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Abstract. In this paper we study the use of commutation properties for proving termination of rewrite
systems. Commutation properties may be used to prove termination of a combined system RUJS by
proving termination of B and S separately. We present termination methods for ordinary and for equa-
tional rewrite systems. Commutation is also important for fransformation techniques. We outline the
application of transforms—mappings from terms to terms—to termination in general, and describe vari-

ous specific transforms, including transforms for associative~-commutative rewrite systems.

1. Introduction

Rewrite techniques have been applied to various problems, including the word problem in
universal algebra (Knuth and Bendix, 1970), theorem proving in first order logic (Hsiang, 1985),
proofs of inductive properties of abstract data types (Musser, 1680; Huet & Hullot, 1982), and
computing with rewrite programs (O’Donnell, 1985; Dershowitz, 1985a). Many of these applica-
tions require a terminating rewrite system (see Dershowitz, 1985b). In this paper we study the
use of commutalion properties for proving termination of rewrite systems. We present termina-
tion methods for ordinary and for equationgl! rewrite systems. In particular, we consider termi-
nation of assoctative-commutaetive rewrite systems.

Commutation was used by Rosen (1973) for establishing Church-Rosser properties of com-
binations of rewrite systems, and by Raoult and Vuillemin (1980) for proving operational and
semantic equivalence between recursive programs. Dershowitz (1981) and Guttag, et al. (1983)
apply properties similar to commutation to termination. We use commutation to reduce the
problem of proving termination of a combined system RUS to the problem of proving termina-
tion of the individual systems R and 5 separately. These commmutation properties can often be
easily established for certain systems, such as linear rewrite systems.
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The use of well-founded sets is fundamental for termination arguments. Given a rewrite
system R and a well-founded ordering > on a set W, the problem is to find a mapping from
terms to W, such that well-foundedness of > implies termination of B. We study trensforms,
that is, mappings T from terms to terms, and derive conditions on B, T and > that are
sufficient for termination of B. It turns out that commutation properties play an important role
in such transformation techniques. We present methods for both ordinary and equational
rewrite system. The transforms we describe may be used, for instance, to prove termination of
agsociative—commutative rewrite systems.

2. Definitions

Let T be the set of terms over some set of operator symbols F and some set of variables V.
Terms containing no variables are called ground terms. We write s{t] to indicate that a term s
contains ¢ as a subterm and denote by s[t/u] or just s|u] the result of replacing a particular
occurrence of ¢ by u.

A binary relation — on T'is monotonic if s—¢ implies u[s]—ut], for all terms v, s, and ¢.
It is stable (under substitution) if s-—t implies so—to, for all terms s and ¢, and every substitu-
tion 0. The symbols —7, —" and « denote the transitive, transitive-reflexive, and symmetric
closure of —», respectively. The inverse of — is denoted by «—. A relation — is Noetherian if
there is no infinite sequence t;~ty—t;— - -+, A transitive Noetherian relation is called well-

founded. A reduction ordering is a stable and monotonic well-founded ordering.

An equation is a pair (s,t), written s=t, where s and ¢ are terms. For any set of equations
E, < g denotes the smallest symmetric relation that contains F and is monotonic and stable.
That is, s«+pt if and only if s=c|uo] and t=c{vo], where u=v or v=u is in F. A reduction
ordering > is compatible with E if 8H;E>v4—>;~t implies s > ¢, for all terms s, £, u, and v.
Directed equations, in which every variable appearing on the right-hand side also appears on the
left—hand side, are called rewrtte rules and are written s—>t. A rewrile system is any set R of
rewrite rules. The reduction relation —p is the smallest stable and monotonic relation that con-
tains B, i.e. s—pt if and only if s=c|lo] and t=c|ro], for some rewrite rule /—r in R. We
use R~ to denote the inverse of B, and R* to denote (R UR_I)*.

