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.Abstract .  In this paper we study the use of commutation properties for proving termination of rewrite 

systems. Commutation properties may be used to prove termination of a combined system RUS by 

proving termination of R and S separately. We present termination methods for ordinary and for equa- 

tional rewrite systems. Commutation is also important for transformation techniques. We outline the 

application of transforms--mappings from terms to terms--to termination in general, and describe vari- 

ous specific transforms, including transforms for associative-commutative rewrite systems. 

1. I n t r o d u c t i o n  

Rewrite techniques have been applied to various problems, including the word problem in 

universal algebra (Knuth and Bendix, 1970), theorem proving in first order logic (Hsiang, 1985), 

proofs of inductive properties of abstract data  types (Musser, 1980; Huet & Hullot, 1982), and 

computing with rewrite programs (O'Donnetl, 1985; Dershowitz, 1985a). Many of these applica- 

tions require a terminating rewrite system (see Dershowitz, 1985b). In this paper we study the 

use of commutation properties for proving termination of rewrite systems. We present termina- 

tion methods for ordinary and for equational rewrite systems. In particular, we consider termi- 

nation of associative-commutative rewrite systems. 

Commutation was used by Rosen (1973) for establishing Church-Rosser properties of com- 

binations of rewrite systems, and by Raoult and Vuillemin (1980) for proving operational and 

semantic equivalence between recurslve programs. Dershowitz (1981) and Guttag, et al. (1983) 

apply properties similar to commutation to termination. We use commutation to reduce the 

problem of proving termination of a combined system RUS to the problem of proving termina- 

tion of the individual systems R and S separately. These commutation properties can often be 

easily established for certain systems, such as linear rewrite systems. 

* This research was supported in part by the National Science Foundation under grant DCR 85-13417. 



The  use of wel l-founded sets is fundamental  for terminat ion arguments.  Given a rewrite 

system R and a well-founded ordering ~ on a set W, the problem is to find a mapping f rom 

terms to W, such tha t  well-foundedness of > implies terminat ion of R .  We study transforms, 
t ha t  is, mappings T f rom terms to terms, and derive conditions on R ,  T and > tha t  are 

sufficient for terminat ion of R .  It  turns out  tha t  commuta t ion  properties play an impor tan t  rote 

in such t ransformat ion techniques. We present methods for both ordinary and equat ional  

rewrite system. The  transforms we describe may  be used, for instance, to prove terminat ion of 

associa t ive-commutat ive  rewrite systems. 

2. D e f i n i t i o n s  

Let  T b e  the set of terms over some set of operator  symbols F and some set of variables V. 

Te rms  containing no variables are called ground terms. We write sit] to indicate that  a t e rm s 

contains t as a subterm and denote by sit/u] or jus t  s[u] the result of replacing a par t icular  

occurrence of t by u. 

A binary relation ~ on Tis  monotonic if s--*t implies u[s]--*u[t], for all terms u, s, and t .  

I t  is stable (under substitution) if s---~t implies sa---*ta, for all terms s and t, and every substi tu-  
_==~* t ion a. The  symbols ---*+, and ~ denote the transitive, transit ive-reflexive,  and symmetr ic  

closure of  --% respectively. The  inverse of --* is denoted by ~--. A relation --~ is Noetherian if  

there  is no infinite sequence tl--*t2--*t3---*" - • . A transi t ive Noetherian relation is called well- 
founded. A reduction ordering is a stable and monotonic well-founded ordering. 

An equation is a pair (s,t), writ ten s~t,  where s and t are terms. For  any set of equations 

E ,  *'~E denotes the smallest symmetric  relation tha t  contains E and is monotonic and stable. 

T h a t  is, s~-*Et if and only if s-~c[ua t and tfc[va], where u=v or v-~u is in E .  A reduct ion 

ordering :> is compatible with E if s÷-*Eu>v~--~Et implies s> t ,  for all terms s, t, u, and v. 

