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1 Introduction

This article describes some mathematical methods for verifying properties of pro-
grams in higher-order, functional languages. We focus on methods for reasoning
about equivalence of expressions. Such methods are often based upon a denota-
tional semantics of the programming language in question, using the mathematical
theory of domains (Scott 1982; Plotkin 1981a). Here I will describe some methods
which are based upon operational semantics (Plotkin 1981b). These operationally-
based techniques have several attractive features. For example, there is relatively
little mathematical overhead involved in developing the basic theory—in contrast
with that needed to develop the existence and properties of recursively defined do-
mains, the sine qua non of denotational semantics. On the other hand, domain
theory provides an extremely powerful tool for analysing recursive program con-
structs. I believe that any serious attempt to develop a useful theory for verification
of program properties has to involve both operational and denotational techniques.

Highlights The main purpose of this article is to advertise the usefulness, for
proving equivalences between functional programs, of co-inductive techniques
more familiar in the context of concurrency theory (de Roever 1978; Park 1981;
Milner 1989). They were imported into the world of lambda calculus and func-
tional programming by several people: see Dybjer and Sander (1989); Abramsky
(1990); Howe (1989, Howe (1996); Egidi, Honsell, and della Rocca (1992); and
Gordon 1994. I will also present proofs of some ‘domain-theoretic’ properties
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of the operational semantics. To keep things simple, but non-trivial, the example
programming language used throughout is an extension of PCF (Plotkin 1977)
with products and lazy lists. The technical highlights are:

� An ‘operational extensionality’ theorem (Theorem 3.8) for the example pro-
gramming language. This is a generalisation of the context lemma of Mil-
ner (1977) and characterises ground contextual equivalence as a certain co-
inductively defined notion of bisimilarity. This result yields a co-induction
principle for proving instances of contextual equivalence, whose utility we
illustrate with several examples (section 3). The use of ground contextual
equivalence introduces some differences between the appropriate notion of
bisimilarity and the ‘applicative bisimulation’ studied by Abramsky (and
Howe) for ‘lazy’ lambda calculi. As far as I know Gordon (1995a) was the
first person to give an operational extensionality theorem for ground con-
textual equivalence in non-strict, recursively typed languages. His notion
of bisimilarity is based upon a labelled transition system for the language.
Here we use a notion of bisimilarity based simply upon the evaluation (or
‘big-step’) semantics. Each approach has its uses. The proof of operational
extensionality we give uses an adaptation of a method due to Howe (1989,
Howe (1996); we postpone it to an Appendix in order not to interrupt the pa-
per’s flow. However, it is the technique rather than the result for the particular
example language which is important, and so we urge readers not to neglect
this Appendix.

� A proof of some order-theoretic properties of fixpoint recursion with respect
to the contextual preorder (section 4). They are syntactic analogues of the
!-chain completeness and continuity properties used in domain-theoretic
denotational semantics. Although these properties of the contextual preorder
can be derived from a computationally adequate denotational semantics of
the language, in keeping with the spirit of this article I give a proof directly
from the operational semantics. Mason, Smith, and Talcott (1996) carry out
a similar program based on a transition (or ‘small-step’) semantics, whereas
here I use the evaluation semantics.

Prerequisites We assume the reader is familiar with some flavour of functional
programming. The textbooks by Abelson and Susman (1985), Paulson (1991),
and Bird and Wadler (1988) all provide good introductions. I will also assume
familiarity with the use of inductive definitions to specify the syntax and operational
semantics of programming languages (especially ones based upon typed lambda
calculus). The recent text books by Gunter (1992) and Winskel (1993) both provide
good introductions to this topic (and much else besides).

Acknowledgements I have had many stimulating discussions with Andrew Gor-
don on the topic of operationally-based notions of bisimilarity and co-induction.



His lecture notes (1995b) provide a somewhat different perspective on many of the
topics covered here, and are recommended. Much of the material which follows is
a reworking of other people’s work: sources are given in the text as appropriate.
Any errors are, of course, all my own work.

2 Contextual Equivalence

Loosely speaking, two expressions M and M 0 of a programming language are
contextually equivalent if any occurrences of M and M 0 in complete programs
can be interchanged without affecting the results of executing the programs. To
formalise this for a particular language (as will be done in Definition 2.9 below),
one has to specify precisely how programs are executed, i.e. specify an operational
semantics, and one has to specify what the observable results of execution should
be. These two key ingredients of contextual equivalence account for the fact that it
is often referred to in the literature as observational, or operational, equivalence.
As we shall see later (section 5), changing either of the parameters may or may not
affect the properties of the resulting notion of contextual equivalence.

For most of this article we study properties of contextual equivalence with re-
spect to a simple functional programming language for recursively defined, higher
order functions and lazy lists. We coin the acronym PCFL for this language—
standing for ‘Programming Computable Functions on pairs and lazy Lists’. As the
name suggests, PCFL is obtained from PCF (Plotkin 1977), the mother of all toy
programming languages, by adding type constructors for pairs and lazy lists. It has
the property of being extremely simple (so that the theory to be developed is not
obscured by too many syntactical and semantical complications) whilst containing
some potentially infinite data structures, for which co-inductive techniques seem
particularly effective.

PCFL syntax

PCFL is a language of terms of various types (integers, booleans, function, product,
and list types). Function definitions and recursive definitions in PCFL are handled
anonymously, rather than through some explicit mechanism of environments bind-
ing identifiers to their definitions. This simplifies the theoretical development at the
expense of making PCFL terms somewhat unwieldy.

The terms are built up from constants (for boolean and integer values and for
the empty list) and variables, using the constructs which are given in Figure 1
and whose intended meaning is as follows. if B then M else N is a term which
evaluates like M or N , according to whether the boolean term B evaluates to true

or false. M opN is a binary operation or relation applied to two integer expressions.
�x : F (x) is a name for the function mapping x to F (x). F A is the function F
applied to the argument A. �xx : F (x) is a recursively defined term, solving the



M ::= x variables

j b booleans

j if M thenM elseM boolean conditional

j n numerals

j M opM arithmetic operation

j �x :M function abstraction

j MM function application

j �xx :M fixpoint recursion

j hM;Mi pairing

j fst(M) first projection

j snd(M) second projection

j nil empty list

j M ::M cons list

j caseM of fnil!M j x :: x!Mg list conditional

where

x 2 Var a fixed, infinite set of variables,

b 2 B
def
= ftrue; falseg the set of booleans,

n 2 Z
def
= f: : : ;�2; 1; 0; 1; 2; : : :g the set of integers,

op 2 f=;�;=;�; : : : g a fixed, finite set of arithmetic

operation and relation symbols.

Figure 1: PCFL syntax

fixpoint equation x = F (x). hM;Ni is the ordered pair with first and second
components M and N . fst(P ) is the first component of the pair P . snd(P ) is the
second component of the pair P . H :: T is the list with head H and tail T . Finally,
caseLoffnil!M j h ::t!N(h; t)g is a term which evaluates likeM orN(H; T ),
according to whether the term L of list type evaluates to the empty list nil, or to a
non-empty list H :: T .

More precisely, the PCFL terms are given by the syntax trees generated by the
grammar in Figure 1, modulo �-equivalence. Recall that two expressions in a cal-
culus with variable binding constructs are called �-equivalent if they are syntac-
tically identical up to renaming of bound variables. In PCFL, function abstraction,
fixpoint recursion and list destructors are variable binding constructs: occurrences
of x in M are bound in �x :M and �x x :M , whilst occurrences of h and t in N are



bound in case L of fnil!M j h :: t!Ng. Any other occurrences of variables are
free.

Warning Any reasonable semantics of a programming language with binding
constructs will identify �-equivalent expressions. So since we are here concerned
with semantic rather than implementation issues, we take the terms of the language
PCFL to be �-equivalence classes of syntax trees. It would probably be better, both
from an implementation as well as a semantic point of view, to use a more abstract
form of representation without explicit bound variables—such as de Bruijn’s nota-
tion (see Barendregt 1984, Appendix C). However such a representation tends to
be hard to read, so we will stick with the more familiar form of syntax given in
Figure 1. But be warned that we will not make a notational distinction between a
PCFL syntax tree and the term (�-equivalence class) it determines.

Notation 2.1. We will use the following notation for the finite set of free variables
of a PCFL term:

fvar(M)
def
= the set of free variables of M .

IfM andN are PCFL terms and x is a variable, thenN [M=x] will denote the PCFL
term resulting from substitutingM for all free occurrences of x inN . As usual with
calculi with variable binding constructs, this operation of substitution is induced
by textual substitution at the level of syntax trees, taking care to avoid capture of
free variables (i.e. one must pick a representative tree forN whose bound variables
are not in fvar(M)). More generally, given a list M1; : : : ;Mn of terms and a list
x1; : : : ; xn of distinct variables

N [M1=x1; : : : ;Mn=xn]; or just N [ ~M=~x]

will denote the result of simultaneously substituting each term Mi in the list for all
free occurrences in N of the corresponding variable xi.

PCFL type assignment

The terms of Plotkin’s PCF (1977) contain explicit type information. For PCFL we
have chosen to leave out type information from the terms. Nevertheless, PCFL is a
typed language, in the sense that we will only consider a term to be well formed if it
can be assigned a type, given an assignment of types to the free variables occurring
in the term. PCFL-types are given by the following grammar:

� ::=  ground type

j �! �0 function type

j � � �0 product type

j [�] list type



where

 ::= bool type of booleans

j int type of integers.

A PCFL typing assertion takes the form

� `M : � (2.1)

where � is a finite partial function from variables to types, M is a PCFL term,
and � is a type. The type assignment relation for PCFL consists of all typing
assertions that can be derived from the axioms and rules in Figure 2. If (2.1) is
derivable, we simply say that it is valid. The notation �; x : � used in the rule
(` abs) denotes the partial function which properly extends � by mapping x to �.
Implicit in its use is the assumption that x is not in dom(�), the domain of definition
of �. With this notational convention, strictly speaking the side condition on the
rule is unnecessary, but has been included for people who only look at Figure 2
without reading the preceding sentence. Similar remarks apply to the rules (` fix)
and (` case). If dom(�) consists of the distinct variables x1; : : : ; xn and �(xi) = �i
say, then we will sometimes write (2.1) as x1 : �1; : : : ; xn : �n `M : �.

Lemma 2.2. (i) If � ` M : � is a valid typing assertion, then fvar(M) �
dom(�).

(ii) If � `M : � and x 62 dom(�), then �; x : �0 `M : � (for any �0).

(iii) If �;�0 ` M : � and fvar(M) � dom(�), then � ` M : �. Here (and
elsewhere), �;�0 indicates the union of the partial functions � and �0, under
the assumption that their domains of definition are disjoint.

(iv) If � `Mi : �i for i = 1; : : : ; n and �; x1 : �1; : : : ; xn : �n ` N : �, then
� ` N [M1=x1; : : : ;Mn=xn] : �.

Proof. Parts (i), (ii) and (iii) are proved by induction on the derivation of � `M :
�. Part (iv) is proved by induction on the derivation of �; x1 : �1; : : : ; xn : �n `
N : �, using part (ii).

Definition 2.3. Let Exp�(�) denote the set of PCFL terms that can be assigned
type �, given �:

Exp�(�)
def
= fM j � `M : �g:

By part (i) of the above lemma, any M 2 Exp�(�) has its free variables contained
in dom(�). In particular, in the case � is the empty partial function, M is a closed
term, that is, one with no free variables. (A term which does have free variables is
called open.) We will write Exp� for Exp�(�) in this case. The elements of Exp�
are called the closed PCFL terms of type �. A closed term is typeable if it belongs
to Exp� for some type �.



� ` x : � (if � is defined at x with value �) (` var)

� ` b : bool (if b 2 B ) (` bool)

� ` B : bool � `M1 : � � `M2 : �

� ` if B thenM1 elseM2 : �
(` cond)

� ` n : int (if n 2 Z) (` int)

� `M1 : int � `M2 : int
(if  is the result type of op)

� `M1 opM2 : 
(` op)

�; x : � `M : �0

(x 62 dom(�))
� ` �x :M : �! �0

(` abs)

� ` F : �! �0 � ` A : �

� ` F A : �0
(` app)

�; x : � ` F : �
(x 62 dom(�))

� ` �xx : F : �
(` fix)

� `M1 : � � `M2 : �
0

� ` hM1;M2i : � � �0
(` pair)

� ` P : � � �0

� ` fst(P ) : �
(` fst)

� ` P : � � �0

� ` snd(P ) : �0
(` snd)

� ` nil : [�] (` nil)

� ` H : � � ` T : [�]

� ` H :: T : [�]
(` cons)

� ` L : [�] � `M1 : �
0 �; h : �; t : [�] `M2 : �

0

(h; t 62 dom(�))
� ` case L of fnil!M1 j h :: t!M2g : �

0
(` case)

Figure 2: Rules for type assignment in PCFL

Evaluation of PCFL terms

Typically, a program in a typed functional language consists of some definitions
(usually, recursive definitions) of data of various types, together with a term of
a type whose values are printable (integers, booleans, character strings, etc) to



C + C (+ can)

B + true M1 + C

if B thenM1 elseM2 + C
(+ cond1)

B + false M2 + C

if B thenM1 elseM2 + C
(+ cond2)

M1 + n1 M2 + n2
(if c = n1 op n2)

M1 opM2 + c
(+ op)

F + �x :M M [A=x] + C

F A + C
(+ app)

F [�xx : F=x] + C

�xx : F + C
(+ fix)

P + hM1;M2i M1 + C

fst(P ) + C
(+ fst)

P + hM1;M2i M2 + C

snd(P ) + C
(+ snd)

L + nil M1 + C

case L of fnil!M1 j h :: t!M2g + C
(+ case1)

L +H :: T M2[H=h; T=t] + C

case L of fnil!M1 j h :: t!M2g + C
(+ case2)

Figure 3: Rules for evaluating PCFL terms

be evaluated modulo the given definitions. In PCFL definitions are given anony-
mously within a term, and we take the types with printable values to be just the
ground types, bool and int . Therefore, a PCFL program is defined to be a closed
term of ground type.

Executing such a program consists of evaluating the term to see which integer or
boolean it denotes, if any. The process of evaluation will usually involve evaluation
of subexpressions of non-ground type. There are at least two standard ways to
specify this process of evaluation: by means of a transition relation between terms
and by means of an evaluation relation between terms and terms in canonical form.
Both are examples of the structural operational semantics of Plotkin (1981b), in as
much as the inductive definition of the relation follows the structure of the term
being evaluated. Here we will use the second (and more abstract) approach, and



give an inductively defined evaluation relation.The relation takes the form

M + C

where M and C are closed, typeable PCFL terms and C is in canonical form:

C ::= b j n j �x :M j hM;Mi j nil jM ::M:

The evaluation relation is inductively defined by the axioms and rules in Figure 3.