Let E be a set of equations and B be a rewrite system. The equational rewrite system R /E
{R mod E) is the set consisting of all rules {—r such that [~ ;;u—>3 w—n}r, for some terms u
and v. Consequently, the reduction relation —p g is the relation H;o—-»R OH;, where o denotes
composition of relations. Analogously, if S is a rewrite system, we let R /S be the set of all
rewrite rules [~—r such that lw;u—-»R v—»_;r, for some terms u and v; the relation —p /g is

* *
—+go—*+po—rg,

Let B /E be an equational rewrite system. We write slp /gt to indicate that there exists a
term u such that S—'};z/Eu*";z/‘Et. The system R/E is Church-Rosser if seéwt implies
slp/gt, for-all terms s and ¢. It is terminating if —p g is Noetherian. An equational rewrite
system R /E terminates if and only if there exists a reduction ordering > that contains R and is
compatible with « ;. A terminating Church-Rosser rewrite system is called canonical. A term



t is irreducible in R /E if there is no term ¢' such that t—p pt'. If t-—v;/Et' and t' is irreduci-
ble in B /E, then t' is called an R/E-normal form of . In a canonical system R /E any two nor-
mal forms t; and #, of a term ¢ are equivalent in £. An ordinary rewrite system R may be
regarded as an equational rewrite system R /E, where E is the empty set. Hence, all the
definitions above apply to ordinary rewrite systems.

3. Commutation

Commuting rewrite systems have been investigated by Rosen {1973) and Raoult and Vuille-
min (1980), among others. In this paper, we present new termination methods based on commu-
tation that apply to ordinary as well as to equational rewrite systems.

Definition 1. Let R and § be rewrite systems. We say that R and S commaute if «—po—>g is
contained in —>go+—p (see Fig. 1).

For termination arguments the following non-symmetric commutation properties are also impor-
tant.

Definition 2. A rewrite system R commutes over another system S if —go~+p is contained in
. - . . . * .

~rpo—+g; R quasi-commutes over § if —go—>p is contained in —zo—rp 5 (see Fig. 1}. We say

that R commutes over a set of equations E if «<g«—p is contained in —-»ReH;;; R quasi-

* * 3 s * *
commutes over E if <> go—rp is contained in —pot> go—rp /g
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R and § commute R commutes over S R quasi —commutes over S
Fig. 1

Lemma 1. Let R and S be two rewrite systems. Then the combined system RUS s terminating
if and only if both R /S and S are.

Lemma 2. If a rewrite system R quasi-commutes over another system S, then R /8 is terminat-
ing tf and only if R 1s.

Proof. Trivially, if R /S is terminating, so is B. For the other direction, assume that R /S is
not terminating. Then there exists an infinite derivation tl—->;t2-—*R t3—+;t4——+R * ++ containing
an infinite number of applications of B. By the fact that B quasi-commutes over S, any appli-
cation of R (beginning with t,—pt;) can be pushed back through all preceding applications of



S. Thus there must also be an infinite derivation for R alone. O
Combining the above two lemmata, we have

THEOREM 1. If a rewrite system R quasi—-commutes over a rewrite system S, then the com-
bined system R U S terminates if and only if R and S both do.

Syntactic properties of rewrite systems, such as linearity, may be helpful for establishing
commutation; see, for example, Raoult and Vuillemin {1980). A term in which no variable
appears more than once is called linear. A rewrite system R is called left-linear, if all left-hand
sides of rules in R are linear; right-linear, if all right-hand sides are linear; and linear, if it is
both left— and right-linear. A term s overlaps a term ¢ if it can be unified with some non-
variable subterm of t. We say that there is no overlap between s and ¢ if neither s overlaps ¢
nor ¢ overlaps s.

Lemma 3. (Raoult and Vuillemin, 1980) Let R be a left-linear and S be a right-linear rewrite
system. If there is no overlap between a left-hand side of R and a right-hand side of S, then R
quasi-commutes over S. 4

Putting Lemma 3 and Theorem 1 together, we obtain

THEOREM 2. (Dershowitz, 1981) Let R be a left-linear and S be a right-linear rewrite system.
If there is no overlap between lefi-hand sides of R and right-hand sides of S, then the combined
system RUS terminates, if and only of R and S both do.

