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Abstract

It has been shown that (quantifier-free) bit-vector logic (BV) is NExpTime-complete,
on account of the fact that the number of propositional variables in the SAT encoding
of a BV formula grows exponentially with the length of the declarations of the bit-vector
variables in the input formula. This level of complexity is surprising, given that in practice
BV is being used successfully in a wide range of applications. This work points out that
the high complexity does not necessary hold in practical applications of BV. We give two
examples of easier families of BV problems. First, we demonstrarate that in a BV subset,
originating in a recent critical Intel application of BV from clock routing, the number of
propositional variables is polynomial in the size of the BV instance – since the maximal
value of the instance’s bit-vector variables is written out explicitly as a bit-vector constant,
thus establishing that clock routing uses an NP-complete subset of BV. Second, we show
that for another application, namely, microcode validation, the (logarithm of the) register
width should be viewed as a fixed parameter, and thus microcode validation uses a para-
NP-complete parameterized version of BV. Similar arguments are likely to apply to a
variety of other BV applications to demonstrate that they too use NP-complete subclasses
of BV or its para-NP-complete parametrized version.

1 Introduction

Quantifier-free bit-vector (BV) reasoning is being applied in a variety of domains, including
software validation [8, 5, 16], hardware validation [10, 19], answer-set programming [15], clock
routing [4], automated configuration [14], and others [13]. On the theoretical side, it has been
shown that BV is as hard as NExpTime [11] – a somewhat surprising result, given the apparent
practical usefulness of bit-vector reasoning.

The following SMT2 [1] formula is used in [11] to illustrate why BV is NExpTime-hard:

(set-logic QF_BV)

(declare-fun x () (_ BitVec 1000000))

(declare-fun y () (_ BitVec 1000000))

(assert (distinct (bvadd x y) (bvadd y x)))

Written to a file, this formula can be encoded with 138 bytes. However, the number of proposi-
tional variables and clauses required to translate this formula to SAT is huge: one needs 2 · 106

variables merely to represent the input variable x or y, let alone the auxiliary variables created
in the process of translating the formula to CNF. It was reported in [11] that Tseitin-encoding of
this problem into CNF resulted in a 1GB DIMACS-format formula file, while the same problem
using a bit-width of 10 million could no longer be bit-blasted due to integer overflow.
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As this example illustrates, the reason for the high complexity of BV reasoning is the fact
that the number of propositional variables grows exponentially with the length of the declara-
tions of bit-vector variable widths introduced when declaring the input bit-vector variables. Our
main observation is that, nevertheless, various practical applications of BV use an NP-complete
subset of BV. We point to two such applications at Intel.

Section 2 shows that a recent critical application of BV in clock routing [4] uses a subclass
of BV, where the number of propositional variables is polynomially bounded by the size of the
corresponding BV instance, since the maximal value of the instance’s bit-vector variables of
the only non-Boolean width appearing in the instance is written out explicitly as a bit-vector
constant (and, in addition, the overall number of literals in the clauses is polynomial in the
number of variables). Hence, that subclass belongs to NP.

Section 3 argues that there is a fixed small parameter for microcode validation prob-
lems [8, 7], corresponding to the (logarithm of the) register width in the underlying archi-
tecture. Intuitively, this observation means that BV is NP-complete for the practical needs of
microcode validation. The observation can be easily formalized using parameterized complexity
theory [2, 3, 17]. Specifically, BV, parameterized by the (logarithm of the) variable width, is
para-NP-complete. Similar arguments can be applied to other applications of BV in software
and hardware validation.

Section 4 reviews related work, while Sect. 5 summarizes our conclusions.

2 Clock Routing

Matching-constrained routing in automatic clock routing is a recent application of BV [4], one
that is of critical practical importance.

Automating the routing process is essential for the semiconductor industry to reduce time-
to-market and increase productivity. The problem of matching-constrained routing can be
formulated as follows: given a set of nets, each net consisting of a driver and a receiver, con-
nect each driver to its receiver, where the delay should be almost the same across nets. This
problem can be reduced to bounded-path, the NP-hard problem of finding a simple path from
source to target (in a positively weighted undirected graph) whose cost is within a given range
[cmin. . cmax]. Furthermore, the bounded-path problem can be naturally encoded in BV. See [4].

While [4] concentrates on developing efficient graph-aware bounded-path algorithms to make
the solution scalable, our focus here is on showing that the initial reduction to BV uses an NP-
complete subset of the language.

We call an edge or vertex active if it appears on the path from source s to target t. It is
shown in [4] how one can formulate connectivity constraints guaranteeing that a valid path of an
arbitrary cost from s to t is constructed by the solver. The connectivity constraints comprise a
purely Boolean expression over Boolean variables representing the activity status of the vertices
and the edges. Clearly, translating a Boolean expression to SAT results in a polynomial number
of SAT variables and clauses. For the rest of the discussion, we assume that a valid path of an
arbitrary cost is guaranteed to be constructed by the solver.