The canonical forms and evaluation rules embody certain choices which have
been made about how PCFL programs behave: evaluation does not continue under a
lambda abstraction, or within the components of a pair or list-cons; and an argument
is passed unevaluated to the body of a lambda abstraction in function application.
Of course, these choices affect the properties of contextual equivalence for PCFL.
Other choices and their effect on theories of program equivalence will be discussed
in section 5.

Proposition 2.4. Evaluation is deterministic and preserves typing, that is

(i) (Determinacy) If M + C and M + C 0, then C = C 0.

(ii) (Subject reduction) If M + C and M 2 Exp�, then C 2 Exp�.

Proof. Both properties can easily be proved by induction on the derivation ofM+C
(using Lemma 2.2(iv)).

Exercise 2.5. Terms of type [�] in PCFL are notations for potentially infinite lists
of the data described by terms of type �. Here is how the standard example of the
infinite list of natural numbers, [0; 1; 2; : : : ] can be coded in PCFL. Consider the
terms

nats
def
= �x ` : 0 ::map(�x : x + 1)`

map
def
= �xm : �f : �` :

case ` of fnil! nil j h :: t! fh ::mftg

head
def
= �` : case ` of fnil!? j h :: t!hg

tail
def
= �` : case ` of fnil! nil j h :: t! tg

?
def
= �xx : x

Show that for any types � and �0

; ` ? : �

; ` head : [�]! �

; ` tail : [�]! [�]

; ` map : (�! �0)! ([�]! [�0])



and hence that ; ` nats : [int ]. Prove that nats is a notation for the infinite list
[0; 1; 2; : : : ] in the sense that for all n 2 N , head(tailn nats) + n, where

tail0
def
= �x : x

tailn+1 def
= �x : tail(tailn x):

PCFL contexts

Recall the informal definition of contextual equivalence with which we began this
section. For our example language PCFL, so far we have decided upon what con-
stitutes a program (namely, a closed term of ground type) and what the observable
results of execution should be (namely, the integer or boolean constant to which
the program evaluates, if any). It remains to formalise the notion of interchang-
ing occurrences of terms in programs. To do so, we use ‘contexts’—syntax trees
containing parameters (or place-holders, or ‘holes’) which yield a term when the
parameters are replaced by terms. Thus the PCFL contexts, C, are the syntax trees
generated by the grammar in Figure 1 augmented by the clause

C ::= � � � j p

where p ranges over some fixed set of parameters. Note that the syntax trees
of PCFL terms are particular contexts, namely the ones with no occurrences of
parameters.

Context substitution C 0[C=p] will denote the PCFL context obtained from a con-
text C 0 by replacing all occurrences of p with the context C. It should be em-
phasised that this form of substitution may well involve capture of free variables
in C by binding variables in C 0. For example, if C = x and C 0 = �x : p, then
C 0[C=p] = �x : x. For this reason, the operation of substituting C for p does not
preserve the relation�� of �-equivalence. For example if x and y are distinct vari-
ables, then �x : p �� �y : p, but (�x : p)[x=p] = �x : x 6�� �y : x = (�y : p)[x=p].
However, one can easily prove by induction on the structure of C 0 that

C1 �
� C2 ) C 0[C1=p] �

� C 0[C1=p]:

In other words, substituting �-equivalent contexts results in �-equivalent contexts.
It follows that the operation of substituting for a parameter in a context induces a
well-defined operation on �-equivalence classes of PCFL syntax trees, that is, on
PCFL terms.

It is possible to give a treatment of contexts and contextual equivalence which
does not descend below the level of abstraction of �-equivalence classes of expres-
sions (or equivalently, a treatment which applies to expressions using de Bruijn in-
dices rather than explicit bound variables), at the expense of introducing ‘function
variables’. The interested reader is referred to (Pitts 1994, Section 4).



Notation 2.6. Most of the time we will use contexts only involving a single param-
eter, which we write as �. We write C[�] to indicate that C is a context containing
no parameters other than �. If M is a PCFL term, then C[M ] will denote the term
resulting from choosing a representative syntax tree for M , substituting it for the
parameter in C, and forming the �-equivalence class of the resulting PCFL syntax
tree (which from the remarks above, is independent of the choice of representative
for M ).

Typed contexts We will assume given a function that assigns types to parameters.
We write �� to indicate that a parameter � has type �. Just as we only consider a
PCFL term to be well-formed if it can be assigned a type, we will restrict attention
to contexts that can be typed. The relation

� ` C : �

assigning a type � to a context C given a finite partial function � assigning types to
variables, is inductively generated by axioms and rules just like those in Figure 2
together with the following axiom for parameters:

� ` �� : �: (2.2)

Warning: when the axioms and rules of Figure 2 are applied to syntax trees rather
than �-equivalence classes of syntax trees (as is the case when typing contexts),
it should be borne in mind that they enforce a separation between free and bound
variables and hence are not closed under �-equivalence. For example, if x 6= y,
then x : int ` �y :�int : int ! int is a valid typing assertion, whereas x : int `
�x :�int : int ! int is not.

Definition 2.7. Let Ctx�(�) denote the set of PCFL contexts that can be assigned
type �, given �:

Ctx�(�)
def
= fC j � ` C : �g:

We write Ctx� for Ctx�(;). Given C[��] 2 Ctx�0(�), we write traps(C[��]) for
the set of variables that occur in C[��] associated to binders containing the hole��

within their scope. Thus any free variables of M in traps(C[��]) become bound
in C[M ].

The operation M 7! C[M ] of substituting a PCFL term for a parameter in a
context to obtain a new PCFL term respects typing in the following sense.

Lemma 2.8. Suppose M 2 Exp�(�;�
0), C[��] 2 Ctx�0(�), and that dom(�0) �

traps(C[��]). Then C[M ] 2 Exp�0(�).

Proof. By induction on the derivation of � ` C[��] : �
0.



Definition 2.9 (Ground contextual equivalence). As usual, let � be a finite par-
tial function from variables to PCFL types. Given M;M 0 2 Exp�(�), we write

� `M �gnd
� M 0

to mean that for all C[��] 2 Ctx bool with dom(�) � traps(C[��])

8b 2 B (C[M ] + b) C[M 0] + b)

and for all C[��] 2 Ctx int with dom(�) � traps(C[��])

8n 2 Z (C[M ] + n) C[M 0] + n):

(Note that by virtue of Lemma 2.8, C[M ] and C[M 0] are indeed closed terms of type
 when C[��] 2 Ctx  satisfies dom(�) � traps(C[��]).)

The relation �gnd will be called the ground contextual preorder between
PCFL terms (of the same type, given a typing of their free variables). Ground
contextual equivalence is the symmetrization of this relation:

� `M �=gnd
� M 0 def

, (� `M �gnd
� M 0 & � `M 0 �gnd

� M):

In section 5 we will consider some variations on the notion of contextual equiva-
lence, in which contexts of non-ground type are used. Until then we will drop the
adjective ‘ground’ and just refer to�gnd and�=gnd as the contextual preorder and
contextual equivalence. For closed terms M;M 0 2 Exp�, we will just write

M �gnd
� M 0 and M �=gnd

� M 0

for ; `M �gnd
� M 0 and ; `M �=gnd

� M 0 respectively.

Remark 2.10. The relations of contextual preorder and contextual equivalence
remain the same if in Definition 2.9 we restrict to contexts yielding terms of type
bool only, or of type int only, or restrict attention to evaluation to a fixed integer or
boolean constant, or just to convergence to something. For example

� `M �gnd
� M 0 , 8C[�] (C[M ] + 42) C[M 0] + 42): (2.3)

To see this, given any context C[�], for each n 2 Z note that the context

Cn[�]
def
= if C[�] = n then 42 else 0

has the property that for all M

Cn[M ] + 42, C[M ] + n:

Similarly, the contexts

Ctrue[�]
def
= if C[�] then 42 else 0

Cfalse[�]
def
= if C[�] then 0 else 42



satisfy

Ctrue[M ] + 42, C[M ] + true

Cfalse[M ] + 42, C[M ] + false:

Property (2.3) follows immediately.

Exercise 2.11. Writing M+
int

to mean 9n 2 Z (M + n), show that

� `M �gnd
� M 0 , 8C[�] (C[M ]+

int
) C[M 0]+

int
):

[Hint: note that ?
def
= �x x : x is a closed term (typeable to any type) which does

not evaluate to anything. (Why?) Given any C[�], use ? to define a new context
C 0[�] satisfying for any M that C 0[M ]+int if and only if C[M ] + 42. Now use
Remark 2.10.]

Properties of PCFL contextual equivalence

Having given the precise definition of contextual equivalence for our example
language PCFL we must now develop its theory—its general properties which
one can use to establish that particular PCFL terms are, or are not, contextually
equivalent. To show that two terms are not contextually equivalent is usually quite
easy: one just has to find a suitable context of ground type for which the terms yield
different results when the rules for evaluation in Figure 3 are applied. For example,
the fact that 0 :: (1 ::nil) and 0 ::nil are contextually inequivalent terms of type [int ],

is witnessed by the context C[�]
def
= head(tail�), where head and tail are the terms

defined in Exercise 2.5. For C[0 :: (1 :: nil)]+ 1, whereas C[0 :: nil] does not evaluate
to anything.

The job of establishing that a contextual equivalence does hold can be much
harder. For example, �=gnd satisfies �-conversion:

� ` (�x :M)A �=
gnd
�0 M [A=x]

where �; x : � ` M : �0 and � ` A : �. However, it is not immediately obvious
from Definition 2.9 why this is so. The problem lies mainly in the quantification
over all contexts that occurs in the definition of �gnd and �=gnd. One might try
to construct a proof which proceeds by induction on the structure of contexts, but
it is not so easy to find a sufficiently strong inductive hypothesis to make all the
steps (involving evaluation of subexpressions at non-ground types) go through. We
will take up the challenge of such problems seriously in the next section when we
introduce PCFL bisimilarity—another, and more tractable, notion of equivalence
which turns out to coincide with PCFL contextual equivalence. We conclude this
section by stating some of the properties of �gnd and �=gnd that will be proved in
these notes.



(In)equational logic

� `M : � ) � `M �gnd
� M (2.4)

(� `M �gnd
� M 0 & � `M 0 �gnd

� M 00)) � `M 0 �gnd
� M 00 (2.5)

(� `M �gnd
� M 0 & � `M 0 �gnd

� M), � `M �=gnd
� M 0 (2.6)

�; x : � `M �gnd
�0 M 0 ) � ` �x :M �gnd

�!�0 �x :M
0 (2.7)

�; x : � `M �gnd
� M 0 ) � ` �xx :M �gnd

� �x x :M 0 (2.8)

(� ` L �gnd
[�] L0 & � `M �gnd

�0 M 0 (2.9)

& �; h : �; t : [�] ` N �gnd
�0 N 0)

) � ` (case L of fnil!M j h :: t!Ng) �gnd
�0

(case L0 of fnil!M 0 j h :: t!N 0g)

(� `M �gnd
� M 0 & � � �0)) �0 `M �gnd

� M 0 (2.10)

� `M �gnd
� M 0 & �; x : � ` N : �0 (2.11)

) � ` N [M=x] �gnd
�0 N [M 0=x]

� `M : � & �; x : � ` N �gnd
�0 N 0 (2.12)

) � ` N [M=x] �gnd
�0 N 0[M=x]

Properties (2.4)–(2.9) are all straightforward consequences of the definition of�gnd

and �=gnd. By contrast, (2.12) is not so straightforward to establish, because the
operation N 7! N [M=x] is not necessarily of the form N 7! C[N ] for some
context C[�]. The fact that (2.12) holds is intimately tied up with the fact that PCFL
contextual equivalence satisfies the �-rule (2.13) given below: see Lemma A.10.

�-rules

(�; x : � `M : �0 & � ` A : �)) � ` (�x :M)A �=
gnd
�0 M [A=x] (2.13)

(� `M : � & � `M 0 : �0)) (2.14)

(� ` fst(hM;M 0i) �=gnd
� M & � ` snd(hM;M 0i) �=

gnd
�0 M 0)

(� `M : �0 & �; h : �; t : [�] ` N : �0)) (2.15)

� ` case nil of fnil!M j h :: t!Ng �=
gnd
�0 M

(� ` H : � & � ` T : [�] & � `M : �0 & �; h : �; t : [�] ` N : �0)) (2.16)



� ` caseH :: T of fnil!M j h :: t!Ng �=
gnd
�0 N [H=h; T=t]

(� `M : � & � `M 0 : �)) (2.17)

(� ` if true thenM elseM 0 �=gnd
� M &

� ` if false thenM elseM 0 �=gnd
� M 0)

(n op n0 = c)) ; ` n op n0 �=gnd
 c (2.18)

The fact that these �-rules are valid follows from the characterisation of�=gnd in
terms of PCFL bisimilarity to be given in the next section (Theorem 3.8). For in
each case, (closed instantiations of) the term on the left hand side of�=gnd evaluates
to a canonicalC if and only if (closed instantiations of) the right hand term evaluates
to the same canonical form. Thus each of (2.13)–(2.18) follows from the fact,
shown in Proposition 3.9, that ‘Kleene equivalence’ is contained in the relation
of contextual equivalence, together with the first of the following extensionality
properties.

Extensionality properties

For all N;N 0 2 Exp�(x1 : �1; : : : ; xn : �n):

x1 : �1; : : : ; xn : �n ` N �gnd
� N 0 ,

8M1 2 Exp�1 ; : : : ;Mn 2 Exp�n (N [ ~M=~x] �gnd
� N 0[ ~M=~x]) (2.19)

For all M;M 0 2 Exp ( a ground type):

M �gnd
 M 0 , 8c (M + c)M 0 + c) (2.20)

For all F; F 0 2 Exp�!�0 :

F �gnd
�!�0 F 0 , 8A 2 Exp� (F A �gnd

�0 F 0A) (2.21)

For all P; P 0 2 Exp���0 :

P �gnd
���0 P 0 ,

fst(P ) �gnd
� fst(P 0) & snd(P ) �gnd

�0 snd(P 0) (2.22)

For all L; L0 2 Exp[�]:

L �gnd
[�] L0 , (L + nil ) L0 + nil) &

8H; T (L +H :: T ) 9H 0; T 0 (L0 +H 0 :: T 0 &

H �gnd
� H 0 & T �gnd

[�] T 0)) (2.23)

Analogous extensionality properties hold by construction for the notion of PCFL
similarity introduced in the next section. Thus (2.19)–(2.23) will follow once we
have proved that this coincides with �gnd (Theorem 3.8).