Example 1. The systems
(z4y)z — zz4y2
and

Tz

4z

z

—_—
—_ oz

both terminate. The first is left-linear and the second has only variables on the right; therefore
their union also terminates.

Similar results hold for equational rewrite systems. Note that the relations (RUS)/E and
R /EUS [E are the same.

PROPOSITION 1. Let E be a set of equations and R and S be rewrite systems such that R/E
quasi-commutes over S/E. Then (RUS)/E terminates if and only if R/E and S/E both do.

The relation R/E quasi-commutes over S/E if and only if —go—p,p is contained in
—p /Eo-—v(}u 5)/g- This condition is slightly weaker than quasi-commutation of B /E over S.

PROPOSITION 2. (Jouannaud and Munoz, 1984) Let R/E be an equational rewrite system such
that R quasi~commutes over E. Then R terminates if and only if R/E does.

Again, linearity may be used to advantage.

THEOREM 3. Suppose E is linear, R s left-linear, and S is right-linear. If there is no overlap
between a right-hand side of S and a lefi-hand side of R or either side of an equation in E, then



(RUS)/E terminates if and only if R/E and S both do.
Exarmple 2. (Distributive latiices) Let R be

(zny)Uz  —  (zUz)N(yUz2)

S be
zfzUy) — =
zUz — T
Mz —
and E be
zU(yUz) = (sUy)uz
Uy = yUz
zM(yNz) = (zNy)Nz
=y = YNz

E is linear, R is left-linear, and S contains only variables on the right-hand side. By the above
theorem, (RUS)/E terminates if § and R /E both do. Termination of § is trivial, since every
rule in S is length—decreasing. To prove termination of B /E one can, for example, use a poly-
nomial interpretation r, where 7, is hzy.z*y and 7 is hzy.z+y+1.

4. Transformation

The notion of well-foundedness suggests the following straightforward method of proving
termination (Manna and Ness, 1970, and Lankford, 1975). Given a rewrite system R, find a
well-founded ordering > on terms, such that

s—rpt implies s >1, for all terms s and L.

It is frequently convenient to separate the well-founded ordering > into two parts: a terming-
tion funetion 7 that maps terms in T to a set W, and a “‘standard” well-founded ordering > on
W. We will consider, in this section, mappings 7, called fransforms, that map terms into terms
and can be represented by a canonical rewrite system T'. That is, 7 maps a term ¢ to its
(unique) T-normal form t". We denote by T! the rewrite system consisting of all rules t—t"
‘We assume that the ordering > is a reduction ordering, and thus may also be characterized by
some (possibly infinite) rewrite system §. We will next present termination methods that are
based on certain commutation properties of S and 7.

Convention. From now on we will use the symbols R, R’ and R* to ambiguously denote the
relations —, — and —F, respectively.

Definition 3. A rewrite system R is reducing relative o S and T if it is contained in
T*.So(T")™! (see Fig. 2).
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THEOREM 4. Let R, S, and T be rewrite systems such that T is canonical, S terminates, and S
and T! commute. If R is reducing relative to S and T, then R /T* terminates.

Proof. Suppose that R/T" is not terminating. Then there is an infinite sequence

ty—pty H;-t:,'—*k t4++;- -+ +. Using the facts that R is reducing, T is canonical, and § and
T'! commute, we can construct an infinite sequence u;~>g uy—>g ug—rg - * * as shown in Fig. 3.
R T R T R T
a reducing 7 T reducing T’ T reducing 7' T*
confl confl confluence .
S S S
T! T T T T! T!
commutation commutation
S 5 ces
Fig. 3

This contradicts the fact that S is terminating. O

COROLLARY 1. Let B, S, T, and TV be rewrite systems such that T is canonteal, S terminates,
and S and T! commute. If T' is contained sn T and R is reducing relative to S and T, then
R /T terminates.