Directed equations, in which every variable appearing on the r igh t -hand  side also appears on the  

l e f t -hand  side, are called rewrite rules and are wri t ten s--~t. A rewrite system is any set R of  

rewrite rules. The  reduction relation "*R is the smallest stable and monotonic relation tha t  con- 

rains R ,  i.e. s---*Rt if and only if s=c[la] 
use R -1 to denote the inverse of R,  and R ~ 

Let  E be a set of equations and R be a 

(R rood E) is the set consisting of  all rules 

and t=c[ra], for some rewrite rule l--*r in R .  We 

to denote (R UR-1)  *. 

rewrite system. The equational rewrite system R /E  
l---*r such tha t  l~--~Eu---*Rv~-*zr, for some terms u 

and v. Consequently, the reduction relation --~R/~ is the relation ~-+Bo--~Ro<-+E, where o denotes 

composition of relations. Analogously, if S is a rewrite system, we let R//S be the set of all 

rewrite rules l--~r such that l-'+su----~RV---*sr, for some terms u and v; the relation "*R/:~ is 
----+S o--~R o--~S. 

Let RIlE be an equational rewrite system. We write sJ~R/Et to indicate that there exists a 
t e r m  u such tha t  s--}~/l~U~--*R/Et. The system R / E  is Church-Rosscr if s~-~R/Et implies 

S~R/Bt, for-all terms s and t. It  is terminating if  " * R / s  is Noetherian.  An equational  rewri te  

system R / E  terminates  if  and only if there exists a reduction ordering > tha t  contains R and is 

compat ible  with ~-+B. A terminat ing Church-Rosser  rewrite system is called canonical. A te rm 



* t t is irreducible in R / E  if there is no term t I such that t--~R/Et ~. If t---*n/Et and t I is irreduci- 

ble in R / E ,  then t t is called an R/E-normal form of t. In a canonical system R / E  any two nor- 

mal forms t 1 and t2 of a term t are equivalent in E. An ordinary rewrite system R may be 

regarded as an equational rewrite system R / E ,  where E is the empty set. Hence, all the 

definitions above apply to ordinary rewrite systems. 

3. C o m m u t a t i o n  

Commuting rewrite systems have been investigated by Rosen (1973) and Raoult and Vuille- 

rain (1980), among others. In this paper, we present new termination methods based on commu- 

tation that  apply to ordinary as well as to equational rewrite systems. 

Def in i t ion  1. Let R and S be rewrite systems. We say that R and S commute if ~-"/~°-'*s is 

contained in --~SO~-R (see Fig. 1). 

For termination arguments the following non-symmetric commutation properties are also impor- 

tant.  

Def in i t ion  2. A rewrite system R commutes over another system S if ---*SO---~R is contained in 

--*RO---*S; R quasl-commutes over S if --*so---*R is contained in --~RO---,/~tjS (see Fig. 1). We say 

that R commutes over a set of equations E if ~-*g°-'*R is contained in --~Ro+-~/~; R quasi- 

commutes over E if ~-~g°-"~R is contained in ---*I~O~-+Eo--*R/E. 

,, / ", ,4 ", ,4 

s "., ,.-R R'-,, ,.-'s R",, ,.'(Rus)" 
'4# ~," '~," 

R and S commute R c o m m u t e s  over  

Fig. 1 

R quasi-commutes over S 

L e m m a  1. Let R and S be two rewrite systems. Then the combined system Rt2S is terminating 

if and only if both R / S  and S are. 

L e m m a  2. If a rewrite system R quasi-commutes over another system S, then R /S  is terminat- 

iny if and only if R is. 

Proof. Trivially, if R / S  is terminating, so is R. For the other direction, assume that R / S  is 

not terminating. Then there exists an infinite derivation tl---~st2---~R tz--,st4---, R • • " containing 

an infinite number of applications of R. By the fact that R quasi-commutes over S, any appli- 

cation of R (beginning with t2---~ R t3) can be pushed back through all preceding applications of 



S. Thus there must also be an infinite derivation for R alone. [] 

Combining the above two lemmata, we have 

THEOREM 1. If  a rewrite system R quasi-commutes over a rewrite system S, then the com- 

bined system R U S terminates if and only if R and S both do. 

