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The Cycle Lemma and Some Applications 

N ACHUM DERSHOWITZ AND SHMUEL ZAKS 

Two proofs of a frequently rediscovered combinatorial lemma are presented. Using the 
lemma, a combinatorial proof is given that the average height of an ordered (plane-planted) 
tree is approximately twice the average node (vertex) level. 

1. THE CYCLE LEMMA 

A sequence PIP2' .. PI of boxes and circles is called k-dominating (for positive 
integer k) if for every position i, 1 ~ i ~ I, the number of boxes in PIP2 ... Pi is more 
than k times the number of circles. For example, the sequence 0000000000 is 
2-dominating; the sequence 000000000 is I-dominating (or just dominating) but 
not 2-dominating; the sequences 000000000 and 000000000 are not even 
I-dominating. 

The following lemma has been rediscovered many times. Although not difficult to 
prove, it is a powerful tool in enumeration arguments. 

CYCLE LEMMA (Dvoretzky and Motzkin [9]). For any sequence PIP2' .. Pm+n of m 
boxes and n circles, m ~ kn, there exist exactly m - kn (out of m + n) cyclic 
permutations PiPi+l ... Pm+nPl ... Pi-V 1 ~j ~ m + n, that are k-dominating. 

For example, of the nine cyclic permutations of the sequence 000000000 of six 
boxes and three circles, only three are dominating; 000000000, 000000000 
and 000000000. None are 2-dominating. As a special case of this lemma, if 
m = n + 1, then there is a unique dominating permutation. 

In Section 2, we will present two applications of this lemma, one from each of the 
points of view taken in the following two proofs. Our first proof is a generalization of 
proofs appearing in Silberger [23], Bergman (2), and Singmaster [24]; our second proof 
follows Grossman [12], Raney [21], and Yaglom and Yaglom [28] . 

1.1. FIRST PROOF. For the first proof of the lemma, arrange the m + n figures on a 
cycle. Removing a subsequence of k boxes followed by one circle from the cycle does 
not change the number of k-dominating permutations, since the k + 1 figures have no 
net effect and no k-dominating permutation could have begun with any of the deleted 
figures. By the 'pigeon-hole principle:' as long as m ~ kn > 0, there must be such 
a subsequence on the cycle; these subsequences may be removed one by one until 
only boxes remain. The remaining m - kn boxes yield m - kn k-dominating cyclic 
permutations. 

Example. Consider the sequence 000000000, with k = 1. Placing them on 
a cycle and removing three pairs, leaves three boxes, corresponding to the 
three dominating cyclic permutations 000000000, 000000000, and 
000000000 (see Figure 1). 

Note that not all cyclic permutations are necessarily distinct; rather, there are 
duplicates to the extent that there is periodicity in the cycle. Still, the proportion of 
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FIGURE 1. First proof (k = 1). 
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distinct k-dominating cyclic permutations among all the distinct cyclic permutations is 
the same as the proportion of k-dominating ones among all of them. For example , one 
fourth of the 16 cyclic permutations of 0000000000000000 are dominating, 
as are one fourth of the eight distinct ones. 

1.2. SECOND PROOF. Another simple proof is the following. Given a sequence of 
figures, construct a 'mountain range' (lattice path). Begin to the left at 'sea level.' For 
each box, draw a straight line to a point one unit to the right and one unit upwards; for 
each circle, slope downwards k units and right one unit. The resultant graph extends 
m + n units to the right and ends m - kn units above sea level. 

By cyclically permuting the sequence, the origin is moved to a different point along 
the range. A k-dominating sequence corresponds to a range that is completely (all but 
the origin) above sea level. Choose as a new, valid origin any point: 

(1) for which there is no equally low (or lower) valley to its right (otherwise, that 
valley would end up at (or below) sea level); and 
(2) which is less than m - kn units above the deepest valley (otherwise, that valley 
would descend to (or past) sea level). 

Any point that was to the right of the new origin was higher and is therefore above sea 
level now; any point that was to its left was less than m - kn units lower and is 
therefore above sea level now. 