For termination proofs symbolic inierpretations of operators are often useful. These consist
of a single rewrite rule f{z, ..., x,)=t{zy, . .., %,], where ¢ is a term containing all variables
Ty, .+ . , Ty, but not containing f. Such transforms are obviously canonical. They may be used,
for instance, to declare two operators equivalent (for the purpose of proving termination). The
T -normalized version Ry of R consists of all rewrite rules *—r", where I" and r" are T-normal
forms of I and r, respectively, for some rule {—r is in R.
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Lemma 4. Let R be a rewrite system, T be a symbolic interpretation, and Ry be the T-
1
normalized version of R. Then R is reducing relative to Ry and T, and R and T! commute.

Proof. That R is reducing relative to Ry and T follows imxmediately from the definition of Ryp.
To prove commutation of RF and T! we show that, for all rules I—r in Ry, ullo]—p u[ro]
implies '—p r', where I' and r' are T-normal forms of u{lo] and u[ro], respectively. These
normal forms may be obtained by first applying T in the substitution part of o, and then apply-
ing further reduction steps in the context w. That is, u[lo]—»}u[lp]—»T,v[lp, ..., Ip]=l' and,
similarly, u[ro]-—-r;u[rp]-—»ﬂv{rp, .., rp]=r'. Obviously, '—% ¢’ O

Combining Corollary 1 and Lemma 4, we obtain

PROPOSITION 8. Let R and T' be rewrite systems and T be a symbolic interpretation and sup-
pose that T! is contained in T™. Then R /T' is terminating if Rp is.

Example 3. Let B be

9(z,y) —  h(zy)
h(f(z)y) —  f(g(z¥))

We use the first rule as a transform T and let B’ be the second rule. The T-normalized version
Ryp' of R is

h(f(z)y)  —  f(h(=zy))

Ry’ terminates, since it decreases the summed length of all the terms with outermost operator A.
By Proposition 3, this implies termination of R'/T. Since T is terminating, so is R=R'UT.

“Local” commutation of S and T in general does not imply commutation of S and T!, but
only commutation of S and . If S /T terminates, then a commutation property may be used
that can be established by a local test.

Lemma 5. Suppose that T is canonical and S/T terminates. Then (S/T)" and T" commute,
tf +—po—>g is contained in -»;/To«—;».

Proof. By Noetherian induction on SUT. Note that SUT is Noetherian, since both T and S / T
are. O

Again linearity is useful for establishing commutation. A rewrite rule [—r is non—annihilating if
every variable appearing in ! also appears in r.

Lemma 6. Let S and T be rewrite systems. If T s left-linear and non—annihilating and there
ts no overlap between left-hand sides of S and T, then «—po—rg is contained in ""*3-/2*04"“;.

Proof. Suppose that ¢c«—pt—5d. We distinguish three cases.

a) If the two reduction steps apply at disjoint positions, Le. w|r,l]«—pull,rl—gull,r)],
then ulr V)] —gufr,r'le—pull,r'].

b) If the S-reduction step applies in the variable part of the T-reduction step, i.e.
v, ... l|—pull]—gu|r], then v[l, ..., l]—dv[r, ..., rl«pulr] (there has to be at least
one S-reduction step, since T is non-annihilating).

c) If the T-reduction step applies in the variable part of the S-reduction step, i.e.
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ulr)e—rpullj]—gv{l, .. ., 1], then we have u[r]—gv|r, . .. r]e=pufl, ... 1. O

THEOREM 6. Let B, S, and T be rewrite systems such that T is canonical, S/T terminates,
and (S/T)* and T' commute. If R is reducing relative to S/T and T, then R/T* terminates.

Proof. The same as the proof of Theorem 4, except that instead of S we have S/T, and instead
of T!we have T". O

Example 4. Let R be the following rewrite system for computing the factorial function (Kamin
and Levy, 1980):
fls(z))  —  [f(p(s(2)))
o) — 50
p(s(z)) — =
We use the last rule as a transform T and let R' be R—T. T is length~decreasing, hence ter-
minating. The T-normalized version Ry of R' is

fls(2) —  [(s)
f© — s(0)

R4'UT is terminating, since each rule either decreases the length of a term, or maintains the
length and decreases the number of occurrences of f. Also, since T is linear, non-annihilating,
and does not overlap with left-hand sides of Ry, the relations (Rp'/T)* and T" commute. By
Theorem 5, R'/T is terminating, which, together with termination of T, implies termination of
R.