The �-rule for functions and the surjective pairing rule for products follow by
combining these extensionality properties with the corresponding �-rules:

(� ` F : �! �0 & x 62 dom(�))) � ` F �=
gnd
�!�0 (�x : F ) x (2.24)

� ` P : � � �0 ) � ` P �=
gnd
���0 hfst(P ); snd(P )i (2.25)

Unfolding recursive terms

�; x : � `M : � ) � ` �xx :M �=gnd
� M [�x x :M=x] (2.26)

This holds for the same reason as the �-rules given above—it is an instance of
‘Kleene equivalence’, and so will follow from Proposition 3.9 below.

Syntactic bottom

The term ?
def
= �x x : x acts as a least element with respect to �gnd:

� `M : � ) � ` ? �gnd
� M (2.27)

As for the previous property, this will be deduced from Proposition 3.9.

Rational completeness and syntactic continuity

In addition to the unfolding property (2.26), terms of the form �xx : F enjoy a least
prefixed point property: if F 2 Exp�(x : �) and M 2 Exp�, then

F [M=x] �gnd
� M ) �xx : F �gnd

� M: (2.28)

Sands (1995, Appendix) gives a direct, operationally-based proof of the analogous
property of recursive functions definitions, making use of a transition relation rather
than just an evaluation relation. We will deduce this least prefixed point property
from a stronger property which we now explain.

For each natural number n, let �x(n)x : F be the term given as follows:

�x(0)x : F
def
= ?;

�x(n+1)x : F
def
= F [�x(n)x : F=x]:

It follows from (2.11) and (2.27) that these terms form an ascending chain

? = �x(0)x : F �gnd
� �x(1)x : F �gnd

� � � � :

We claim that �xx : F is a least upper bound with respect to�gnd for this chain. In
other words, for each M 2 Exp�

�xx : F �gnd
� M , 8n (�x(n)x : F �gnd

� M): (2.29)



Thus the collection of PCFL terms preordered by�gnd enjoys a restricted amount of
chain-completeness. Moreover, the operations of PCFL preserve these least upper
bounds: for each context C[�] it is the case that

C[�xx : F ] �gnd
� M , 8n (C[�x(n)x : F ] �gnd

� M): (2.30)

Properties (2.29) and (2.30) will be proved in Section 4, using operationally-based
methods (which seem different from those used for the same purpose in (Smith
1992; Mason, Smith, and Talcott 1996)). Such properties can also be established
via an adequate denotational semantics of PCFL—see (Pitts 1994) for example.

Note that (2.28) can be deduced from (2.29), since if F [M=x] �gnd
� M , then one

can show by induction on n that �x(n)x : F �gnd
� M . The base case n = 0 is just

(2.27); and the induction step follows from the hypothesis using (2.11) and (2.5).

3 Similarity and Bisimilarity

Look again at the extensionality properties (2.19)–(2.23) which we claim hold of
the contextual preorder,�gnd. Property (2.21) expresses the preordered version of a
familiar extensionality property for functions—namely that two functions are equal
if (and only if) they yield equal results when applied to any argument. In particular,
(2.21) serves to express�gnd at a function type (�!�0) in terms of�gnd at a simpler
type (�0). For the simply typed language PCF, ! is the only type constructor and a
typical PCF type takes the form �1! (�2! : : : (�n!) : : : ) with  a ground type
and n � 0. Consequently, for this simpler language one can express the contextual
preorder at any type in terms of application and evaluation of terms of ground type:

Milner’s Context Lemma for PCF. For any closed PCF terms M and M 0

M �gnd
�1!(�2!:::(�n!)::: ) M

0 ,

8A1; : : : ; An; c (MA1 : : : An + c)M 0A1 : : : An + c):

Proof. See Milner (1977).

For PCFL with its types of (potentially infinite) lists, [�], the situation is not so
straightforward. Property (2.23) does not serve to define �gnd at a list type [�] in
terms of �gnd at type �, since the occurrence T �gnd

[�] T 0 on the right hand side
of the bi-implication is not necessarily ‘simpler’ (for any measure of simplicity)
than the occurrence L �gnd

[�] L0 on the left hand side. (For example, when L =
�x ` : 0 :: ` 2 Exp[int], then L + 0 :: L, so T in this case is syntactically identical
to L.) In other words, there may be many binary relations between closed PCFL
terms which satisfy (2.23). The crucial observation is not just that �gnd is such a
relation, but that it is the greatest such—indeed, is the greatest relation satisfying
just the left-to-right implication in (2.23).



Greatest post-fixed points of monotone operators

Recall that a complete lattice is a partially ordered set (X;�) for which every
subset S � X has a least upper bound,

W
S, with respect to �:

8x 2 X (
_

S � x, 8s 2 S (s � x)):

(As is well known, this is equivalent to requiring that every subset has a greatest
lower bound.)

A monotone operator on (X;�) is a function � : X �! X satisfying

8x; x0 2 X (x � x0 ) �(x) � �(x0)):

The greatest post-fixed point of � is the (necessarily unique) element �(�) of X
satisfying

�(�) � �(�(�)) (3.1)

8x 2 X (x � �(x)) x � �(�)): (3.2)

Theorem 3.1 (Tarski-Knaster Fixed Point Theorem). Every monotone oper-
ator � on a complete lattice (X;�) possesses a greatest post-fixed point, �(�).
This element is in fact the greatest element of the set fx 2 X j x = �(x)g of fixed
points of �.

Proof. The proof is probably familiar to you, but in case not, here it is.
The monotonicity of� ensures that the least upper bound of any set of post-fixed

points for � is again a post-fixed point. It follows that

�(�)
def
=
_
fx 2 X j x � �(x)g

is the greatest post-fixed point of �. Since

x = �(x)) x � �(x)) x � �(�)

to prove the second sentence of the theorem, it suffices to see that �(�) is a fixed
point of �. Since it is a post-fixed point, it suffices to show that �(�(�)) �
�(�). But since �(�) � �(�(�)) and � is monotone, one has that �(�(�)) �
�(�(�(�))), that is, �(�(�)) is a post-fixed point of �. Since �(�) is the greatest
such we have �(�(�)) � �(�), as required.

Definition 3.2. Throughout this section we will be concerned with one particular
complete lattice, (Rel ;�). The elements of Rel are type-indexed families R =
(R� j �) of binary relations R� between the closed PCFL terms of type �. Thus
each component ofR is a subsetR� � Exp� �Exp�. The partial ordering on Rel

is defined to be set-theoretic inclusion in each component:

R � R0 def
, 8� (R� � R0

�):

Clearly, the least upper bound of a subset of Rel is given by set-theoretic union in
each component.



PCFL simulations and bisimulations

Given R 2 Rel , the elements hRi and [R] of Rel are defined as follows.

B hRi
bool

B0 def
, 8b 2 B (B + b) B0 + b) (3.3a)

N hRi
int

N 0 def
, 8n 2 Z (N + n) N 0 + n) (3.3b)

F hRi�!�0 F
0 def
, 8A 2 Exp� (F AR�0 F 0A) (3.3c)

P hRi���0 P
0 def, fst(P )R� fst(P 0) & snd(P )R�0 snd(P 0) (3.3d)

L hRi[�] L
0 def
, (L + nil ) L0 + nil)

& 8H; T (L +H :: T )
9H 0; T 0 (L0 +H 0 :: T 0 & H R� H

0 & T R[�] T
0))

(3.3e)

B [R]
bool

B0 def
, 8b 2 B (B + b, B0 + b) (3.4a)

N [R]
int

N 0 def
, 8n 2 Z (N + n, N 0 + n) (3.4b)

F [R]�!�0 F
0 def, 8A 2 Exp� (F AR�0 F 0A) (3.4c)

P [R]���0 P
0 def, fst(P )R� fst(P 0) & snd(P )R�0 snd(P 0) (3.4d)

L [R][�] L
0 def
, (L + nil, L0 + nil)

& 8H; T (L +H :: T )
9H 0; T 0 (L0 +H 0 :: T 0 & H R� H

0 & T R[�] T
0))

& 8H 0; T 0 (L0 +H 0 :: T 0 )
9H; T (L +H :: T & H R� H

0 & T R[�] T
0)):

(3.4e)

Clearly, R 7! hRi and R 7! [R] are both monotone operators on Rel . So we
can apply Theorem 3.1 and form their greatest (post-)fixed points.

Definition 3.3. A family of relations S 2 Rel satisfying S � hSi will be called a
PCFL simulation; the greatest such will be called PCFL similarity and written
�. A family of relations B 2 Rel satisfying B � [B] will be called a PCFL
bisimulation; the greatest such will be called PCFL bisimilarity and written '.

Let us spell out what the conditions S � hSi and B � [B] mean. A PCFL
simulationS is specified by a type-indexed family of binary relations, S� � Exp��
Exp�, satisfying the conditions in Figure 4. A PCFL bisimulation is specified by
a type-indexed family of binary relations, B� � Exp� � Exp�, satisfying the
conditions in Figure 5.

Note in particular that the notion of (bi)simulation requires one to consider
evaluation at ground and list types, but not at product and function types. The
reason for this is that we wish to obtain a notion of bisimilarity which coincides with
PCFL contextual equivalence as defined in the previous section. Some variations
on the definition of�=gnd and the corresponding changes in a coextensive notion of
bisimilarity will be considered in 5.



(B Sbool B
0 & B + b)) B0 + b (sim 1)

(N Sint N
0 & N + n)) N 0 + n (sim 2)

F S�!�0 F 0 ) 8A 2 Exp� (F A S�0 F 0A) (sim 3)

P S���0 P 0 ) (fst(P ) S� fst(P 0) & snd(P ) S�0 snd(P 0)) (sim 4)

(L S[�] L
0 & L + nil)) L0 + nil (sim 5)

(L B[�] L
0 & L +H :: T )) (sim 6)

9H 0; T 0 (L0 +H 0 :: T 0 & H B� H
0 & T B[�] T

0)

Figure 4: Simulation conditions

(B Bbool B
0 & B + b)) B0 + b (bis 1a)

(B Bbool B
0 & B0 + b0)) B + b0 (bis 1b)

(N Bint N
0 & N + n)) N 0 + n (bis 2a)

(N Bint N
0 & N 0 + n0)) N + n0 (bis 2b)

F B�!�0 F 0 ) 8A 2 Exp� (F A B�0 F 0A) (bis 3)

P B���0 P 0 ) (fst(P ) B� fst(P 0) & snd(P ) B�0 snd(P 0)) (bis 4)

(L B[�] L
0 & L + nil)) L0 + nil (bis 5a)

(L B[�] L
0 & L0 + nil)) L + nil (bis 5b)

(L B[�] L
0 & L +H :: T )) (bis 6a)

9H 0; T 0 (L0 +H 0 :: T 0 & H B� H
0 & T B[�] T

0)

(L B[�] L
0 & L0 +H 0 :: T 0)) (bis 6b)

9H; T (L +H :: T & H B� H
0 & T B[�] T

0):

Figure 5: Bisimulation conditions

Remark 3.4. Note that by Theorem 3.1, PCFL similarity and bisimilarity are fixed
points (rather than just post-fixed points) of their associated monotone operators,
that is, � = h�i and ' = ['].

Proposition 3.5 (Co-induction principle for ' and �). Given M;M 0 2 Exp�,
to prove that M '� M 0 holds, it suffices to find a PCFL bisimulation B such that
M B� M

0. Similarly, to prove M �� M 0, it suffices to find a PCFL simulation S
with M S� M 0.

Proof. If B � [B], then B � ' (since ' is the greatest post-fixed point of [�]), so



that B� � '�. Thus if M B� M
0, then M '� M

0.

Once we have proved that bisimilarity and contextual equivalence coincide for
PCFL this proposition will provide a powerful tool for proving contextual equiva-
lences. For the moment, we use it to establish some basic facts about (bi)similarity,
the last of which depends very much upon the deterministic nature of evaluation in
PCFL.

Proposition 3.6. PCFL similarity is a preorder and PCFL bisimilarity is the equiv-
alence relation induced by it. In other words, for all types � and all closed terms
M;M 0;M 00 2 Exp�, one has:

(i) M �� M

(ii) (M �� M
0 & M 0 �� M

00))M �� M
00

(iii) M '� M
0 , (M �� M

0 & M 0 �� M).

Proof. Note that the element ofRel whose component at type � is f(M;M) jM 2
Exp�g is trivially a PCFL simulation. So (i) holds by Proposition 3.5. Similarly,
to prove (ii), it suffices to check that

f(M;M 00) 2 Exp� � Exp� j 9M
0 2 Exp� (M �� M

0 & M 0 �� M
00)g

determines a PCFL simulation. But this follows immediately from the fact that �
is itself a PCFL simulation.

For (iii), note that since ' satisfies the bisimulation conditions in Figure 5,
both f(M;M 0) j M '� Mg and f(M;M 0) j M 0 '� Mg determine PCFL
simulations. Hence both are contained in �, and thus we have the left-to-right
implication in (iii). Conversely, the fact that � is a PCFL simulation and the fact
that evaluation in PCFL is deterministic (Proposition 2.4(i)) together imply that
f(M;M 0) j M �� M

0 & M 0 �� Mg satisfies the conditions in Figure 5, and
hence is contained in '� .

We extend� and' from closed terms to all typeable PCFL terms by considering
closed instantiations of open terms. (Cf. the property (2.19), which we are claiming
the contextual preorder satisfies.) It is convenient to introduce a notation for this
process.

Definition 3.7. SupposeR 2 Rel . For any finite partial function� assigning types
to variables

� : x1 7! �1; x2 7! �2; : : : ; xn 7! �n

for any type �, and for any terms N;N 0 2 Exp�(�), define

� ` N R�
� N

0 def
,

8M1 2 Exp�1 ; : : : ;Mn 2 Exp�n (N [ ~M=~x]R� N
0[ ~M=~x]) (3.5)



We will call R� the open extension of R. Applying this construction to � and ',
we get relations �� and '� on open terms, which we will still call similarity and
bisimilarity respectively.

Armed with these definitions, we can state the co-inductive characterisation of
contextual equivalence for PCFL.

Theorem 3.8 (Operational Extensionality for PCFL). Contextual preorder (re-
spectively, equivalence) coincides with similarity (respectively, bisimilarity):

� `M �gnd
� M 0 , � `M ��

� M
0

� `M �=gnd
� M 0 , � `M '�

� M
0:

In particular, the following co-induction principle for �=gnd holds:

To prove that two closed PCFL terms are contextually equivalent, it
suffices to find a PCFL bisimulation which relates them.

The proof of this theorem will be given in the next section. In the rest of this
section we explore some of its consequences and then give some examples of the
use of co-induction to prove contextual equivalences.