Clearly, there are exactly m - kn such points to choose a valid origin from. 

Example. Consider the sequence 00000000000, with k = 2. Constructing 
the corresponding 'mountain range,' shows two possible starting points, corresponding 
to the two 2-dominating cyclic permutations 00000000000 and 
00000000000 (see Figure 2). 

o 

2 
1 2 
• + 

00000000000 

FIGURE 2. Second proof (k = 2). 



ns IS 

. one 
ting, 

~e of 
. For 
.; for 
ends 

dong 
I but 

that 

alley 

~ sea 
Id is 

cting 
lding 
and 

The Cycle Lemma and some applications 37 

1.3. OTHER PROOFS. The Cycle Lemma is the combinatorial analogue of the 
Lagrange inversion formula; see Raney [21), Cori [4] and Gessel [11]. Other proofs of 
varying degree of generality may be found in Dvoretzky and Motzkin [91 (discussed in 
Grossman [12]), Motzkin [19] (two proofs), Hall [14]. Raney [21). Yaglom and Yaglom 
[28], Takacs [26), Silberger [23), Bergman [2] (three proofs), Sands [22] and 
Singmaster [24]. (The first paper [9] is not credited by the other authors, but is 
referenced in Barton and Mallows [1] and Mohanty [18].) Dvoretzky and Motzkin, 
Motzkin, and Yaglom and Yaglom give the lemma in its general form; the other papers 
prove only the case k = 1 or m - kn = 1. Generalizations of the Cycle Lemma to 
non-integer k and sequences of reals may be found in Dvoretzky and Motzkin [9] and 
Spitzer [25], respectively. 

2. ApPLICA nONS 

We demonstrate the power of the Cycle Lemma with two applications. The first is an 
enumeration of forests of trees with nodes of fixed degree; the second is an 
approximation of the height of trees with nodes of arbitrary degree. 

2.1. FOREsrs. The number of (ordered) forests containing s trees with n internaL 
nodes of (out-) degree t and tn + s - n leaves of degree 0 (t-ary trees) is 

s (tn + s) 
tn+s n . 

To see this, note the correspondence between forests of t-ary trees and (t - 1)
dominating (postfix Polish) sequences obtained by traversing the trees in postorder, 
i.e. first each subtree from left to right is traversed and then the node connecting them, 
and recording a circle for each internal node encountered and a box for each ' leaf 
encountered. By the Cycle Lemma, s / (tn + s) of the cyclic permutations of the (m: S) 
sequences of n circles and tn + s - n boxes are (t - I)-dominating. 

Limiting the forest to one tree (s = 1), gives 

_1_ (tn + 1) 
tn+l n ' 

the total number of t-ary trees with n internal nodes (see Klamer [15] and Knuth [16]; 
Grunert [13] gives the analogous result for polygons). In particular, the number of 
binary trees (t = 2) is 

1 (2n + 1) 1 (2n) 
2n+l n =n+l n ' 

the well known Catalan numbers (see Cayley [3]; Silberger [23J, Sands [22] and 
Singmaster [24] also derive the Catalan sequence using the Cycle Lemma). 

2.2. TREES. In an ordered (a.k.a. plane-planted) tree the order in which subtrees of 
a node are arranged is significant, but the number of outgoing edges is not fixed. Every 
ordered tree with n edges corresponds to a mountain range of n + 1 upward-sloping 
steps and n downward-sloping ones, obtained by slicing each edge of the tree 
lengthwise and pulling the tree apart at the root and adding one extra upward step at 
the start (see Figures 3(a) and 3(b». Thus, every tree corresponds to a mountain range 
starting at sea level and ending 2n + 1 units to the right (of the origin) and one unit up. 