Syntactic properties of rewrite systems, such as linearity, may be helpful for establishing 

commutation; see, for example, Raoult and Vuillemin (1980). A term in which no variable 

appears more than once is called linear. A rewrite system R is called left-linear, if all left-hand 

sides of rules in R are linear; right-linear, if all right-hand sides are linear; and linear, if it is 

both left- and right-linear. A term s overlaps a term t if it can be unified with some non-  

variable subterm of t. We say that there is no overlap between s and t if neither s overlaps t 

nor t overlaps s. 

L e m m a  8. (Raoult and Vuillemin, 1980) Let R be a le#-linear and S be a right-linear rewrite 

system. If  there is no overlap between a left-hand side of R and a right-hand side of S, then R 

quasi-commutes over S.  

Putt ing Lemma 3 and Theorem 1 together, we obtain 

THEOREM 2. (Dershowitz, 1981) Let R be a left-linear and S be a right-linear rewrite system. 

If there is no overlap between left-hand sides of R and right-hand sides of S, then the combined 

system RUS terminates, if and only if R and S both do. 

E x a m p l e  1. The systems 

( ,+y) ' z  --~ z ' z+y ' z  

and 

X ' X  ~ ~g 

5C'~-Z ~ X 

both terminate. The first is left-linear and the second has only variables on the right; therefore 

their union also terminates. 

Similar results hold for equational rewrite systems. Note that the relations (R (.JS)/E and 

R / E U S / E  are the same. 

PROPOSITION 1. Let E be a set of equations and R and S be rewrite systems such that R / E  

quasi-commutes over S /E .  Then (RUS)/E terminates if and only if R / E  and S /E  both do. 

The relation R / E  quasi-commutes over S / E  if and only if ---*SO--+R/I~ is contained in 

--~1~/~o---~(1¢us)/~. This condition is slightly weaker than quasi-commutation of R / E  over S. 

PROPOSITION 2. (Jouannaud and Munoz, 1984~ Let R /E  be an equational rewrite system such 

that R quasi-commutes over E. Then R terminates if and only if R / E  does. 

Again, linearity may be used to advantage. 

THEOREM 3. Suppose E is linear, R is left-linear, and S is right-linear. If  there is no overlap 

between a right-hand side of S and a left-hand side of R or either side of an equation in E, then 



(RUS)/E terminates if and only if R / E  and S both do. 

E x a m p l e  2. (Distributive lattices)Let R be 

S be 

and E be 

(~ny)uz ---, (~u~)n(yu~) 

x n ( x u y )  ~ x 

xUx ---* x 
x N x  ~ z 

• u(yu~) = (~uy)u~ 
xUy = yUx 

xn(ynz) = ( x n y ) n z  

x n y  = ynx 

E is linear, R is left-linear, and S contains only variables on the r ight-hand side. By the above 

theorem, (RUS) /E  terminates if S and R / E  both do. Termination of S is trivial, since every 

rule in S is length-decreasing. To prove termination of R / E  one can, for example, use a poly- 

nomial interpretation r, where v o is kxy.x*y and r n is kxy.xWy-F1. 

4. T r a n s f o r m a t i o n  

The notion of well-foundedness suggests the following straightforward method of proving 

termination (Manna and Ness, 1970, and Lankford, 1975). Given a rewrite system R, find a 

well-founded ordering > on terms, such that  

s---*Rt implies s > t ,  for all terms s and t. 

It  is frequently convenient to separate the well-founded ordering > into two parts: a termina- 

tion function r that  maps terms in T to  a set ~ ,  and a "s tandard"  well-founded ordering ~- on 

~ .  We will consider, in this section, mappings v, called transforms, that  map terms into terms 

and can be represented by a canonical rewrite system T. That  is, r maps a term t to its 

(unique) T-normal  form t*. We denote by TI the rewrite system consisting of all rules t -*t*.  

We assume that  the ordering ~- is a reduction ordering, and thus may also be characterized by 

some (possibly infinite) rewrite system S. We will next present termination methods that  are 

based on certain commutation properties of S and T. 