First note that in view of the definition of �� from �, the extensionality prop-
erty (2.19) of�gnd is an immediate consequence of Theorem 3.8. The other exten-
sionality properties (2.20)–(2.23) also follow from the theorem, using the fact that
� = h�i.

Proposition 3.9 (Kleene equivalence). For each type � consider the following
binary relations on Exp�:

M �kl
� M 0 def

, 8C (M + C )M 0 + C)

M �=kl
� M 0 def

,M �kl
� M 0 & M 0 �kl

� M:

If M �=kl
� M 0 holds we will say that M and M 0 are Kleene equivalent.1 Then

M �kl
� M 0 )M �� M

0 (3.6)

M �=kl
� M 0 )M '� M

0: (3.7)

Hence in view of Theorem 3.8, Kleene equivalent closed PCFL terms are contex-
tually equivalent.

Proof. Property (3.7) follows from property (3.6) by Proposition 3.6(iii). For (3.6),
it suffices to check that the relations f(M;M 0) j M �kl

� M 0g (for each type �)
satisfy the conditions in Figure 4.

1Following Harper (1995), this terminology is adopted from the logic of partially defined ex-
pressions, where two such expressions are commonly said to be ‘Kleene equivalent’ if the first is
defined if and only if the second is, and in that case they are equal.



Clearly the conditions (sim 1) and (sim 2) follow immediately from the defini-
tion of �kl. The conditions (sim 5) and (sim 6) are almost as straightforward, just
needing the additional fact that�kl is reflexive (which is evident from the definition
of �kl).

To verify the condition (sim 4), suppose that P �kl
�1��2

P 0 holds. For any C, if
fst(P )+C then this evaluation can only have been deduced by an application of rule
(+ fst) in Figure 3, so there are termsMi 2 Exp�i (i = 1; 2) such that P +hM1;M2i
and M1 +C. Then since P �kl

�1��2
P 0, it is the case that P 0 + hM1;M2i and hence

that fst(P 0) + C. Thus for any C, fst(P ) + C implies fst(P 0) + C, which is to say
that fst(P ) �kl

�1
fst(P 0). Similarly, one can deduce that snd(P ) �kl

�2
snd(P 0). Thus

condition (sim 4) does indeed hold.

The proof of the simulation condition at function types, (sim 3), is like that for
product types, and is omitted.

The following Kleene equivalences all follow immediately from the definition
of evaluation in PCFL (where we have suppressed type information).

(�x :M)A �=kl M [A=x]

fst(hM;M 0i) �=kl M

snd(hM;M 0i) �=kl M 0

case nil of fnil!M j h :: t!Ng �=kl M

caseH :: T of fnil!M j h :: t!Ng �=kl N [H=h; T=t]

if true thenM elseM 0 �=kl M

if false thenM elseM 0 �=kl M 0

n op n0 �=kl n op n0

�xx :M �=kl M [�x x :M=x]:

By the proposition, these are also valid for PCFL similarity; and since�� is defined
from� by taking closed instantiations, it follows that�� satisfies the � rules (2.13)–
(2.18) and the unfolding rule (2.26). Thus by (one half of) Theorem 3.8, �gnd

satisfies these rules as well.

Similarly, the fact that ? = �x x : x does not evaluate, immediately implies

? �kl
� M

holds for any M 2 Exp�. Hence property (2.27) is also a consequence of the
proposition combined with Theorem 3.8.



Proposition 3.10 (Co-induction at list types). For any type � , call a binary rela-
tion R � Exp[� ] � Exp[� ] a [� ]-bisimulation if whenever LR L0

L + nil ) L0 + nil (3.8)

L0 + nil ) L + nil (3.9)

L +H :: T ) 9H 0; T 0 (H �=gnd
� H 0 & T R T 0) (3.10)

L0 +H 0 :: T 0 ) 9H; T (H �=gnd
� H 0 & T R T 0): (3.11)

Then for any L; L0 2 Exp[� ], L �=
gnd
[� ] L0 if and only if there is some [� ]-bisimulation

R with LR L0.

Proof. First note that by Theorem 3.8,�=gnd is a PCFL bisimulation (since it coin-
cides with'). In particular it satisfies conditions (bis 5a)–(bis 6b) of Figure 5, and
therefore f(L; L0) j L �=gnd

[� ] L0g is a [� ]-bisimulation. This gives the ‘only if’ part
of the proposition.

Conversely, if R is a [� ]-bisimulation, then the fact that �=gnd satisfies the con-
ditions in Figure 5 and R satisfies (3.8)–(3.11) implies that

B�
def
=

(
R[ f(L; L0) j L �=

gnd
[� ] L0g if � = [� ]

f(M;M 0) jM �=gnd
� M 0g otherwise

defines a PCFL bisimulation. Thus if L R L0, then L B[� ] L
0, so L �=gnd

[� ] L0 by
Theorem 3.8.

Examples

Here is a graded series of examples illustrating the use of the co-induction principle
of Proposition 3.10.

Example 3.11. For any type � , the following contextual equivalence is valid.

f : � ! �; x : � ` map f (iterate f x) �=
gnd
[� ] iterate f (f x) (3.12)

where

map
def
= �xm : �f : �` :

case ` of fnil! nil j h :: t! (f h) :: (mf t)g

iterate
def
= �x i : �f : �x : x :: (i f (f x)):

(Note that ; ` map : (� ! �)! ([� ]! [� ]) and ; ` iterate : (� ! �)! � ! [� ],
for any type � .)



Proof. Intuitively, iterate f x is a notation for the infinite list [x; fx; f(fx); : : : ]
and map f applies f to each component of a list. So one would expect that both
map f (iterate f x) and iterate f (f x) denote the list [fx; f(fx); f(f(fx)); : : : ].
So the contextual equivalence (3.12) is intuitively reasonable. Let us see how to
prove that it holds using the co-inductive characterisation of�=gnd.

First note that in view of the extensionality property (2.19) of �=gnd (which as
noted above, follows from Theorem 3.8), to prove (3.12) it suffices to show for all
� , F 2 Exp�!� , and M 2 Exp� that

map F (iterate F M) '[� ] iterate F (F M): (3.13)

We deduce this from Proposition 3.10 by constructing a suitable [� ]-bisimulation,
R. In fact we do not have to look very far forR in this case, since the pairs of terms
we are interested in already constitute a [� ]-bisimulation! Let us verify that for

R
def
= f(map F (iterate F M); iterate F (F M)) j F 2 Exp�!� & M 2 Exp�g

if LR L0, then conditions (3.8)–(3.11) are satisfied.

If LR L0, then by definition of R we have that L = map F (iterate F M) and
L0 = iterate F (F M), for some terms M and F . Using the evaluation rules in
Figure 3 together with the definitions of iterate and map, one obtains

iterate F M +M :: (iterate F (F M))

L0 = iterate F (F M) + (F M) :: (iterate F (F (F M)))

L = map F (iterate F M) + (F M) :: (map F (iterate F (F M))):

So by determinacy of evaluation (Proposition 2.4(i)), if L + C, then C = H :: T
withH = F M and T = map F (iterate F (F M)). But we know that L0+H 0 ::T 0

with H 0 = F M = H and T 0 = iterate F (F (F M)), and hence with H �=gnd
� H 0

(since �=gnd is reflexive) and T R T 0 (by definition of R). So conditions (3.8) and
(3.10) are satisfied (the first one trivially, because by determinacy of +, L does not
evaluate to nil). A symmetrical argument starting with the assumption that L0 +C 0

shows that conditions (3.9) and (3.11) are also satisfied byR. SoR is indeed a [� ]-
bisimulation, and since it relates the terms in which we are interested, the proof is
complete.

The next example makes use of mathematical induction in order to verify that a
particular relation has the properties required of a bisimulation.



Example 3.12. Define

zip
def
= �x z : �` : �`0 : case ` of

fnil! nil

j h :: t! case `0 of fnil! nil

j h0 :: t0!hh; h0i :: z t t0gg

from
def
= �x f : �x : �y : x :: (f (x + y) y)

suc
def
= �x : x+ 1

plus
def
= �z : fst(z) + snd(z)

nats
def
= �x ` : 0 :: (map suc `)

wheremap is as in the previous example. (Note that ; ` zip : [�]!([�0]![���0])
for any types � and �0; and ; ` from : int ! (int ! [int ]), ; ` suc : int ! int ,
; ` plus : (int � int)! int , and ; ` nats : [int ].) Then

map plus (zip nats nats) �=
gnd
[int] from 0 2 (3.14)

Proof. Consider the following closed PCFL terms, defined by induction on n 2 N :

N0
def
= 0 E0

def
= 0 L0

def
= nats

Nn+1
def
= sucNn En+1

def
= En + 2 Ln+1

def
= map suc Ln:

From the definition of from and En it follows directly that

from En 2 + En :: (from En+1 2) (3.15)

From the definition of map, nats , Ln, and Nn it follows by induction on n that

Ln +Nn :: Ln+1

Therefore, using the definition of zip, we have that

zip Ln Ln + hNn; Nni :: (zip Ln+1 Ln+1)

and from the definition of map that

map plus (zip Ln Ln) + plus hNn; Nni :: (map plus (zip Ln+1 Ln+1)) (3.16)

Finally, note that by induction on n, plus hNn; Nni is Kleene equivalent toEn, and
hence by Proposition 3.9

plus hNn; Nni �=
gnd
int

En (3.17)

So if we define R � Exp[int] � Exp[int ] by

R
def
= f(map plus (zip Ln Ln); from En 2) j n 2 Ng

then properties (3.15), (3.16), and (3.17) together with determinacy of evaluation
(Proposition 2.4(i)) show that R is a [int ]-bisimulation. Since by definition of L0

and E0, R relates the two terms of type [int ] in which we are interested, the proof
of (3.14) via Proposition 3.10 is complete.



In the next example, in order to verify that a certain relation is a bisimulation
we make use of the congruence property of �=gnd, namely that if two terms are
contextually equivalent and they are substituted for a parameter in a context, the
resulting terms are also contextually equivalent. (This is an easy consequence of
the definition of contextual equivalence.)

Example 3.13 (The ‘take-lemma’). For any type � and terms L; L0 2 Exp[� ], the
following property holds.

8n 2 N (take nL �=gnd
[ � ]take nL0)) L �=gnd

[� ] L0 (3.18)

where

take
def
= �x f : �x : �` : if x = 0 then nil else

case ` of fnil! nil j h :: t!h :: (f (x� 1) t)g

(Note that ; ` take : int ! ([� ]! [� ]), for any type � .)

This property allows one to establish instances of contextual equivalence be-
tween list expressions by appeal to mathematical induction: to prove L �=gnd

[� ] L0, it
suffices to prove

take 0L �=
gnd
[� ] take 0L0 (3.19)

take nL �=gnd
[� ] take nL0 ) take n + 1L �=gnd

[� ] take n+ 1L0 (3.20)

For the informal theory of equality of functional programs discussed by Bird and
Wadler (1988), this induction principle is called the ‘take-lemma’ (see loc. cit.,
section 7.5.1). It is used to justify equalities like the ones in the previous examples.
But why is the take-lemma valid? As we now show, if “equal” means contextually
equivalent, then one can prove the validity of this principle by appealing to the co-
inductive characterisation of�=gnd at list types given by Proposition 3.10. (See also
Gordon 1995b, Section 4.6.)

Proof. Fixing the type � , define R � Exp[� ] � Exp[� ] by:

R
def
= f(L; L0) j 8n 2 N (take nL �=gnd

[� ] take nL0)g

I claim that R satisfies the conditions (3.8)–(3.11) required of a [� ]-bisimulation.

First note that the evaluation rules in Figure 3 imply the following properties of
take. For all n 2 N , H 2 Exp� , and L; T 2 Exp[� ]:

take n+ 1L + nil , L + nil (3.21)

take n+ 1L +H :: T , 9T 0 (L +H :: T 0 & T = take (n + 1� 1)T 0) (3.22)

Now suppose LR L0, that is, for all n 2 N , take nL �=gnd
[� ] take nL0.

To see that R satisfies (3.8), suppose L + nil. Then by (3.21), take 1L + nil.
Since LR L0, by definition of R, take 1L �=

gnd
[� ] take 1L0. Since �=gnd is a PCFL



bisimulation (by Theorem 3.8), it follows that take 1L0 + nil and hence by (3.21)
again, that L0 + nil. A symmetrical argument shows that R also satisfies (3.9).

To see thatR satisfies (3.10), supposeL+H ::T . Then by (3.22), for any n 2 N

we have take n+ 1L+H :: (take (n+ 1�1)T ). Since LRL0, by definition ofR,
take n+ 1L �=gnd

[� ] take n + 1L0. So since�=gnd is a PCFL bisimulation, it follows
that there are terms H 0; T 00 with

take n+ 1L0 +H 0 :: T 00 & H �=gnd
� H 0 & take (n + 1� 1)T �=

gnd
[� ] T 00:

By (3.22) again, L0 +H 0 ::T 0 for some term T 0 with T 00 = take (n + 1� 1)T 0. We
have to check that T R T 0. Note that for all n we have take (n+ 1 � 1)T �=

gnd
[� ]

T 00 = take (n+ 1 � 1)T 0. To conclude from this that 8n 2 N (take nT �=gnd
[� ]

take nT 0), we use the congruence property (2.11) of �=gnd (which as we noted in
section 2 is an easy consequence of the definition of �=gnd). It allows us to infer
take (n+ 1 � 1)T �=gnd

[� ] take nT from the fact that (n+ 1 � 1) �=gnd
int

n. (The
latter holds by Proposition 3.9, since evidently n+ 1 � 1 is Kleene equivalent to
n.) A symmetrical argument shows that R also satisfies (3.11).

We have now established that R is a [� ]-bisimulation. So by Proposition 3.10,
for all L; L0 2 Exp[� ], if LR L0 then L �=gnd

[� ] L0, as required for (3.18).

The next example is somewhat more challenging than the previous ones, in as
much as the verification of the bisimulation condition involves an induction on the
depths of proofs of evaluation. We write

M +n C

to indicate that there is a proof tree for M + C (built out of the axioms and rules
in Figure 3) whose depth is less than or equal to n. If the reader prefers, one can
give a slightly more abstract definition of the relations +n (n 2 N): they are
simultaneously inductively defined by axioms and rules obtained from those in
Figure 3 by replacing + by +n in each axiom and each hypothesis of a rule, and
by replacing + by +n+1 in the conclusion of each rule. Clearly it is the case that

M + C , 9n 2 N (M +n C) (3.23)

Example 3.14. For any type � , the following contextual equivalence is valid.

u : � ! bool ; v : � ! �; ` : [� ] `

�lter u (map v `) �=gnd
[� ] map v (�lter (u � v) `) (3.24)

where map is as in Example 3.11 and

�lter
def
= �x f : �u : �` : case ` of

fnil! nil j h :: t! if u h then h :: (f u t) else f u tg

u � v
def
= �x : u (v x)

(Note that ; ` �lter : (� ! bool)! ([� ]! [� ]) and that u : � 0! � 00; v : � ! � 0 `
u � v : � ! � 00, for any types �; � 0; � 00.)



