980). "A deductive approach to program
synthesis,'" ACM 1'h1nsactions on Programming Languages and Systems 2(1),
9O-12l.

Marcus. L. (1984). "Demons and equivalence." Technical Report ATR-83(8478)-
4, Computer Science Laboratory, The Aerospace Corporation, EI Segundo.
CA.

Martin, U. (1987). "How to choose the weights in the Knuth-Bendix ordering,"
Proceedings of the Second International Conference on Rewriting Techniques
and Applications. Bordeaux, France. 42-53. (Available as Vol. 256, Lecture
Notes in Computer Science. Springer, Berlin.)

Metivier, Y. (1983). "About the rewriting systems produced by the Knuth­
Bendix completion algorithm," Information Processing Letters 16(1),31-34.

Musser, D. R. (1980). "On proving inductive properties of abstract data types."
Proceedings of the Seventh ACM Symposium on Principles of Programming
Languages, Las Vegas, NV. 154-162.

Nelson, C. G., and Oppen, D. C. (1980). "Fast decision procedures based on
congruence closure," J. of the Association for Computing Mach~·nery 27(2),
356-364. (Previous version appeared as "Fast decision algorithms based on
union and find," Proceedings of the Symposium on Foundations of Computer
Science, Stanford, CA, 114-119, 1977.)

Newman. M. H. A. (1942). "On theories with a combinatorial definition of
'equivalence'," Annals of Mathematics 43(2), 223-243.

Nipkow, T., and Weikum, G. (1982). "A decidability result about sufficient­
completeness of axiomatically specified abstract data types," Proceedings of
the Sixth GI Conference on Theoretical Computer Science, 257-268. (Avail­
able as Vol. 145. Lecture Notes in Computer Science, Springer, Berlin.)

Padawitz, P. (1983). "Correctness, completeness, and consistency of equational
data type specifications," Bericht Nr. 83-15, Technische Univeritat, Berlin,
West Germany.

PauL E. (1984). "Proof by induction in equational theories with relations be­
tween constructors," Proceedings of the Ninth Colloquium on Trees m Algebra
and Programming, Cambridge University Press. Bordeaux. France, 211-225.

PauL E. (1985). "Equational methods in first order predicate calculus," J. Sym­
bolic Computatlon 1(1), 7-29. (Previous version appeared as "A new interpre-

84 N. Dershowitz

tation of the resolution principle," Proceedings- of the Seventh International
Conference on Automated Deduction, Napa, CA, 333-335, May 1984.)

Paul, E. (1986). "On solving the equality problem in theories defined by Horn
clauses," Theoretical Computer Science 44(2), 127-153. (Previous version
in Proceedings of the European Conference on Computer Algebra: Research
Contributions, Linz, Austria, 363-377, April 1985.)

Pedersen, J. (1985). "Obtaining complete sets of reductions and equations with­
out using special unification algorithms," Proceedings of the European Con/er­
ence on Computer Algebra: Research Contributions, Linz, Austria, 422-423.
(Available as Vol. 204, Lecture. Notes in Computer Science, Springer, Berlin.)

Peterson, G. E. (1983). "A technique for establishing completeness results in the­
orem proving with equality," SIAM J. on Computing 12(1), 82-100. (Previous
version in Proceedings of the First Annual National Conference on Artificial
Intelligence, Stanford, CA, 87-89, August 1980.)

Peterson. G. E., Stickel, M. E. (1981). "Complete sets of reductions for some
equational theories," J. of the Association for Computing Machinery 28(2),
233-264.

Plaisted, D. A. (1979), personal communication.
Plaisted. D. A. (1980). "Partial correctness and semantic confluence of term·

rewriting systems," Unpublished manuscript, Department of Computer Sci·
ence, University of Illinois, Urbana, IL.

Plaisted, D. A. (1982). "An initial algebra semantics for error presentations,"
Unpublished report, Computer Science Laboratory, SRI International, Menlo
Park, CA.

Plaisted, D. A. (1985a). "The undecidability of self embedding for term rewriting
systems," Information Processing Letters 20(2), 61-64.

Plaisted, D. A. (1985b). "Semantic confluence tests and completion methods,"
Information and Control 65(2/3), 182-215.

Plaisted, D. A. (1986a). "A simple non·termination test for the Knuth-Bendix
method," Proceedings of the Eighth International Conference on Automated
Deduction, Oxford, England, 79-88. (Available as VoL 230, Lecture Notes in
Computer Science, Springer, Berlin.)