The termination methods outlined above may also be applied to equational rewrite systems
R /E by using transforms T' such that E is contained in T,

Suppose I consists of the axioms for identily, f{z,e)=z and [(e,z)=z. Let Ty be the
transform {f(z,e)—=z, f(e,z)—=z}. This transform is canonical. Given a rewrite system R, let
R; consist of all rules u—wv, where u and v are T;~normal forms of lo and ro, respectively,
l—r is in R, and ¢ is a substitution such that zo is either z or ¢, for all variables z. If {—r is
in Ry, and zo is either z or e, then I*—r' is also in R}, where I’ and r’ are Ty-normal forms of
{o and ro, respectively. Let B; contain R, and, in addition, for every rule e—r in Ry, where
r#e, rules z-—f(z,r) and z—f(r,z); for every rule [—e¢ in R/, where Is¢, rules f(z,/)-z and
f(l,z)—2; and the rule z—=z, if e—e¢ is in B} (the additional rules are necessary for commuta-
tion of Ry and Ty). If R is finite, so is B;.

Lemma 7. Let R be o rewrite system and Ty and Ry be as defined above. Then R is reducing
relative to T; and By, and By and T commute.

Proof. That R is reducing relative to T} and R follows from the definition of R;. For commu-
tation, it suffices to show that, for all rules /[—r in R; and all terms ¢ and substitutions o,
u—p,v, where u and v are T;—normal forms of c¢[lo] and u[ro], respectively. Without loss of
generality, we may assume that ¢ and o are irreducible in T;. Let ¢’ be a substitution such that
zo' is e, if 0 is e, and zo’ is 7, otherwise. The assertion can be easily shown if I-—r is not in
Ry, If l—r isin R/, then, by the remark above, I'—r' i3 in R/, where !’ and r' are T-normal
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forms of {¢’ and ro’, respectively. Since o=c'sp, for some substitution p, we obtain lo—>p,l'p
and ro—p,r'p. Since ¢, I'p, and r'p are irreducible in T}, are irreducible in T}, the assertion

can be easily established. O
PROPOSITION 4. An equational system R /T terminates if and only if B; terminates.

Proof. The if-direction follows from Lemma 7. The only-if-direction holds because R; is con-
tained in R/I. O

The requirement—in the theorems above—that the transform T be canonical may be some-
what relaxed. We say that a rewrite system R is confluent modulo E if, for all terms s, ¢, u,
and v with u«—ps«rgt—pv there exist terms u’ and v’ such that u—pu' &5 v'«—pv.

Lemma 8. (Huet, 1980) Let R be a terminating rewrite system. Then R is confluent modulo E
if and only if, for all terms s and t, s«-—rgukt implies 8—’R!0H204—‘R!t.

In other words, if R is terminating and confluent modulo E, then two terms are equivalent in
EUR if and only if their respective B-normal forms are equivalent in £.

THEOREM 8. Let R, 8, and T be rewrite systems and E be an equational theory. Suppose that
T is terminating and confluent modulo E, S/E is terminating, and S and T! commute. If R is
reducing relative to S and T, then R f{(EUT*") terminates.

Proof. Let t,—p tyer ;uT tz—p t44—r;ur_,~ *++ be an infinite sequence. Under the given
assumptions, an infinite sequence of S /E reduction steps can be constructed as follows:

R (EUTY R (BEUT)” R
T reducing T T reducing T T* reducing o
confluence confluence
S module E S modulo E S
T! T! | commutation T! TV | commutation !
E’ 3 E* s
Fig. 4

0

COROLLARY 2. Let R, S, and T be rewrite systems and E be an equational theory. Suppose
that T is terminating and confluent modulo E, (S/T)/E is terminating, and (S/T)* and T
commute. If R is reducing relative to S/T and T, then R J(EUT") terminates.
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Recall that Lemma 5 provides a local test for commutation of (S/T)* and T". In the next sec-
tion we consider particular transforms in depth.