Proof. Intuitively, the expression �lter u is a notation for the function on lists
which removes elements of the list which fail the boolean test u. It is an inherently
partial function, because as one progressively evaluates an input lazy list, one may
never find an element passing the boolean test with which to begin the output list. It
is mainly for this reason that (3.24) is harder to prove than the previous examples.

Just as in Example 3.11, to prove (3.24) it suffices to prove for all types � , and
closed terms U 2 Exp�!bool and V 2 Exp�!� , that

�lter U (map V L) '[� ] map V (�lter (U � V )L) (3.25)

holds for all L 2 Exp[� ]. Given � , U , and V , define R � Exp[� ] � Exp[� ] by:

R
def
= f(�lter U (map V L);map V (�lter (U � V )L)) j L 2 Exp[� ]g:

To establish (3.25), by Proposition 3.10 it suffices to show that this R is a [� ]-
bisimulation. Instead of proving that the conditions (3.8)–(3.11) hold forR directly
(which does not seem possible—try it and see), we can deduce them via (3.23),
using the following properties of +n:

8L (�lter U (map V L) +n nil) map V (�lter (U � V )L) + nil) (3.26)

8L (map V (�lter (U � V )L) +n nil ) �lter U (map V L) + nil) (3.27)

8L;H; T (�lter U (map V L) +n H :: T ) (3.28)

9T 0 (map V (�lter (U � V )L) +H :: T 0 & T R T 0))

8L;H; T 0 (map V (�lter (U � V )L) +n H :: T 0 ) (3.29)

9T (�lter U (map V L) +H :: T & T R T 0))

Each of (3.26)–(3.29) can be proved by induction on n. We give the argument for
(3.28) and leave the other three as exercises.

So assume inductively that (3.28) holds for all n < m. If �lter U (map V L)+m

H :: T , then by definition of �lter , m � 2 and there are terms H1; T1 so that

map V L +m�2 H1 :: T1 (3.30)

if U H1 thenH1 :: (�lter U T1) else �lter U T1 +
m�2 H :: T (3.31)

Then by definition of map, for (3.30) to hold, it must be the case that m � 4 and
there are terms H2; T2 so that

L +m�4 H2 :: T2 (3.32)

H1 = V H2 and T1 = map V T2: (3.33)

On the other hand, since (3.31) holds, it must be the case that either U H1 + true or
U H1 + false. We treat each case separately.



Case U H1 + true: In this case (3.31) holds because

H = H1 and T = �lter U T1: (3.34)

Combining this with (3.33) we get (U � V )H2 + true. Then together with (3.32),
this yields

�lter (U � V )L +H2 :: �lter (U � V )T2

and hence

map V (�lter (U � V )L) + V H2 :: (map V (�lter (U � V )T2)):

Since by (3.33) and (3.34) we have H = V H2 and T = �lter U (map V T2), it
follows that

map V (�lter (U � V )L) +H :: (map V (�lter (U � V )T2))

T Rmap V (�lter (U � V )T2):

So the conclusion of the n = m case of (3.28) holds with T 0 = map V (�lter (U �
V )T2).

Case U H1 + false: In this case (3.31) holds because m � 3 and �lter U T1 +
m�3

H :: T . Hence by (3.33), �lter U (map V T2) +
m�3 H :: T . So by induction

hypothesis there is some T3 with

map V (�lter (U � V )T2) +H :: T3 (3.35)

T R T3: (3.36)

By definition of map, for (3.35) to hold, it must be the case that there are terms
H4; T4 with

�lter (U � V )T2 +H4 :: T4 (3.37)

H = V H4 and T3 = map V T4: (3.38)

Since we are assuming that U H1+ false, by (3.33) we also have (U �V )H2+ false.
Then by (3.32) and (3.37), we have �lter (U � V )L +H4 :: T4 and hence

map V (�lter (U � V )L) + V H4 :: (map V T4):

So by (3.36) and (3.38)

map V (�lter (U � V )L) +H :: T3 & T R T3:

Thus the conclusion of the n = m case of (3.28) holds with T 0 = T3.



Exercises

Consider the following PCFL terms.

map
def
= �xm : �u : �` : case ` of fnil! nil j h :: t! (u h) :: (mu t)g

nats
def
= �x ` : 0 ::map(�x : x+ 1)`

from
def
= �x f : �x : �y : x :: (f (x + y) y)

append
def
= �x a : �` : �`0 : case ` of fnil! `0 j h :: t!h :: (a t `0)g

interleave
def
= �x i : �` : �`0 : case ` of fnil! `0 j h :: t!h :: (i `0 t)g

val
def
= �x : x :: nil

lift
def
= �x f : �u : �` : case ` of fnil! nil j h :: t! append(u h)(f u t)g

u � v
def
= �x : u (v x):

Prove the following contextual equivalences.

; ` nats �=
gnd
[int] from 0 1 (3.39)

x : int ` from x 1 �=gnd
[int] interleave (from x 2) (from (x + 1) 2) (3.40)

x : �; u : � ! [� 0] ` lift u (val x) �=
gnd
[� 0] f x (3.41)

` : [� ] ` lift val ` �=gnd
[� ] ` (3.42)

u : � ! [� 0]; v : � 0! [� 00]; ` : [� ] `

lift ((lift v) � u) ` �=
gnd
[� 00] lift v (lift u `) (3.43)

These last three equivalences are respectively the �, � and associativity identities
for the Kleisli triple corresponding to the (strong) monad structure of lazy lists (see
Moggi 1991 and Wadler 1992). Prove (3.41) by applying Proposition 3.9. Prove
(3.42) and (3.43) by constructing suitable bisimulations. (3.43) is quite challeng-
ing: you will need to employ techniques like those in Example 3.14, involving an
induction over depths of proofs of evaluation, in order to verify the bisimulation
conditions. (See also Gordon 1995b, Section 4.5.)

4 Rational Completeness and Syntactic Continuity

In this section we prove that the PCFL contextual preorder�gnd satisfies the proper-
ties (2.29) and (2.30) mentioned at the end of section 2—namely that each fixpoint
term �x x : F is the least upper bound with respect to �gnd of a canonically asso-
ciated chain of approximations, and these least upper bounds are preserved by the
PCFL language constructs.



Although it is beyond the scope of these notes to pursue the topic, these proper-
ties form the basis for transferring various domain-theoretic verification techniques
(such as the induction principle of Scott 1993, section 3) from the denotational se-
mantics of a functional language to the language itself equipped with an operational
semantics. Which is not to say that the denotational semantics of a language is with-
out its uses. Indeed one way to establish (2.29) and (2.30) is via a computationally
adequate denotational semantics of PCFL: cf. (Pitts 1994). Here we give a proof
directly from the operational semantics of PCFL, as specified by the evaluation re-
lation of Figure 3. Mason, Smith, and Talcott (1996) achieve similar results for
an untyped, call-by-value functional language, making use of a one-step transition
relation rather than an evaluation relation. The differences between the language
treated in loc. cit. and the one used in these notes are not particularly relevant to
the proof of the properties in question: the method given below could easily be
adapted to untyped languages and/or ones with call-by-value function application.
It can also be used to prove completeness and continuity properties for some of the
variations on contextual preordering and similarity mentioned in section 5.

As in loc. cit., the proof of (2.29) and (2.30) given here hinges upon a certain
‘compactness’ property of + with respect to fixpoint terms (Corollary 4.6). How-
ever, we deduce this compactness property from an apparently stronger property of
evaluation, Proposition 4.5, which seems to be new. Unfortunately, it is beyond the
scope of these notes to present further applications of Proposition 4.5.

Notational conventions. Throughout this section we will consider a particular
fixpoint term �x x : F , of type � say, and use the following abbreviations.

F0
def
= �x(0)x : F

def
= ?

def
= �xx : x

Fn+1
def
= �x(n+1)x : F

def
= F [Fn=x]

F!
def
= �xx : F :

We will only consider PCFL contexts involving parameters of type � . As usual, we
write M[~p] to indicate such a context whose parameters are contained in the list
~p = p1; : : : ; pk of pairwise distinct parameters. Given a k-tuple ~n = (n1; : : : ; nk)
of natural numbers then we will make the following abbreviations.

C[F~n]
def
= C[Fn1 ; : : : ; Fnk ]

C[F!]
def
= C[F!; : : : ; F!] :

Finally, the length of a list ~p of parameters will be denoted by j~pj.

Definition 4.1. For each k, we partially order the set Nk of k-tuples of natural
numbers componentwise from the usual ordering on N :

~n � ~n0
def
, (n1 � n01 & : : : & nk � n0k) :



A subset I � N
k is said to be cofinal in Nk if and only if for all ~n 2 N

k there is
some ~n0 2 I with ~n � ~n0. We will write Pcof(N

k) for the set of all such cofinal
subsets of Nk .

Note that by induction on n using (2.27) and (2.11), one can prove

Fn �
gnd Fn+1 : � and Fn �

gnd F! : �

and hence that for each unary context C[p], there is a �gnd-ascending chain

C[F0] �
gnd C[F1] �

gnd C[F2] �
gnd � � �

bounded above by C[F!]. We aim to show that C[F!] is in fact the least upper bound
of this chain. If that is the case, then note that more generally if C involves several
parameters ~p, then for any cofinal subset I � N

j~p j, C[F!] will be the least upper
bound of the set fC[F~n] j ~n 2 Ig. In fact it turns out to be convenient to prove this
stronger least upper bound property directly and then deduce (2.30) (and hence also
(2.29)) as a special case.

The following notion of evaluation is somewhat technical: its introduction is
justified below by Proposition 4.5.

Definition 4.2 (Evaluation of contexts, mod F ). Given PCFL contexts M[~p]
and C[~p0], we write M[~p] +F C[~p0] to mean that for all I 2 Pcof(N

j~p j)

f~n~n0 j ~n 2 I &M[F~n] + C[F~n0]g 2 Pcof(N
j~pj+j~p0j) :

Note that the relationM[~p]+FC[~p0] is preserved under renaming the parameters~p
and, independently, the parameters ~p0. As the following lemma shows, the relation
is also preserved under addition or subtraction of extra parameters.

Lemma 4.3.

M[~p] +F C[~p0],M[~p~q] +F C[~p0~q0] :

Proof. This property follows from the definition of +F together with simple prop-
erties of cofinal subsets of Nk .

Lemma 4.4. The relation +F satisfies the following analogues of the axioms and
rules for PCFL evaluation given in Figure 3.

(i) If C is in canonical form (that is, a constant, lambda abstraction, pair, or cons
expression), then C[~p] +F C[~p].

(ii) If B[~p]+F true[ ] andM1[~p]+
F C[~p0], then (ifB thenM1 elseM2)[~p]+

F C[~p0].

(iii) If B[~p]+F false[ ] andM2[~p]+
F C[~p0], then (ifB thenM1 elseM2)[~p]+

F C[~p0].

(iv) IfMi[~p]+
F ni[ ] for i = 1; 2, then (M1opM2)[~p]+

F c[ ], where c = n1 opn2.



(v) If F [~p] +F (�x :M)[~p0] and M[A=x][~p~p0] +F C[~p00], then (F A)[~p] +F C[~p00].

(vi) If M[�xx :M=x][~p] +F C[~p0], then (�x x :M)[~p] +F C[~p0].

(vii) If P[~p] +F hM1;M2i[~p0] and M1[~p
0] +F C[~p00], then fst(P)[~p] +F C[~p00].

(viii) If P[~p] +F hM1;M2i[~p0] and M2[~p
0] +F C[~p00], then snd(P)[~p] +F C[~p00].

(ix) If L[~p] +F nil[ ] and M1[~p] +
F C[~p0], then

(case L of fnil!M1 j h :: t!M2g)[~p] +
F C[~p0]:

(x) If L[~p] +F (H :: T )[~p0] and M2[H=h; T =t][~p~p
0] +F C[~p00], then

(case L of fnil!M1 j h :: t!M2g)[~p] +
F C[~p00]:

Proof. Each property follows from combining the corresponding evaluation rule
in Figure 3 with the definition of +F . We give the argument for the last case (x),
and leave the others as exercises for the reader. So suppose

L[~p] +F (H :: T )[~p0] (4.1)

M2[H=h; T =t][~p~p
0] +F C[~p00] (4.2)

In order to verify that (case L of fnil!M1 j h :: t!M2g)[~p] +
F C[~p00], we have

to show for any I 2 Pcof(N
j~pj) that

f~n~n00 j ~n 2 I & (case L of fnil!M1 j h :: t!M2g)[F~n] + C[F~n00]g (4.3)

is a cofinal subset of N j~pj+j~p
00j. But given such an I , by (4.1)

I 0
def
= f~n~n0 j ~n 2 I & L[F~n] + (H :: T )[F~n0]g

is a cofinal subset of N j~pj+j~p
0j. Then by (4.2) applied to I 0

I 00
def
= f~n~n0~n00 j ~n~n0 2 I 0 &M2[H=h; T =t][F~n~n0 ] + C[F~n00 ]g

is a cofinal subset of N j~pj+j~p
0j+j~p00j and hence

I 000
def
= f~n~n00 j 9~n0 (~n~n0~n00 2 I 00)g

is a cofinal subset of N j~pj+j~p
00j.

Now if ~n~n00 2 I 000, then ~n 2 I and for some ~n0 it is the case that

L[F~n] + (H :: T )[F~n0 ] = H[F~n0 ] :: T [F~n0]

M2[F~n][H[F~n0 ]=h; T [F~n0 ]=t] =M2[H=h; T =t][F~n~n0] + C[F~n00 ]

and hence by (+ case2)

(case L of fnil!M1 j h :: t!M2g)[F~n] + C[F~n00]:

Thus (4.3) contains I 000 and hence is also a cofinal subset of N j~pj+j~p
00j, as required.



Proposition 4.5. For all PCFL contextsM[~p], ifM[F!]+C then there is a context
C[~p0] with C = C[F!] and M[~p] +F C[~p0].

Proof. The proof is by induction on the derivation ofM[F!]+C. More precisely,
we show that

E
def
= f(M;C) j 8M[~p] (M =M[F!]) 9C[~p0] (C = C[F!] &M[~p] +F C[~p0]))g

is closed under the axioms and rules of Figure 3 inductively defining +.