Pottier, L. (1987). "Limitation des paires critiques dans les completion de
systemes de reecriture formelle," Rapport, Laboratoire d'Informatique, Uni·
versite de Nice, Nice, France.

Purdom, P. (1987). "Detecting loop simplifications," Proceedings of the Second
International Conference on Rewriting Techniques and Applications, Bar·
deaux, France, 54-61. (Available as Vol. 256, Lecture Notes m Computer
Science, Springer, Berlin.)

Reddy, U. S. (1985). "Narrowing as the operational semantics of functional Ian·
guages," Proceedings of the IEEE Symposium on Logic Programming, Boston,
MA, 138-151.

Mmy, J.·L. (1982). "Etude des systemes de reecriture conditionnels et applica·
tions aux types abstraits algebriques," These, Institut National Poly technique
de Lorraine, Nancy, France.

Remy, J .. L.. and Zhang, H. (1984). "REVEUR4: A system for validating condi·
tiona! algebraic specifications of abstrac data types," Proceedings of the Sixth
European Conference on ArtifiCial Intelligence, Pisa, Italy, 563-572.

Mty, P., Kirchner. C., Kirchner, H .. and Lescanne, P. (1985). "NARROWER:
A new algorithm for unification and its application to logic programming,"
Proceedings of the First International Conference on Rewriting Techniques

Completion and Its Applications 85

and Applications, Dijon, France, 141-157. (Available as Vol. 202, Lecture
Notes in Computer Science, Springer, Berlin, September 1985.)

Robinson, G., and Wos, L. (1969). "Paramodulation and theorem-proving in first
order theories with equality," Machine Intelligence 4" Edinburgh University
Press, Edinburgh, Scotland, 135-150.

Rusinowitch, M. (1987). "Theorem proving with resolution and superposition:
An extension of Knuth & Bendix procedure as a complete set of inference
rules," Internal Report 87-R-128, Centre de Recherche en Informatique de
Nancy, Nancy, France.

Siekmann, J. (1984). "Universal unification," Proceedings of the Seventh Inter­
national Conference on Automated Deduction, Napa, CA, 1--42. (Available as
VoL 170, Lecture Notes in Computer Science, Springer, Berlin.)

Siekmann, J., and Szabo, P. (1982). "A Noetherian and confluent rewrite system
for idempotent semigroups," Semigroup Forum 25, 83-110.

Slagle, J. R. (1974). "Automated theorem-proving for theories with simplifiers,
commutativity, and associativity," J. of the Association for Computing Ma­
chinery 21(4), 622-642.

Stickel, M. E. (1981). "A unification algorithm for associative-commutative func­
tions," J. of the Association for Computing Machinery 28(3), 423--434.

Stone, M. (1936). "The theory of representations for Boolean algebra," Trans­
actions of the American Mathematical Society 40, 37-11l.

Takeuti, G. (1987). Proof Theory. North-Holland. (Revised edition.)
Thiel, J. J. (1984). "Stop losing sleep over incomplete data type specifications,"

Proceedings of the Eleventh ACM Symposium on Principles of Programming
Languages, Salt Lake City, UT, 76-82.

Thomas, C. (1984). "RRLab-Rewrite rule labor," Memo SEKI-84-01, Fach­
bereich Informatik, Universitat Kaiserslautern, Kaiserslautern, West Germany.

Watts, D. E., and Cohen, J. K. (1980). "Computer implemented set theory,"
American Mathematical Monthly 87(7), 577-560.

Winkler, F. (1984). "The Church-Rosser property in computer algebra and spe­
cial theorem proving: An investigation of Critical-pair/completion algorithms,"
Thesis, UniverSity of Linz, Linz, Austria.

Winkler, F. (1985). "Reducing the complexity of the Knuth-Bendix comple­
tion algorithm: A 'unification' of different approaches," Proceedings of the
European Conference on Computer Algebra: Research Contributions, Linz,
Austria,378-389. (Available as Vol. 204, Lecture Notes In Computer Science,
Springer, Berlin.)

Winkler, F., and Buchberger, B. (1983). "A criterion for eliminating unnecessary
reductions in the Knuth-Bendix algorithm," Proceedings of the Colloqtl.ium on
Algebra, Combinatorics and Logic in Computer Science, Gyor, Hungary.

Zhegalkin, I. I. (1927). "On a technique of evaluation of propositions in symbolic
logic," Matematicheskii Sbornik 34(1),9-27.