Figure 1 shows the constants, variables and constraints required for ensuring that the cost
is bounded and relevant for complexity considerations.

First, consider the constants. A crucial observation for our purposes is that the constant
representing the upper bound cmax on the cost of the path must be part of the BV encoding
of any bounded-path instance. The constant is written out explicitly along with its width w =
dlog10 cmaxe+1. (We add an extra bit to the width to take care of overflow in cost propagation,
as explained below.) For example, if the given cost range [cmin. . cmax] is [1000000. . 2000000],

2



Is Bit-Vector Reasoning as Hard as NExpTime Dershowitz and Nadel

the corresponding SMT2 BV instance will contain the constant (_ bv2000000 22). The BV
instance will also contain constants corresponding to the lower bound cmin and the edge costs,
but cmax is the largest of all constants, hence it has maximal width. (Edges with costs greater
than cmax can be eliminated, since they cannot be part of a bounded path.)

Second, consider the variables. Each edge e is associated with a Boolean variable represent-
ing its direction dire on the path from s to t. Each vertex v is associated with a BV variable
cv that represents the cost of the path from s to v, if v is active (item 2b in Fig. 1).

The direction and cost variables are used to propagate the cost along the chosen path from
s to t using the cost-propagation constraints (items 3a and 3b in Fig. 1). The constructed path
is guaranteed to be within bounds at the target, since the target cost ct is restricted to the
range [cmin. . cmax] (item 4a in Fig. 1).

Finally, the cost of each vertex is bounded by the maximal cost cmax (item 4b in Fig. 1).
This constraint is valid, since if a path cost reaches cmax + 1 at any point, the full path to the
target could not be within bounds; thus it can be pruned.1

The key observation demonstrating that the encoding uses an NP-complete subset of BV is
as follows. It is sufficient to set the width of the cost of each vertex v to w = dlog10 cmaxe+1 to
be able to accommodate the maximal cost cmax, while ensuring that there is no overflow during
cost propagation. Thus, translating a cost variable to SAT results in a number of propositional
variables polynomial in the number of digits required to write out cmax in the BV instance.
Hence, the overall number of SAT variables is polynomial in the size of the BV instance. This
fact and the fact that the overall number of literals in the resulting SAT clauses is polynomial
in the number of SAT variables shows that bounded-path uses an NP-complete subset of BV.

1. Constants

(a) BV dlog10 cmaxe+1 cmax

2. Cost variables

(a) Boolean dire: the direction of e ∈ E

(b) BV dlog10 cmaxe+1 cv: the cost of the path from s to v

3. Cost-propagation constraints

(a) cs = 0

(b) cv = ce + cu, for vertex v /∈ {s, t}, where the direction of the
path is from u to v via e

4. Cost-bound constraints

(a) cmin ≤ ct ≤ cmax

(b) cv ≤ cmax for each v ∈ V

Figure 1: Translating bounded-path to BV. Constants, variables and constraints, relevant to
complexity considerations, are shown.

1This constraint does not appear in [4], since it is not necessary for ensuring correctness. We introduce it
here, since it allows us to reduce the cost variable width from dlog10 Se+ 1 to w = dlog10 cmaxe+ 1, where S is
the sum of the costs of all the edges in the graph.
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3 Microcode Validation

Microcode is a critical component in modern microprocessors, and substantial effort is devoted
to verifying its correctness. It has been shown [8, 7] that microcode validation can be efficiently
solved with BV reasoning. The translation of the problem to BV is done using an interme-
diate representation, the Intermediate Representation Language (IRL). This simple language
possesses all the features necessary for modeling microcode programs. Programs are translated
into IRL by a set of IRL templates that define the translation from microcode instructions into
a corresponding sequence of IRL expressions. IRL expressions are constructed using symbolic
execution. A variable definition in IRL appears as follows [7]:

<declaration> ::= var <variable-list> : BitVector[ <width> ] ;

The IRL variable declaration is similar to a variable declaration in the BV language, but
in practice the width in the definition above is always replaced by the concrete register width
of the underlying computer architecture. Therefore, the number of propositional variables
corresponding to a bit-vector variable in a formula is determined by the register width w ,
where w is a small, fixed value (e.g., 32 or 64) across all the microcode instances for a particular
architecture. Thus, intuitively, one could claim that microcode validation uses the NP-complete
fixed-width subclass of BV.