Case (+ can). Since F! is not in canonical form, ifC is a closed term in canonical
form andC = C[F!], then the context C must itself be in canonical form, and hence
C[~p] +F C[~p] by Lemma 4.4(i). Hence (C;C) 2 E for any closed canonical C.

Case (+ fix). Suppose that (M [�x x :M=x]; C) is an element of E ; we wish to
show that (�xx :M;C) is too. So suppose

�xx :M =M[F!] (4.4)

for some context M[~p]. We have to find C[~p0] such that C = C[F!] and M[~p] +F

C[~p0]. For (4.4) to hold it must be the case that either

(A) M = pi is one of the parameters in~p and �xx :M = F!(= �x x : F )—without
loss of generality we may assume that M = F ;

or

(B) M is of the form �xx :M0[~p] and M =M0[F!].

We consider each case in turn.

(A). LetN [p] be the context F [p=x]. ThusN [F!] = F [F!=x] = M [�x x :M=x].
Then since by the induction hypothesis (M [�x x :M=x]; C) 2 E , there is some
context C[~p0] with

C = C[F!] (4.5)

N [p] +F C[~p0] (4.6)

In view of (4.5), to complete this case it suffices to show that M[~p]+F C[~p0]. Since
M = pi, by Lemma 4.3 this is equivalent to showing that p[p]+F C[~p0]. So for each
I 2 Pcof(N) we have to show that

fn~n0 j n 2 I & Fn + C[F~n0 ]g (4.7)



is a cofinal subset of N1+j~p0 j. But if I is cofinal in N , so is

J
def
= fn j n + 1 2 Ig

and hence from (4.6)

J 0
def
= fn~n0 j n 2 J & N [Fn] + C[F~n0 ]g

is a cofinal subset of N1+j~p0 j. But if n~n0 2 J 0 then n+ 1 2 I and

N [Fn] = F [Fn=x] by definition of N

= Fn+1 by definition of Fn+1.

Thus if n~n0 2 J 0 then (n+1)~n0 is an element of (4.7). Since J 0 is cofinal, it follows
that (4.7) is as well. This completes the induction step in case (A).

(B). By assumption,M [�x x :M=x] =M0[�xx :M0=x][F!]. Then by the induc-
tion hypothesis (M [�x x :M=x]; C) 2 E , there is some context C[~p0] with

C = C[F!]

M0[�x x :M0=x][~p] + C[~p0]

and hence by Lemma 4.4(vi)

M[~p] = �xx :M0[~p] + C[~p0]:

This completes the induction step in case (B).
Thus in either case we have (�xx :M;C) 2 E , and so we have completed the

induction step for case (+ fix).

Case (+ cond1). Suppose that (B; true) and (M1; C) are both elements of E . We
have to show that (if B thenM1 elseM2; C) 2 E . So suppose

if B thenM1 elseM2 =M[F!] (4.8)

for some context M[~p]. We have to find C[~p0] such that C = C[F!] and M[~p] +F

C[~p0].
For (4.8) to hold it must be the case that M = if B thenM1 elseM2 for some

contexts B, and Mi (i = 1; 2) satisfying

B = B[F!] (4.9)

Mi =Mi[F!] (i = 1; 2) (4.10)

Since (B; true) 2 E , (4.9) implies that there is some context C1[~p1] with

true = C1[F!] (4.11)

B[~p] +F C1[~p1] (4.12)



Now (4.11) can only hold because C1 = true, in which case from (4.12) and
Lemma 4.3 we conclude that

B[~p] +F true[ ] (4.13)

Since (M1; C) 2 E , (4.10) implies that there is some context C[~p0] with

C = C[F!] (4.14)

M1[~p] +
F C[~p0]: (4.15)

Applying Lemma 4.4(ii) to (4.13) and (4.15) yields

M[~p] = (if B thenM1 elseM2)[~p] +
F C[~p0]

which together with (4.14) is the desired conclusion.

Remaining cases: they are all similar to the previous case, using the appropriate
clause of Lemma 4.4 in each case.

Corollary 4.6 (A ‘compactness’ property of evaluation). For any PCFL con-
text M[p] of ground type, if M[�xx : F ] + c, then M[�x(n)x : F ] + c for some
n 2 N .

Proof. Suppose M[F!] + c. Then by the previous proposition there is a context
C[~p0] such that M[p] +F C[~p0] and C[F!] = c. The latter equation can only hold
because C = c, and hence (using Lemma 4.3) we haveM[p]+F c[ ]. Taking I = N

in the definition of +F , this means that fn j M[Fn]+ cg is a cofinal subset of N . So
in particular it is a non-empty subset, that is, there is some n 2 N withM[Fn] + c,
as required.

We can now complete the proof of the rational completeness (2.29) and syntactic
continuity property (2.30) of the PCFL contextual preorder.

Theorem 4.7. For any fixpoint term �x x : F 2 Exp� , define the terms �x(n)x : F 2
Exp� (n 2 N) by

�x(0)x : F
def
= ?

def
= �x x : x

�x(n+1)x : F
def
= F [�x(n)x : F=x]:

Then for any type �, context C[�� ] 2 Ctx �, and term M 2 Exp�

C[�x x : F ] �gnd M : � , 8n 2 N (C[�x(n)x : F ] �gnd M : �):



Proof. We mentioned at the beginning of this section that property (2.27) of ?
combined with the precongruence property of �gnd imply that �x(n)x : F �gnd

�xx : F : � and hence that C[�x(n)x : F ] �gnd C[�x x : F ] : �. The ) direction
of the theorem follows from this by transitivity of �gnd.

Conversely, suppose C[�x(n)x : F ] �gnd M : � holds for all n 2 N . We wish to
show that C[�x x : F ] �gnd M : �, that is, for any contextN [�] of ground type and
any constant c, if N [C[�xx : F ]] + c then N [C[M ]] + c. But if N [C[�xx : F ]] + c,
then by Corollary 4.6 applied to the context N [C[�]], there is some n 2 N with
N [C[�x(n)x : F ]] + c. Since C[�x(n)x : F ] �gnd M : �, it follows that N [M ] + c, as
required.

Exercise 4.8. In view of the Operational Extensionality Theorem 3.8, we could
have stated the above theorem using PCFL similarity, �, rather than �gnd. Give
a direct proof that � satisfies the rational completeness and syntactic continuity
properties by proving that S 2 Rel is a PCFL simulation, where for each type �
we define

S�
def
= f(M;M 0) j 9M[~p] 2 Ctx�; I 2 Pcof(N

j~pj) (M =M[F!] &

8~n 2 I (M[F~n] �� M
0))g:

Exercise 4.9. Prove the following converse of Proposition 4.5, by induction on the
derivation of M[F~n] + C:

For all contexts M[~p] and all ~n 2 N
j~pj, if M[F~n] + C then there is

some canonical context C[~p0] and some ~n0 2 N
j~p0 j with C = C[F~n0 ] and

M[F!] + C[F!].

5 Further Directions

In this section we discuss, very briefly and without going into details, the extent to
which the co-inductive characterisation of PCFL contextual equivalence in terms
of bisimilarity is stable with respect to change of program equivalence, or of pro-
gramming language.

‘Lazy’ contextual equivalence

As the name suggests, the definition of PCFL ground contextual equivalence (Defi-
nition 2.9) involves observing convergence of evaluation only in contexts of ground
type. A strictly finer notion of contextual equivalence is obtained if we relax this
condition and observe convergence at any type.

� `M �=lazy M 0 : �
def
, 8�; C[��] 2 Ctx � (C[M ]+ , C[M 0]+)



where by M+ we mean 9C (M + C). Clearly

� `M �=lazy M 0 : � ) � `M �=gnd M 0 : �:

However, the converse does not hold. For example we have

�x :? �=gnd ? : �! �0 (5.1)

by (2.21); but �x :? 6�=lazy ? : �! �0, because the left-hand side does evaluate
whereas the right-hand side does not. Similarly,

h?;?i �=gnd ? : � � �0 (5.2)

holds by (2.21), whereas h?;?i 6�=lazy ? : � � �0.

It is possible to modify the notion of bisimulation to get a co-inductive charac-
terisation of �=lazy.

Theorem 5.1. Let '0 be the greatest element of Rel satisfying conditions (bis 1a),
(bis 1b), (bis 2a), (bis 2b), (bis 5a), (bis 5b), (bis 6a), and (bis 6b) from Figure 5
together with the following conditions at function and product types:

(F B�!�0 F 0 & F + �x :M)) (bis 3a)

9�x :M 0 (F 0 + �x :M 0 & 8A 2 Exp� (M [A=x] B�0 M 0[A=x]))

(F B�!�0 F 0 & F 0 + �x :M 0)) (bis 3b)

9�x :M (F + �x :M & 8A 2 Exp� (M [A=x] B�0 M 0[A=x]))

(P B���0 P 0 & P + hM1;M2i)) (bis 4a)

9M 0
1;M

0
2 (P

0 + hM 0
1;M

0
2i & M1 B� M

0
1 & M2 B�0 M 0

2)

(P B���0 P 0 & P 0 + hM 0
1;M

0
2i)) (bis 4b)

9M1;M2 (P + hM1;M2i & M1 B� M
0
1 & M2 B�0 M 0

2):

Defining '0� from ' as in Definition 3.7, then

� `M �=lazy M 0 : � , � `M '0� M 0:

The relation '0 is a version for PCFL of Abramsky’s notion of applicative
bisimulation which he developed in his work with Ong on the untyped, ‘lazy’
lambda calculus (Abramsky 1990; Abramsky and Ong 1993). The above theorem
can be proved using the operationally-based methods developed by Howe (1989,
Howe (1996) and which we employ in the Appendix. to prove the coincidence of
�=gnd and '.

Convergence testing

The �-rule (2.24) and the surjective pairing property (2.25) say that every closed
PCFL term of function or product type is ground contextually equivalent to a term in



canonical form. This is the essential difference between�=gnd and�=lazy, and we can
remove it by augmenting PCFL syntax with term-formers for testing convergence
to canonical form at such types. Consider the extension of PCFL whose terms are
given by the grammar of Figure 1 extended as follows:

M ::= � � � j ispr(M) j isfn(M):

The type assignment and evaluation rules for ispr and isfn are:

� ` P : � � �0

� ` ispr(P ) : bool

� ` F : �! �0

� ` isfn(P ) : bool

P + hM1;M2i

ispr(P ) + true

F + �x :M

isfn(F ) + true
:

Then Theorem 5.1 continues to hold, but now it is the case that�=lazy coincides with
our original notion of ground contextual equivalence, �=gnd.
Note. Analogous convergence testers for ground and list types already exist in
PCFL, namely

isbool [�bool ]
def
= if �bool then true else true

isint [�int ]
def
= if �int = 0 then true else true

islist [�[�]]
def
= case�[�] of fnil! true j h :: t! trueg:

An alternative way to alter PCFL to make �=lazy and �=gnd coincide (while still
retaining the validity of Theorem 5.1) is to use the elimination forms for product
and function types which correspond systematically to their introduction forms of
pairing and function abstraction respectively. (See Martin-Löf 1984, Preface; and
the ‘do-it-yourself’ type theory of Backhouse, Chisholm, Malcolm, and Saaman
1989.)

For product types the eliminator takes the form

split P as hx1; x2i in E

with free occurrences of x1 and x2 in E bound in the elimination term. Its typing
and evaluation rules are as follows.

� ` P : �1 � �2 �; x1 : �1; x2 : �2 ` E : �

� ` split P as hx1; x2i in E : �

P + hM1;M2i E[M1=x1;M2=x2] + C

split P as hx1; x2i in E + C

The projections fst and snd, and the convergence tester ispr are all definable from
it:

p : �1 � �2 ` fst(p) �=lazy split p as hx1; x2i in x1 : �1

p : �1 � �2 ` snd(p) �=lazy split p as hx1; x2i in x2 : �2

p : �1 � �2 ` ispr(p) �=lazy split p as hx1; x2i in true : bool



For function types, the systematic eliminator involves some extra syntactic com-
plications. It is probably for this reason that it is less well-known in functional pro-
gramming than in Type Theory. It takes the form

funsplit F as �x : �(x) in E

where � belongs to a new syntactic category of function variables. Free occur-
rences of � in E are bound in the elimination term and x is a bound variable (really
it is just a dummy variable to make the syntax more readable). The typing and eval-
uation rules for the function eliminator are as follows.

� ` F : �1 ! �2 �; �(�1) : �2 ` E : �

� ` funsplit F as �x : �(x) in E : �

F + �x :M E[(x)M=�] + C

funsplit P as �x : �(x) in E + C
:

The typing rule makes use of extended typing assumptions to the left of ` that
involve assigning ‘arities’ to function variables. For example, in the rule above
�(�1) : �2 is an assumption that � is a unary function variable which applies to
terms of type �1 to yield terms of type �2. The evaluation rule makes use of an
extended notion of substitution, namely that of substituting a ‘meta-abstraction’
(x)M for a function variable � in a termE: we leave its definition to the imagination
of the reader. Function application and the convergence tester for function types are
definable using the function eliminator:

f : �1 ! �2; a : �1 ` f a �=lazy funsplit f as �x : �(x) in �(a) : �2

f : �1 ! �2 ` isfn(f) �=lazy funsplit f as �x : �(x) in true : bool

Note. The systematically derived eliminator for list types is the case expression
which we built into the original syntax of PCFL. We have been discussing how to
augment the syntax of PCFL to make convergence at compound types more ob-
servable. Going in the opposite direction, it is possible to remove observability of
convergence at list types, without reducing expressive power, by replacing the case

expression by head(L) and tail(L) expressions, together with a semi-decision test
for emptiness isnil(L) (which is boolean-valued2 and diverges unless L + nil). The
properties of �=gnd are altered thereby—for example, an ‘�-rule’ for lists becomes
valid:

L �=gnd nil : [�] _ 9H; T (L �=gnd H :: T : [�]):

In order to retain the validity of the Operational Extensionality Theorem 3.8, one
has to change the notion of bisimilarity by replacing conditions (bis 5a), (bis 5b),
(bis 6a), and (bis 6b) by one analogous to that for product types:

L B[�] L
0 )

isnil(L) Bbool isnil(L
0) & head(L) B� head(L0) & tail(L) B[�] tail(L

0):

2Really isnil(L) should be of unit type, but we did not include a unit type in PCFL.