6. Transforms Based on Distributivity and Associativity

Equational rewrite systems R/E, where E is a set of associativity and commutativity
axioms, are of particular importance in practice. We will apply the transformation techniques
outlined above to the termination problem for such systems (AC termination).

Let f be some operator symbol in F. An associativity aziom for f is an equation of the
form f(z,f(y,2))=f{f(z,y)z) or f{f(z,y)z)=f(2,f{y,2)}, & commuiativity aziom is an equa-
tion of the form f(z,y)=f(y,z). An equational rewrite system R/E is called associative—
commutative if E contains only associativity and commutativity axioms. From now on let AC
denote a set of associativity and commutativity axioms for which any associative operator is also
commutative and vice versa. We say that f is in AC to indicate that f is an associative-
commutative operator.

Let > be an ordering, called a precedence ordering, on the set of operator symbols F. We
define the rewrite relation RPO recursively as follows:
a) f(' s )—rpos,
B) f( s )mppof (st 8y ), if s—rgpos;, for 1i<n,
e) s=f{sy, ...,8,)rpod(ty, . - -, 4), i f>g and s—ppot;, for 1<k,

The recursive path ordering >, associated with > is the transitive closure —fpo of —ppo-

Lemma 9. (Dershowitz, 1982) Let > be a precedence ordering on the set of operator symbols F .
Then >, is well-founded if and only if > 15 well-founded.

Recall that a reduction ordering > is compatible with AC if SH;Cu > vH;Ct implies s >,
for all terms s, ¢, u, and v. A rewrite system R /AC terminates if and only if there is a reduc-
tion ordering > that is compatible with AC, such that l-——pr implies />r. Unfortunately,
many reduction orderings are not compatible with AC. For instance, the recursive path order-
ing >, is not: if f isin AC and a> b, then

f(a,f(b,b))«-)ACf(f(a,b),b)>,.I,of(a,f(b,b)),
but f(a,f(6,6))>,p, f(a,f(b,b)) is false.

We will design a transform T such that, for some set of equations E, (a) T is terminating
and confluent modulo E, (b) AC is contained in EUT®, (c¢) (S/T)/E is terminating, and (d)
($/T)* and T" commute. For § we will use the recursive path ordering, restricted to terms
irreducible in 7. For E we use the permutation congruence ~, which is the smallest stable
congruence, such that f{X,u,Y,v,Z)~f(X,v,Y,u,Z). If property {a) is satisfied then T-
irreducible terms are unique up to equivalence in ¥ and may serve as representatives for AC~
equivalence classes. A natural choice for such a canonical representation are ‘“‘flattened” terms.
Let L be the rewrite system consisting of all reduction rules (on varyadic terms) of the form
J (X (YY), 2)—f(X,Y,Z), where [ is in AC, Y denotes a sequence of variables y,, . .., y, of
length n>2, and X and Z are sequence of variables of length k and [, respectively, where
k+i>1. For example, f(z,f(y,2))—/(z,y,2) is a “flattening rule”, but f(f(z))—f(z) is not.
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Terms irreducible in L are called flattened.

Lemma 10. The rewrite system L is canonical, L /[~ is terminating, and AC is contained in
~UL*™,
Any recursive path ordering >,,, contains L and is compatible with the permutation
congruence ~. Therefore (RPO/L)}/~ is terminating. Unfortunately, the commutation pro-
perty {d) is not satisfied, as the following example illustrates: if f is in AC and f>g, then
f{a,b)—rpoy(a,b) and
fla,b,e)«— f(f(a,b),c)—gpo f(g(asb).c).
Both f(a,b,c) and f(g(e,b),c) are flattened, but f(g(a,b),c)—pgpof(a,b,c). However, if the
transform T contains, in addition to L, the rewrite rule f(g{z,y),2)—9(f (2,2),f (y,2)), then
fla,b,e)—ppog(f(a,c),f(b,c))—rg(f(a,b).c).