This claim can be formalized based on parameterized complexity theory [2, 3, 17]. In this
framework, the complexity of a computational problem is measured, not only in terms of the
input size (as in classical complexity), but also in terms of a parameter. The central notion
of the field is fixed-parameter tractability, which refers to solvability in time f(k) · nc, where f
is some (possibly exponential) function of the parameter k, c is a constant, and n is the size
of the instance with respect to some reasonable encoding. In our context, we need the related
notion of the para-NP complexity class, the class of all parameterized decision problems that
can be solved in time f(k) · nc by a nondeterministic algorithm [6]. In our case, k ≈ log10 w
is the length of the vector declarations; f is an exponential function giving the number of
bits in a vector; n is the number of vector variables, which is proportional to the size of the
formula, excluding the vector declarations; and c is a very small constant. As pointed out
in [17], for parameterizations of NP-problems, a para-NP-completeness result is considered to
be very negative, but for a problem that is harder than NP, like BV, a para-NP-completeness
result may be deemed positive, as it shows that the structure represented by the parameter can
be exploited to break the complexity barrier.

Our point is that, as we have argued, microcode validation uses a parameterized version of
BV (where k ≈ log10 w is the parameter), which belongs to para-NP, since – for each value of
k – it can be reduced to SAT, where the number of SAT variables is: (a) exponential in the
parameter k , itself logarithmic in w , the architecture-determined variable-width; (b) polynomial
in the length of the original formula. The number of clauses in the SAT encoding is polynomial
in formula size, since bit-blasting bit-vector operators to SAT results in a polynomial number
of clauses for each operator. Note that the width of bit-vector variables is always provided
explicitly in the BV language, and applying an operator always results in a bit-vector of the
same declared width. Note also that SAT can be trivially reduced to BV.

It follows that BV is para-NP-complete, where the logarithm of the maximal width (which
is the register width in the case of microcode validation) is the parameter.

The usage of parameterized complexity in our context of bridging the gap between theoretical
performance guarantees and the empirically observed performance of solvers is not surprising,
since parameterized complexity has been introduced precisely to bridge the theory-practice
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gap. See [17] for an excellent survey about parameterized complexity and its applications in
constraint satisfaction and reasoning.

4 Related Work

It has been observed in [11] that, if the maximal bit-width can be bounded for a BV family
of formulæ, then that family is in NP. There, an infinite set of BV formulæ is defined to be
bit-width bounded if the maximal bit-width w is bounded by a function p(n), polynomial in
the number of terms n in the corresponding formula (where all the bit-widths are provided
explicitly in SMT2 formulæ). Any bit-width bounded family of BV formulæ belongs to NP.

The BV family originating in clock routing is not bit-width bounded since there is no
correlation between the maximal bit-width and the number of terms in the formula. As we
have shown in Section 2, that fragment does belong to NP due to a different reason.

On the other hand, any family of formulæ with a fixed vector width, like a set of formulæ
emerging in microcode validation for to any fixed register width, is trivially bit-width bounded.
Let Sk be all BV formulæ whose maximal bit-width is in the range [10k. . 10k+1 − 1]. Pa-
rameterizing by k, as we have done in the previous section, partitions BV into the sequence
S0, S1, S2, . . . of NP languages, which is why BV is para-NP.

5 Conclusion

In general, BV is NExpTime-complete, since the number of propositional variables in the SAT
encoding of a BV formula grows exponentially with the length of the bit-vector declarations in
the input formula. Practical applications of BV are, however, more likely to use an NP subset
of the general problem than harder complexity classes.

In particular, we have shown that two practical applications at Intel use either an NP-
complete subset or a para-NP-complete parameterized version of BV:

• For the BV fragment used for solving clock routing, the maximal value of its bit-vector
variables is written out explicitly as a bit-vector constant. Hence, that fragment is in NP.
This should come as no surprise, as the original problem is in NP.

• For microcode validation, the architecture’s register width w determines a fixed parameter
for the whole class of problems. Hence, microcode validation uses a para-NP-complete
characterization of BV, where k = log w is the parameter.

These results can be generalized to the following characterizations of BV and its subclasses,
which can be applied to classify other applications of BV:

• Any BV fragment, such that the maximal value of its bit-vector variables is written out
explicitly as a bit-vector constant for every width in the instance, belongs to NP.

• BV itself (not only formulæ for microcode validation), parametrized by the logarithm of
the maximal width, is para-NP-complete.

In particular, variable width is a small fixed parameter in other BV applications in software
and hardware validation. We plan to study the complexity of other applications of BV in the
future.

Recent works [11, 9, 12] have studied the complexity of various subclasses of BV. The
results herein suggest that to close the gap between the theoretical high-complexity of BV and
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its apparent real-life applicability, it makes sense to study the parameterized complexity of BV
and its subclasses.
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