Strict function application

The rule (+ app) in Figure 3 describes non-strict, or call-by-name function appli-
cation. The strict, or call-by-value rule is

F + �x :M A + C M [C=x] +D

F A +D

If one alters the notion of evaluation by replacing (+ app) by this rule, then of course
the properties of �=gnd change. The Operational Extensionality Theorem can be
retained provided one alters the notion of bisimilarity at function types appropri-
ately, by using conditions (bis 3a) and (bis 3b) given above with the universal quan-
tification which occurs in them restricted to range over closed terms in canonical
form. The proof of this and other operationally-based properties for strict functional
languages can be developed along the lines indicated in these notes by systemati-
cally restricting the use of substitution of terms to substitution of terms in canonical
form.3 In other words, one carries along the idea that variables in strict languages
implicitly range over values (that is, canonical forms). See also (Egidi, Honsell,
and della Rocca 1992).

Recursive types, polymorphic types, no types

We built only one kind of recursive data—lazy lists—into our example language
PCFL, because it is sufficient to illustrate some of the complications which such a
feature introduces. An important complication is that in going from a simply typed
language like PCF to ones with more complex type systems, one may loose the
ability to define a notion of interest (such as some extensional notion of program
equivalence, for example) by induction on the structure of the types. The co-
inductive techniques used to prove the Operational Extensionality Theorem 3.8 for
PCFL were originally developed for untyped languages. We have seen how they
adapt to one simple form of recursive data, and in fact they extend very easily to give
similar results for languages with general forms of recursively defined type. See
Gordon (1995a, 1996), for example. As Rees (1994) shows, they can also be used
to give operational extensionality results for languages with polymorphic types.

Languages with state

One can extend the methods described in this article to lambda-calculus based
imperative programming languages—such as Idealised Algol (Reynolds 1981),
Scheme (Abelson and Susman 1985), or Standard ML (Milner, Tofte, and Harper
1990). For work based directly on contextual equivalence for a Scheme-like lan-
guage, see (Mason and Talcott 1991; Mason and Talcott 1992). For work employ-
ing various notions of bisimilarity and operationally-based logical relations applied

3so one should replace fixpoint terms by recursive function terms in a strict version of PCFL.



to ML- and Algol-like languages, see (Pitts and Stark 1993; Ritter and Pitts 1995;
Stark 1995; Pitts 1996; Crole and Gordon 1996).

Concerning the status of Operational Extensionality theorems for functional lan-
guages with state, the situation is as follows. With some simplifying assumptions,
an evaluation relation for such languages can take the general form

s;M + s0; C

where s is a state, M an expression to be evaluated, C the canonical form resulting
from evaluation, and s0 the state which results from the evaluation. A state might
give the current values (which may well be complicated objects, such as closures,
in the case of Scheme or Standard ML) of some storage locations, for example.
If the language is such that it can be given an operational semantics in which the
shape (the number of locations, say) of the final state s0 is always the same as that
of the initial state s, then it seems that a co-inductive characterisation of contextual
equivalence can usually be given. This is the case if the language has global vari-
ables, but no constructs for locally declared state. Less trivially, it is also the case
for ‘block-structured’ languages, such as Algol. On the other hand, languages like
Standard ML, which involve dynamically created references, certainly do not have
this nice property that the ‘state shape’ does not grow under evaluation. Accord-
ingly, for Standard ML there are various notions of bisimilarity known which are
congruences for the language and (hence) are contained in contextual equivalence,
but so far none is known which actually coincides with contextual equivalence.

Refined notions of bisimulation

One very important topic has not been treated in these notes—namely the develop-
ment of various refinements of the notion of bisimulation (such as ‘bisimulation-
up-to-bisimilarity’) which can make the job of establishing specific instances of ap-
plicative bisimilarity much easier. This topic is addressed in (Gordon 1995b, sec-
tion 4), to which the reader is referred.

A Proof of the Operational Extensionality Theorem

This appendix is devoted to the proof of Theorem 3.8, which says that the PCFL
ground contextual preorder (Definition 2.9) coincides with the open extension of
PCFL similarity (Definition 3.3). The proof will be split into two parts:

(a) Proof that the open extension �� of similarity (Definition 3.7) is a PCFL
precongruence.

(b) Proof that the ground contextual preorder �gnd, when restricted to closed
terms, is a PCFL simulation.



For part (a) we employ an adaptation of a method due to Howe (1989, Howe (1996).
From part (a) we show that one can easily deduce that � ` M ��

� M 0 implies
� `M �gnd

� M 0, and part (b) gives the converse.

Congruence properties of similarity

Roughly speaking, a PCFL congruence is a binary relation between (open) terms
which respects the usual laws of equational reasoning. Thus the relation should be
an equivalence relation which is preserved by the operation of substituting a term
for a parameter in a context. When dealing with typed terms (as we are) it is natural
to restrict to relations which only relate terms of the same type. Since typing takes
place in the presence of an assignment of types to free variables, we include some
‘structural’ properties (such as weakening and preservation under the operation of
substituting terms for free variables) in the definition of congruence. Also, since we
are interested in properties of the contextual preorder, we place the emphasis on the
notion of ‘precongruence’—which is a congruence minus the symmetry property.
The following definition formulates the notion of PCFL precongruence solely with
PCFL terms, rather than with PCFL contexts. The lemma which follows it gives
the precise sense in which a precongruence respects the operation of substitution
into contexts.

Suppose R is family of binary relations R�;� � Exp�(�) � Exp�(�), indexed
by variable typings� and types �. As usual, we will write� `MR�M

0 to indicate
that a pair of terms (M;M 0) is in the relation R�;�.

Definition A.1. R is a PCFL precongruence relation if it has the following prop-
erties.

(� `M R� M
0 & � � �0)) �0 `M R� M

0 (A.1)

(� `M : � & �; x : � ` N R�0 N 0)) � ` N [M=x]R�0 N 0[M=x] (A.2)

� `M : � ) � `M R� M (A.3)

(� `M R� M
0 & � `M 0 R� M

00)) � `M R� M
00 (A.4)

(� `M R� M
0 & �; x : � ` N : �0)) � ` N [M=x]R�0 N [M 0=x] (A.5)

�; x : � `M R�0 M 0 ) � ` �x :M R�!�0 �x :M 0 (A.6)

�; x : � `M R� M
0 ) � ` �xx :M R� �x x :M 0 (A.7)

� ` LR� L
0 & � `M R�0 M 0 & �; h : �; t : [�] ` N R�0 N 0

) � ` (case L of fnil!M j h :: t!Ng)R�0

(case L0 of fnil!M 0 j h :: t!N 0g)
(A.8)

R is a PCFL congruence relation if in addition it is symmetric:

� `M R� M
0 ) � `M 0 R� M:



Modulo (A.4), property (A.5) is equivalent to saying that the non variable-
binding syntax constructors of PCFL preserve the precongruence relation. For
example, for application one has:

(� ` F R�!�0 F 0 & � ` AR� A
0)) � ` (F A)R�0 (F 0A0):

Then (A.6)–(A.8) extend this preservation property to the variable-binding con-
structs of the language. As the following lemma shows, these properties are all
special cases of preservation of the precongruence relation by the operation of sub-
stituting for a parameter in a context.

Lemma A.2. Suppose thatR is a PCFL precongruence relation. Suppose further
that �;�0 ` M R� M

0, that C[��] 2 Ctx�0(�), and that the variables in dom(�0)
all occur as the bound variables of binders in C which contain the parameter ��

within their scope. (Cf. the statement of Lemma 2.8; in particular by that lemma,
C[M ] and C[M 0] are elements of Exp�0(�).) Then � ` C[M ]R�0 C[M 0].

Proof. The proof is by induction on the derivation of � ` C[��] : �0, and is
omitted.

We aim to show:

Theorem A.3. PCFL similarity, ��, is a precongruence, and hence (by Proposi-
tion 3.6(iii)) PCFL bisimilarity is a congruence.

It is possible to prove Theorem A.3 by indirect means, making use of a domain-
theoretic denotational semantics for PCFL. Abramsky (1990) takes such a route
to prove the congruence property for his notion of applicative bisimulation for the
untyped lambda calculus. The proof we give here is based directly upon the opera-
tional semantics of PCFL and is a minor adaptation of the method given by Howe
(1989, Howe (1996). An adaptation is needed because Howe’s proof concerns no-
tions of bisimulation matching contextual equivalences in which convergence of
function and product expressions to canonical form is observable. This is not the
case for PCFL contextual equivalence as defined above. This is the reason why the
�-rules (2.24) and (2.25) hold. It is pleasant that such properties hold, but the main
reason for choosing to treat this variant of contextual equivalence here is to allow
a direct comparison with Milner and Plotkin’s classic work on PCF (Milner 1977;
Plotkin 1977). Gordon (1995a) gets a result like Theorem 3.8 for PCFL contextual
equivalence (indeed for a language with general forms of recursive type), but for a
notion of bisimilarity (a very useful notion, as loc. cit. shows) based upon a certain
labelled transition system.

Proofs of congruence for bisimilarities arising from labelled transition systems
for reactive systems (such as for CCS (Milner 1989, 4.4), for example) suggest
the following strategy for proving Theorem A.3. Let S denote the ‘precongruence
closure’ of��, that is, the smallest PCFL precongruence containing��. To see that
�� is a precongruence, it would suffice to show that S = ��; and by definition S



�; x : � ` x �� N : � (if �; x : � ` x��
� N ) (�� var)

�; x : � ` b ��
bool

N (if � ` b��
bool

N ) (�� bool)

� ` B ��
bool

B0

� `M1 ��
� M

0
1

� `M2 ��
� M

0
2 (if � ` if B0 then

M 0
1 elseM 0

2 �
�
� N)

� `

�
if B then

M1 elseM2

�
��

� N

(�� cond)

� ` n ��
int

N (if � ` n��
int

N ) (�� int)

� `M1 ��
int

M 0
1

� `M2 ��
int

M 0
2

(if � `M 0
1 opM 0

2 �
�
 N )

� `M1 opM2 �
�
 N

(�� op)

�; x : � `M ��
�0 M 0

(if � ` �x :M 0 ��
�!�0 N )

� ` �x :M ��
�!�0 N

(�� abs)

� ` F ��
�!�0 F 0

� ` A ��
� A

0

(if � ` F 0A0 ��
�0 N )

� ` F A ��
�0 N

(�� app)

�; x : � `M ��
� M

0

(if � ` �xx :M 0 ��
� N )

� ` �xx :M ��
� N

(�� fix)

Figure 6: Definition of ��, begun

contains ��, it would be enough to prove that S � ��. Since S satisfies (A.2), to
establish this inclusion, it is enough to prove that S restricted to closed terms is a
PCFL simulation. Unfortunately, it is not clear how to prove this. Instead we follow
Howe, and define an auxiliary relation, ��, which is not quite the precongruence
closure (for one thing, it is not transitive), but which permits the proof-strategy we
have outlined to go through.

Definition A.4. The relation

� `M ��
� N (M;N 2 Exp�(�))

is inductively defined by the axioms and rules in Figures 6 and 7.

Lemma A.5. (i) If � `M ��
� M

0 and � `M 0 ��
� M

00, then � `M ��
� M

00.

(ii) If � `M : �, then � `M ��
� M .

(iii) If � `M ��
� M

0, then � `M ��
� M

0.



� `M1 ��
� M

0
1

� `M2 ��
�0 M 0

2
(if � ` hM 0

1;M
0
2i �

�
���0 N )

� ` hM1;M2i �
�
���0 N

(�� pair)

� ` P ��
���0 P 0

(if � ` fst(P 0)��
� N )

� ` fst(P ) ��
� N

(�� fst)

� ` P ��
���0 P 0

(if � ` snd(P 0)��
�0 N )

� ` snd(P ) ��
�0 N

(�� snd)

� ` nil ��
� N (if � ` nil��

� N ) (�� nil)

� ` H ��
� H

0

� ` T ��
[�] T

0

(if � ` H 0 :: T 0 ��
[�] N )

� ` H :: T ��
[�] N

(�� cons)

� ` L ��
[�] L

0

� `M1 ��
�0 M 0

1

�; h : �; t : [�] `M2 ��
�0 M 0

2
(if � ` case L0 of

fnil!M 0
1 j h :: t!M 0

2g
��

�0 N)� `

�
case L of fnil!M1

j h :: t!M2g

�
��

�0 N

(�� case)

Figure 7: Definition of ��, completed

(iv) If � ` M ��
� M 0 and �; x : � ` N ��

�0 N 0, then � ` N [M=x] ��
�0

N 0[M 0=x].

Proof. Part (i) is proved by induction on the derivation of � ` M ��
� M 0 from

the axioms and rules in Figures 6 and 7. Part (ii) is proved by induction on the
derivation of � ` M : � from the axioms and rules in Figure 2. Part (iii)
follows from the first two parts. Part (iv) is proved by induction on the derivation
of �; x : � ` N ��

�0 N 0, using part (iii) and the fact (evident from the definition of
�� from �) that �� satisfies property (A.2).

Lemma A.6. (i) If ; ` b ��
bool

B, then B + b.

(ii) If ; ` n ��
int

N , then N + n.

(iii) If ; ` F ��
�!�0 F 0, then for all A 2 Exp�, ; ` F A ��

�0 F 0A.

(iv) If ; ` P ��
���0 P 0, then ; ` fst(P ) ��

� fst(P 0) and ; ` snd(P ) ��
�0 snd(P 0).

(v) If ; ` nil ��
[�] L, then L + nil.

(vi) If ; ` H :: T ��
[�] L, then L + H 0 :: T 0 for some H 0; T 0 with ; ` H ��

� H 0

and ; ` T ��
[�] T

0.



Proof. For part (i), if ; ` b ��
bool

B holds, it must have been deduced using
(�� bool), so ; ` b��

bool
B holds, that is, b �bool B. Then since � is a simulation

and b+ b, it follows from condition (sim 1) in Figure 4 that B + b, as required. The
argument for parts (ii) and (v) is similar.

Part (iii) follows by applying rule (�� app) from Figure 6 withA0 = A and N =
F A, using the reflexivity of �� (Lemma A.5(ii)) and �� (via Proposition 3.6(i)).
Similarly, part (iv) follows by applying the rules (�� fst) and (�� snd).

Finally for part (vi), if ; ` H :: T ��
[�] L holds it can only have been deduced

by an application of rule (�� cons). So there are terms H 00 and T 00 with

; `H ��
� H

00 (A.9)

; `T ��
[�] T

00 (A.10)

; `H 00 :: T 00 ��
[�] L

and hence

H 00 :: T 00 �[�] L: (A.11)

The simulation property (sim 6a) of � applied to (A.11) and H 00 :: T 00 + H 00 ::
T 00 implies that there are further terms H 0 and T 0 with L + H 0 :: T 0, H 00 ��

H 0, and T 00 �[�] T 0. The last two properties combined with (A.9), (A.10), and
Lemma A.5(i) yield ; ` H ��

� H
0 and ; ` T ��

[�] T
0, as required.