Let > be a well-founded precedence ordering. A distributivity rule for f and g is a rewrite

rule of the form
f(X,9(Y),2) — ¢(f (X,91,2), -+, f (X 90y 2)),

where Y is a sequence y, . . ., y, of length n>>1, f >g, and neither f nor g are constants. For
example, z*(y+z)—z¥y+z*z and —(z+y)—(—z)+{(—y) are distributivity rules, Such sets of
distributivity rules are terminating (they are contained in >,,,) but not canonical, in general.
For example, if f distributes over both g and h, then the term f{g(z),h(y)) can be transformed
to two different terms, g(h(f(z,y))) or A(¢(f(z,y))). To guarantee that properties (a)-(d) above
are satisfied, we have to impose certain restrictions on sets of distributivity rules.

Let Fp be a set of non-constant operator symbols f containing all AC operators. Let D be
the set of all distributivity rules for / and g, where f and ¢ are in ¥, and f>g. The rewrite
system T=LUD, where L consists of all flattening rules for operators in Fp, is called the 4-
transform corresponding to > and Fp. Let F' be F—{c }, if ¢ is minimal among all constants,
or F, if there is no such constant.

Definition 4. A precedence ordering > satisfies the associative path condition for Fp, if Fy
can be partitioned into two sets {f, . .., f,} and {gy, . . ., g }, such that n<m and

a) g; is minimal in F/, for 1</ <m,

b) fi>g;, for 1<i<n,

c) f; is minimal in F'—{g;}, for 1<s<n.

For example, if f, g, & and ¢ are in Fp, then the precedence orderings shown in Figs. 5(a}) and
5(b) do not satisfy the associative path condition, but the ordering in Fig. 5(c) does.

Lemma 11. Let > be a precedence ordering that satisfies the associative path condition, T be
the corresponding A-transform, and S be the corresponding rewrite system consisting of all pairs
l—r such that I>,,,r and | and r are trreducible in T. Then

a) T is terminating and confluent modulo ~,

b) AC is contained in EUT*",

¢) {(S/T)/~ is terminating, and

d)(S/T)* and T* commute.
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Sketch of proof. Part (b) follows from Lemma 10. The recursive path ordering >,po contains
both $ and 7 and is compatible with the permutation congruence ~. Therefore (S/T)/~ is
terminating. For confluence T modulo ~ it suffices to prove c—>;-s~t<-—;'d, for all “‘eritical
overlaps” c«~pu—rpd or c+—pu~d. The restrictions on the precedence ordering > are essen-
tial for the proof of this confluence property.

By Lemma 5, (S/T)* and T" commute if, for all terms s, ¢, and « with s<—pu—rgt, there
exist terms v and w, such that s——r}u-»sw«-;. This is implied by the following two properties:
(i) Monotonicity. If I-»r is in S, then, for any term ¢, I'—Jr', where ! and r' are T-
normal forms of ¢|l] and ¢[r], respectively.
(i1} Stabslity. If l—r is in S, then, for any substitution o, I'—$r', where I' and r' are T-
normal forms of lo and ro, respectively.
Both properties can be proved by induction on the length of / and r. D

f\ / /f\ f
g p h g
2) b) <)
Fig. 5
Definition 5. Let T be the A -transform corresponding to some precedence ordering >. The
associative path ordering >, is defined by:

§> gpot tf and only if, s*>,pot*,
where s* and ¢ are T-normal forms of s and t, respectively.

Summarizing the results above we have the following theorems for AC termination.

THEOREM 7. If > is a well-founded precedence ordering that satisfies the associative path con-
dition, then the corresponding associative path ordering > .., ts a reduction ordering and is com-
patible with AC.

THEOREM 8. Let > be a precedence ordering that satisfies the associative path condition and
T be the corresponding A-transform. Suppose that T' is contained in T, If I> g1, for every
rule [—r in R, then R [(T'"UAC) terminates.
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Transformation techniques for AC termination were first suggested by Dershowitz, et al.
(1983). The associative path ordering described above is simpler than the ordering given by
Bachmair and Plaisted (1985). In particular, Theorem 7 implies that

tf 8> 450t then 50> o to, for any substitution o.