The level of a node in an ordered tree is the length of the path from the root to the 
node; the height of an ordered tree is the length of the longest path from the root to a 
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FIGURE 3. (a) A tree T. (b) A mountain range r corresponding to T. (c) A cyclic shift of r. 

leaf. The level of a node in a tree corresponds to the elevation (measured from sea 
level) of the corresponding step in the range, measured at the bottom of the up step 
corresponding to the incoming edge; the height corresponds to the maximum elevation 
of a step in the range. Let 1 denote the expected level of a node in an n-edge ordered 
tree, and let Ii denote the expected height, with all ordered trees equiprobable. 
Applying the lemma to the representation of trees as mountain ranges, we can show 
that 

2l-2~1i~21+1. (*) 
Using the fact that 

_ 2211 - 1 1 y;m 1 
1=---=---

(~) 2 2 2 

(Volosin [27], Meir and Moon [17] and Dasarathy and Yang [5]; see Dershowitz and 
Zaks [7] for a proof using the Cycle Lemma), it follows that 

Ii =y;m. 
deBruijn, Knuth and Rice [6] give an analytic proof of the asymptotic value of Ii; a 

more general analytic proof may be found in Aajolet and Odlyzko [10]. 
To prove (*), we make use of the Cycle Lemma in order to estimate the height of a 

tree, using all the cyclic ranges corresponding to that tree. We first note that, by the 
Cycle Lemma, every tree can be said to correspond to 2n + 1 (distinct) mountain 
ranges, one for each of the (distinct) cyclic permutations of the range. (An upward step 
corresponds to a box and a downward one to a circle, as in the second proof of the 
lemma.) 



sea 
step 
tion 
~red 

ble. 
lOW 

(*) 

and 

~;a 

of a 
the 
rain 
;tep 
the 

The Cycle Lemma and some applicalions 39 

Let x be a node at level I of a given tree T of height h, and let r be any of the 2n + 1 
ranges corresponding to T. The level I of x satisfies 

d-a~l~d-a+l, (**) 

where a is the minimum (signed) elevation of a step along r, and d is the elevation of 
the step corresponding to x in r. 

Similarly, the height h of T satisfies 

z -a ~h ~z -a + 1, (***) 

where z is the maximum elevation of a step along r. 
This is because a cyclic permutation can bring the step in question one level closer to 

the lowest step, on account of the disparity between the starting and ending elevations 
of the range. 

By considerations of symmetry (the reflection-with respect to the sea--of any range 
must also be among the (2n,,+ 1) ranges), the average values i and -ii (over all ranges) 
of z and -a are the same, and the average value of d (ranging over all steps in all 
ranges) is O. Combining all the above, we obtain 

i=O-ii~l~o-ii+l~i+l 
and 

2i = i - ii ~ Ii ~ i - ii + 1 = 2i + 1 

from which (*) follows immediately. 

Example. A tree T is depicted in Figure 3(a); x is a node in T. The range r 
corresponding to T is shown in Figure 3(b). The step in r corresponding to x is marked 
with a heavy line. The starting point of r is marked a , and the bottom of the step 
corresponding to x is marked p. d - a = l. The equality holds in every cyclic shift in 
which a is to the left of p. On the other hand if, in a cyclic shift of r, a is to the right of 
p, then d - a is decreased by one, and therefore we have 1= d - a + 1. (See Figures 
3(b) and 3( c); the point where the cyclic shift starts is marked with an arrow in Figure 
3(b).) The same argument is used for (***), using; instead of p, where; is the bottom 
of the step corresponding to the lowest node y in T (see Figures 3(a) and 3(b». 

ACKNOWLEDGMENT 

This research was supported in part by the National Science Foundation under Grant 
DCR 85-13417. 

REFERENCES 

1. D. E. Barton and C. L. Mallows, Some aspects of the random sequence. Ann. MtUh. Stat. 36 (1965), 
236-260. 

2. G . M. Bergman, Terms and cyclic permutations. Algebra Universalis 8 (1978). pp. 129-130. 
3. A. Cayley. On analytical forms called trees. Phil. Mag. 28 (1859) , 374-378; also 'in Collected Math . 