The following lemma gives the key property of �� permitting the proof of
Theorem A.3 to go through. It is the analogue of (Howe 1989, Theorem 1). In
the proof of the lemma we will make use of the Kleene preorder, �kl, defined in
Proposition 3.9 together with the fact, established in that proposition, that �kl is
contained in PCFL similarity.

Lemma A.7. If M + C and ; `M ��
� N , then ; ` C ��

� N .

Proof. The proof is by induction on the derivation of M + C. For once we will
give the details of the induction proof in some detail, since it is quite delicate. To
be more precise, we will show that

E
def
= f(M;C) j 8�;N (; `M ��

� N ) ; ` C ��
� N)g

is closed under the axioms and rules in Figure 3 and hence contains the evaluation
relation, as required.

Case (+ can). Trivial.



Case (+ cond1). Suppose that (B; true) and (M1; C) are in E . We have to show
that (if B thenM1 elseM2; C) 2 E . So suppose

; ` if B thenM1 elseM2 �
�
� N (A.12)

This can only have been deduced by an application of rule (�� cond), so there are
terms B0, M 0

1, and M 0
2 with

; ` B ��
bool

B0; ; `Mi �
�
� M

0
i (for i = 1; 2) (A.13)

and

if B0 thenM 0
1 elseM 0

2 �� N (A.14)

Since (B; true); (M1; C) 2 E , from (A.13) we get

; ` true ��
bool

B0 (A.15)

; ` C ��
� M

0
1 (A.16)

By Lemma A.6(i), from (A.15) we have B0 + true. Hence by definition of �kl,

M 0
1 �

kl
� if B0 thenM 0

1 elseM 0
2

holds. Therefore by Proposition 3.9 we have

M 0
1 �� if B0 thenM 0

1 elseM 0
2

which combined with (A.14) and transitivity of �� yields M 0
1 �� N .

Lemma A.5(i) plus (A.16) implies ; ` C ��
� N . So we have shown that

(A.12) implies ; ` C ��
� N , for anyN and �. Thus (ifB thenM1 elseM2; C) 2 E ,

as required.

Case (+ cond2) is similar to the previous case.

Case (+ op). Suppose (Mi; ni) 2 E for i = 1; 2, and that

; `M1 opM2 �
�
 N (A.17)

We must show that

; ` c ��
 N (A.18)

where c
def
= n1 op n2. Now (A.17) must have been deduced by an application of

rule (�� op) to

; `Mi �
�
int

M 0
i (i = 1; 2) (A.19)

M 0
1 opM 0

2 � N (A.20)

for some termsM 0
1;M

0
2. Since (Mi; ni) 2 E , from (A.19) it follows that ; ` ni �

�
int

M 0
i and hence by Lemma A.6(ii) that M 0

i + ni. Thus by rule (+ op), M 0
1 opM2 + c

and therefore c �kl
 M 0

1 op M2 (by definition of �kl). Then from Proposition 3.9,
(A.20), and transitivity of�, we have that c � N and hence (by Lemma A.5(iii))
that (A.18) does indeed hold.



Case (+ app). Suppose (F; �x :M); (M [A=x]; C) 2 E and that

; ` F A ��
�0 N (A.21)

We must show that

; ` C ��
�0 N (A.22)

Now (A.21) must have been deduced by an application of (�� app) to

; ` F ��
�!�0 F 0 (A.23)

; ` A ��
� A

0 (A.24)

and

F 0A0 ��0 N (A.25)

for some terms F 0; A0. Since (F; �x :M) 2 E , ; ` �x :M ��
�0 F 0 holds by (A.23).

This can only have been derived by an application of (�� abs) to

x : � `M ��
�0 M 0 (A.26)

and

�x :M 0 ��!�0 F 0 (A.27)

for some term M 0. Applying Lemma A.5(iv) to (A.24) and (A.26), we have that
; ` M [A=x] ��

�0 M 0[A0=x]. Then since (M [A=x]; C) 2 E , it follows from this
that

; ` C ��
�0 M 0[A0=x] (A.28)

Since� is a PCFL simulation, from property (sim 3) in Figure 4 applied to (A.27),
we get

(�x :M 0)A0 ��0 F 0A0 (A.29)

Note that by definition of �kl, we always have M 0[A0=x] �kl
�0 (�x :M 0)A0 and

hence by Proposition 3.9, ; ` M 0[A0=x] ��0 (�x :M 0)A0. Combining this with
(A.25), (A.29) and transitivity of �, we get M 0[A; =x] ��0 N . Lemma A.5(i)
applied to this and (A.28) yields (A.22), as required.



Case (+ fix). Suppose (M [�x x :M=x]; C) 2 E and that

; ` �xx :M ��
� N (A.30)

We must show that

; ` C ��
� N (A.31)

Now (A.30) must have been deduced by an application of (�� fix) to

x : � `M ��
� M

0 (A.32)

and

�xx :M 0 �� N (A.33)

for some term M 0. Applying (�� fix) to (A.32) and �x x :M 0 �� �xx :M 0 (us-
ing the fact that � is reflexive), we get ; ` �xx :M ��

� �xx :M 0. Applying
Lemma A.5(iv) to this and (A.32) yields ; ` M [�x x :M=x] ��

� M
0[�xx :M 0=x].

Then since (M [�x x :M=x]; C) 2 E , we deduce that

; ` C ��
� M

0[�xx :M 0=x] (A.34)

Note that by definition of �kl, one always has M 0[�x x :M 0=x] �kl
� �xx :M 0, and

hence also M 0[�x x :M 0=x] �� �xx :M 0 (by Proposition 3.9). Combining this
with (A.33), we get M 0[�xx :M 0=x] �� N . Applying Lemma A.5(i) to this and
(A.34) yields (A.31), as required.

Case (+ fst). Suppose (P; hM1;M2i); (M1; C) 2 E and that

; ` fst(P ) ��
�1
N (A.35)

We must show that

; ` C ��
�1
N (A.36)

Now (A.35) must have been deduced by an application of (�� fst) to

; ` P ��
�1��2

P 0 (A.37)

and

fst(P 0) ��1 N (A.38)

for some term P 0. Since (P; hM1;M2i) 2 E , from (A.37) we get

; ` hM1;M2i �
�
�1��2 P

0:



This must have been deduced by an application of (�� pair) to

; `Mi �
�
�i
M 0

i (i = 1; 2) (A.39)

hM 0
1;M

0
2i ��1��2 P

0 (A.40)

for some terms M 0
1;M

0
2. Since (M1; C) 2 E , from (A.39) we get

; ` C ��
�1
M 0

1 (A.41)

Since� is a PCFL simulation, it satisfies property (sim 4) in Figure 4, and so (A.40)
implies

fst(hM 0
1;M

0
2i) ��1 fst(P 0) (A.42)

Note that by definition of �kl, one always has M 0
1 �

kl
�1

fst(hM 0
1;M

0
2i), and hence

and hence also M 0
1 ��1 fst(hM 0

1;M
0
2i) (by Proposition 3.9). Combining this with

(A.38) and (A.42) we get M 0
1 ��1 N . Applying Lemma A.5(i) to this and (A.41)

yields (A.36), as required.

Case (+ snd) is similar to the previous case.

Case (+ case1) is similar to the case for (+ cond1), but using the fact (evident
from the definition of �kl) that if L0 + nil, then M 0

1 �
kl
�0 case L0 of fnil!M 0

1 j
h :: t!M 0

2g.

Case (+ case2) is similar to the case for (+ app), but using the fact (evident from
the definition of �kl) that if L0 +H 0 :: T 0, then

M 0
2[H

0=h; T 0=t] �kl
�0 case L0 of fnil!M1 j h :: t!M2g:

This completes the proof of Lemma A.7.

Proposition A.8. For all �; �;M;N

� `M ��
� N , � `M ��

� N:

Proof. We have already proved the left to right implication in part (iii) of
Lemma A.5. For the converse, note that by part (iv) of that lemma, and by
the construction of �� from � (Definition 3.7), it suffices to prove the implication
just for closed terms:

; `M ��
� N )M �� N:

By the co-induction principle for � (Proposition 3.5), it suffices to show that S is
a PCFL simulation, where

S�
def
= f(M;N) j ; `M ��

� Ng:

But the fact that S � hSi follows immediately by combining Lemmas A.6 and
A.7.



We can now complete the proof of Theorem A.3.

Proof of Theorem A.3. We have seen that �, and hence also ��, is reflexive and
transitive. So it just remains to see that �� has properties (A.1), (A.2), and (A.5)–
(A.8) of Definition A.1. The weakening property (A.1) is an immediate conse-
quence of the construction of �� from �. For the other properties, it suffices by
Proposition A.8 to check that they hold for ��. The substitution properties (A.2)
and (A.5) are both instances of Lemma A.5(iv) (using reflexivity of��, established
in part (ii) of that lemma). Finally, (A.6)–(A.8) hold for �� by construction. For
example, if �; x : � `M ��

�0 M 0, then by (�� abs) (takingN = �x :M 0 and using
the fact that �� is reflexive) one has � ` �x :M ��

�!�0 �x :M 0.

Corollary A.9. For all �; �;M;N

� `M ��
� N ) � `M �gnd

� N:

Proof. Suppose � ` M ��
� N and that C[��] is a context for which C[M ] and

C[N ] are closed terms of ground type,  say. Since by Theorem A.3 �� is a
precongruence relation, it follows from Lemma A.2 that ; ` C[M ] ��

 C[N ], that
is, C[M ] � C[N ]. So if C[M ] + c, then by the simulation properties (sim 1) and
(sim 2) of � it is also the case that C[N ] + c. Since this holds for any C[��], we
have that � `M �gnd

� N .

The PCFL contextual preorder is a simulation

Referring back to the beginning of this section, we have now completed part (a)
of the proof of Theorem 3.8, and it remains to prove part (b)—the fact that �gnd

is a PCFL simulation. The reader will be relieved to know that this part is quite
straightforward in comparison with part (a).

Define S 2 Rel by:

S�
def
= f(M;N) j ; `M �gnd

� Ng:

We wish to show that S � hSi. We check each of the simulation properties in
Figure 4 in turn.

Property (sim 1). Suppose M Sbool N and that M + b. Applying the definition of

�gnd with the context C[�bool ]
def
= �bool shows that N + b.

Property (sim 2). is just like the previous case.



Property (sim 3). Suppose F S�!�0 F 0 and that A 2 Exp�. Given any context
C[��0 ] for which C[F A] and C[F 0A] are closed terms of ground type, let C 0[��!�0 ]
be the context obtained by substituting (��!�0)A for ��0 throughout C. Thus
C 0[F ] = C[F A] and similarly with F 0 for F . Then

C[F A] + c) C 0[F ] + c since C 0[F ] = C[F A]

) C 0[F 0] + c since ; ` F �gnd
�!�0 F

0

) C[F 0A] + c since C 0[F 0] = C[F 0A].

Thus ; ` F A �gnd
�0 F 0A, that is, F A S�0 F 0A, as required.

Property (sim 4). The proof is like the previous case, but using C 0[��1��2]
def
=

C[fst(��1��2)], and then C 0[��1��2 ]
def
= C[snd(��1��2)].

Property (sim 5). Suppose L S[�] L
0 and that L + nil. Consider the context

C[�[�]]
def
= case�[�] of fnil! true j h :: t! falseg:

Note that C[L] + true if and only if L + nil, and similarly for L0. So if L + nil, since
; ` L �gnd

[�] L0, it follows that C[L0] + true and hence L0 + nil.

Property (sim 6). Suppose L S[�] L
0 and that L +H :: T . Arguing just as in the

previous case, we have that L +H 0 :: T 0 for some terms H 0; T 0. We have to show
that ; ` H �gnd

� H 0 and ; ` T �gnd
[�] T 0.

We make use of PCFL expressions for the functions for taking the head and tail
of a list:

head
def
= �` : case ` of fnil!? j h :: t!hg

tail
def
= �` : case ` of fnil! nil j h :: t! tg

where

?
def
= �x x : x:

Since L +H :: T , it follows from the definition of �=kl (in Proposition 3.9) that

; ` H �=kl
� head L and ; ` T �=kl

[�] tail L

and similarly for L0; H 0; T 0. We saw in Proposition 3.9 that �kl is contained in �.
Hence by Corollary A.9 we have

; ` H �=gnd
� head L and ; ` T �=gnd

[�] tail L



and similarly forL0; H 0; T 0. By an argument similar to that given above for property
(sim 3) of �gnd, the fact that ; ` L �gnd

[�] L0 holds implies that

; ` head L �gnd
� head L0 and ; ` tail L �gnd

[�] tail L0:

Putting all these fact together we have:

H �=gnd head L �gnd head L0 �=gnd H 0

T �=gnd tail L �gnd tail L0 �=gnd T 0

so that ; ` H �gnd
� H 0 and ; ` T �gnd

[�] T 0, as required.

This completes the verification that �gnd restricted to closed terms is a PCFL
simulation. Hence we have that it is contained in PCFL similarity:

; `M �gnd
� N ) ; `M ��

� N (A.43)

In order to complete the proof of the Operational Extensionality Theorem, we must
extend this implication from closed to open terms. To do this we need to verify
that the substitutivity property (2.12) holds for �gnd. As mentioned on page 254,
this property is essentially a consequence of the fact that �-conversion holds up to
contextual equivalence for PCFL.

Lemma A.10. �gnd satisfies property (2.12), that is, if �; x : � ` N �gnd
�0 N 0,

then it is the case that � ` N [M=x] �gnd
�0 N 0[M=x] holds, for any M 2 Exp�(�).

Proof. For any C[��0 ], since C[(�x :N)M ] is of the form C 0[N ] with C 0[��0 ]
def
=

C[(�x : )M ], it follows that �; x : � ` N �gnd
�0 N 0 implies

� ` (�x :N)M �gnd
�0 (�x :N 0)M: (A.44)

We noted on page 263 that as a consequence of Proposition 3.9 '� satisfies the �-
rule for function application; hence by Corollary A.9 one has

� ` N [M=x] �gnd
�0 (�x :N)M and � ` (�x :N 0)M �gnd

�0 N 0[M=x]:

Combining these with (A.44) and transitivity of �gnd yields � ` N [M=x] �gnd
�0

N 0[M=x].

Suppose x : �1; : : : ; xn : �n ` M �gnd
� N holds. Then for any Mi 2 Exp�i

(i = 1; : : : ; n), by applying the lemma repeatedly we get M [ ~M=~x] �gnd
� N [ ~M=~x],

and hence by (A.43) thatM [ ~M=~x] �� N [ ~M=~x]. Thus by definition of��, we have
� ` M ��

� N . Therefore the converse of Corollary A.9 does indeed hold and we
have completed the proof of Theorem 3.8.
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