This “lifting lemma’’ allows efficient implementations of the associative path ordering based on
the recursive path ordering. The A-transform may also be used in combination with a lexico-
graphic path ordering. More precisely, operators that are not in AC may be given lexicographic
status, i.e. some positions in a term may be given more significance than others (see Kamin &
Levy, 1880). A-transforms may be extended to include symbolic interpretations of non-AC
operators. That is, the results above also hold for transforms T=T,UT,, where T is an 4~
transform corresponding to a precedence ordering > and a set of operator symbols Fp, and T,
consists of a single rule f(z, . . . ,z,)—t[zy, . . ., %], where [ is not in Fp.

Example 6. (Boolean algebra). The following canonical rewrite system for boolean algebra is
due to Hsiang (1985). We outline a termination proof using an associative path ordering. R
consists of the following rules:

@ false — =z
zAfalse - false
zM\true EadiE 1
Az - T
(z@y)Az —  (sA2)D(yAz)
Pz —  false
sVy  —  (eAy)D(zBy)
Dy  —  (eAy)B(cPtrue)
zzmy —  {(zPy)Ptrue
g =~ zPirue

The operators @ and A are in AC. Let > be the precedence ordering shown in the Hasse
diagram in Fig. 6, and T be the A-transform corresponding to > and Fp={A,D}, extended by
a symbolic interpretation {false —true}. The fifth rule of R is a distributivity rule and is placed
in T'. Let R’ be R—T". Since I>,y,r, for all rules /> in R', we may conclude, by Theorem
8, that R'/(T'UAC) terminates. The system T'/AC also terminates (see Example 2), which
implies termination of R /AC=(R'UT")/AC.

Example 6. (Modules). Let A be an associative-commutative ring with identity. An A~
module M over A is an algebraic structure consisting of operations P:MxM—M and
tAxM—+M, such that (M,P) is an abelian group (the identity of the group is denoted by (1, the
inverse to @ by I) and the following identities hold: a8 z)=(a*f)z, 1-z=z,
(a40) z=(a'z){f z) and a(zy)=(a'z){a-y). For the sake of readability we use Greek letters for
variables ranging over elements of A, and Roman letters for variables ranging over elements of
M. The following rewrite system R was obtained with the rewrite rule laboratory RRL (see
Kapur & Sivakumar, 1984);
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The operators +, *, and P are in AC. To prove termination of R /AC we use the associative
path ordering corresponding to the precedence ordering > shown in the Hasse diagram in Fig. 7.
The operator - has lexicographic status (right to left). Let T’ consist of the sixth and eighth
rule, and R be R—T7’. Then T'is contained in the A -transform T corresponding to >. Since
I> 4o, for all rules I—r in R, R'/(T'UAC) is terminating. Termination of T'/AC can be
proved separately, which implies termination of R /A C.

N
1 7

@

| 4

true [false o1/

Fig. 6 Fig. 7
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A-transforms may also be used for proving termination of ordinary rewrite systems.

Example 7. (Associativity and endomorphism). Let R be the following rewrite system (Ben
Cherifa and Lescanne, 1985):
(zy)z — =z(yz)
fle)yfly) —  f(=zy)
fz)(fly)z) —  f(zy)=e

Let T’ be the first rule of B and R' be R—R'. Since T is terminating, R terminates if R'/T"
terminates. Let T be the A~transform corresponding to a precedence ordering >, where [ is
smaller than - and f and - are in Fj. Then we have [>,,r, for both rewrite rules {—r in R’
Since T’ is contained in T, R'/T" is terminating.

8. Summary

We have presented termination methods based on commutation properties, and have
developed an abstract framework for describing transformation techniques. These general
results have led us to the development of various particular transforms, including methods for
proving termination of equational rewrite systems R /E, where E contains associativity, commu-
tativity, and identity axioms. It should be possible to automate, to a certain degree, the process
of developing transforms for certain classes of rewrite systems by using a ‘“‘completion-like’” pro-
cedure as suggested by Jouannaud and Munoz (1984).
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