Papers 4 (1859). 112-115. 
4. R. Cori, in: Combilullorics on Words (M. Lothaire. ed.). Encyclopedia of Mathematics and Its 

Applications, vol. 17, Addison-Wesley, Reading, Massachusetts, 1983. 
5. B. Dasarathy and C. Yang, A transformation on ordered trees. Comput. J. 23(2) (1980). 161-164. 
6. N. deBruijn . D . E. Knuth and O . Rice. The average height of planted plane trees. in: Graph Theory and 

Computing (R. C. Read, ed.). Academic Press. New York. 1972. pp. 15-22. 
7. N. Dershowitz and S. Zaks. Applied tree enumerations. in: Proc. r-h Colloq. on Trees in Algebra and 

Programming, Genoa. Italy. Lecture Notes in Computer Science. vol. 112. Springer-Verlag. Berlin. 
(1981) pp. 180-193. 



40 N. Dershowitz and S. Zaks 

8. N. Dershowitz, and S. Zaks, Patterns in trees, Discr. Appl. Math .. to appear. 
9. A. Dvoretzky and Th. Motzkin, A problem of arrangements, Duke Math . J. 14 (1947) , 305-313. 

10. Ph . F1ajolet and A . Odlyzko. the average height of binary trees and other simple trees. 1. Comput. 
System Sci .. 25 (1980) , 171-213. 

11. I. M. Gessel, A combinatorial proof of the multivariate Lagrange inversion formula. J. Combin. Theory 
Ser. A 4S (1987), 178-195. 

12. H. D . Grossman. Fun with lattice points-21, Scripta Math . 16 (1950),120-124. 
13. 1. A. Grunert . Uber die Bestimmung de Anzahl der verschiedenen Arten. auf welche sich ein n-eck 

durch Diagonalen in lauter m-ecke zerlegen lasst , Arch. Math . Phys. 1 (1841), 193-203. 
14. P . Hall , Some word problems, J. London Math . Soc. 33 (1958) , 482-496. 
15. D. A. Klamer, Correspondences between plane trees and binary sequences. J. Combin. Theory 9 

(1970),401-411. 
16. D . E. Knuth. The Art of Computer Programming 1: Fundamental Algorithms (Addison-Wesley. 

Reading, MA. 2nd ed., 1973). 
17. A. Meir and J. Moon, On the altitude of nodes in random trees . Can. J. Math. 30(5) (1978) . 997-1015. 
18. S. G. Mohanty. Lattice Path Counting and Applications, Academic Press, New York. 1979. 
19. Th. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a 

polygon, for permanent preponderance , and for non-associative products. Bull. Am. Math . Soc. 54 
(1948), 352-360. 

20. T. V. Narayana, A partial order and its application to probability, Sankhya. 21 (1959), 91-98. 
21. G. M. Raney, Functional composition patterns and power series reversion. Trans. Am. Math . Soc. 94 

(1960),441-451. 
22. A . D. Sands, On generalized Catalan numbers. Discr. Math. 21(2) (1978), 219-221. 
23. D . M. Silberger, Occurrences of the integer (2n - 2)1/nl(n - 1)1, Roczniki Polskiego Towarzysrwa 

Math. 113 (1969), 91-96. 
24. D . Singmaster, An elementary evaluation of the Catalan numbers, Am. Math. Monthly 8S (1978). 

366-368. 
25. F . Spitzer, A combinatorial lemma and its applications to probability theory, Trans. Am. Math. Soc. 82 

(1956), 323-339. 
26. L. Takacs, Combinatorial Methods in the Theory of StochDstic Processes, John Wiley, New York. 1967. 
27. Ju.M. Volosin, Enumeration of the terms of object domains according to the depth of embedding. Sov. 

Math. Dokl. 15 (1974), Im-1782. 
28. A . M. Yaglom and I. M. Yaglom, Chollenging Mathematical Problems with Elementary Solutions, vol. 1: 

Combinatorial Analysis and Probability Theory , Holden Day, San Francisco, 1964. 

Received 25 October 1984 and accepted in revised form 7 June 1989 

NACHUM DERSHOwrrz 

Department of Computer Science, 
University of Illinois at Urbana-Champaign, 

Urbana. Illinois 61801 , U.S.A. 
and 

SHMUEL ZAKS 

Department of Computer Science. 
TechnWn, Haifa 32000, Israel 