Convention. From now on we will use the symbols R, R* and R + to ambiguously denote the 

relations -~R, -*R and ---~, respectively. 

De f in i t i on  8. A rewrite system R is reducing relative to S and T if it is contained in 

T*oSo(T*) -1 (see Fig. 2). 
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S 

Fig. 2 

THEOREM 4. Let R, S, and T be rewrite systems such that T is canonical, S ~erminates, and S 

and T!  commute.  I f  R is reducing relative to S and T, then R / T  ~ terminates. 

Proof. Suppose that  R / T  ~ is not terminating. Then there is an infinite sequence 

t l " * R  t~ ~'-'T ta'-*R t4 ~'+T " " "" Using the facts that  R is reducing, T is eanonleal, and S and 

TI commute, we can construct an infinite sequence Ul---, s u~---* s ua---, 3 • • • as shown in Fig. 3. 

reducing 

S 

T* R T* R T* 

T * T * reducing T * T ~ reduelng T * T * 

>. cor.fluence ¢oafluence confluence 

S S 

Fig. 3 

This contradicts the fact that  S is terminating. [] 

COROLLARY 1. Let R ,  S, T,  and T ~ be rewrite systems such that T is canonical, S terminates, 

and S and T! commute.  I f  T ~ is contained in T ~ and R is reducing relative to S and 7", then 

R / T  t terminates. 

For termination proofs symbolic interpretations of operators are often useful. These consist 

of a single rewrite rule f ( x  I . . . . .  x~)---,t[x 1 . . . .  , z~], where t is a term containing all variables 

Xl, . . . , xn, but not containing f .  Such transforms are obviously canonical. They may be used, 

for instance, to declare two operators equivalent (for the purpose of proving termination). The 

T-normal ized  version R T of R consists of all rewrite rules l*---*r*, where l* and r* are T-normal  

forms of l and r, respeetlvely, for some rule l--~r is in R. 
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L e m m a  4. Let R be a rewrite system, T be a symbolic interpretation, and R T be the T -  

normalized version of R.  Then R is reducing relative to R T and T, and R ~  and T! commute. 

Proof. That  R is reducing relative to R T and T follows immediately from the definition of R T. 

To prove commutation of R~. and T! we show that,  for all rules l---*r in RT, u[la]---~RrU[ra ] 

implies tt--~Rrr t, where I t and r ~ are T-normal  forms of u[la] and u[ra], respectively. These 

normal forms may be obtained by first applying T in the substitution part  of a, and then apply- 
$ 

ing further reduction steps in the context u. That  is, u[la]--+Tu[lp]---*T!v[Ip, . . . ,  lp]=l' and, 

similarly, u[ra]---,*Tu[rp]---~T!v[r p . . . .  , rp]=r ' .  Obviously, l '--~rr', r~ 

Combining Corollary 1 and Lemma 4, we obtain 

PROPOSITION 3. Let R and T s be rewrite systems and T be a symbolic interpretation and sup- 
pose that T' is contained in T*". Then R / T  I is terminating if R T is. 

E x a m p l e  8. Let R be 

g(~ ,y )  ~ h (~ ,y )  
h(f (~) ,~)  --.  f (g(~,~))  

We use the first rule as a transform T and let R I be the second rule. The T-normalized version 
RT t of R I is 

hCfCx),y ) - ~  fChCx,y)) 

RT ~ terminates, since it decreases the summed length of all the terms with outermost operator  h. 

By Proposition 3, this implies termination of R t /T .  Since T is terminating, so is R =RtUT. 

"Local" commutation of S and T in general does not imply commutation of S and T!, but  

only commutation of S and T*. If S / T  terminates, then a commutation property may be used 

that  can be established by a local test. 

L e m m a  5. Suppose that T is canonical and S / T  terminates. Then ( S / T )  + and T* commute, 
+ * 

if ~--TO---*S is contained in .--~8/TO+---T. 

Proof. By Noetherian induction on SUT.  Note that  S U T  is Noetherian, since both T and S / T  
are. 1:3 

Again linearity is useful for establishing commutation. A rewrite rule l---*r is non-annihilating if 

every variable appearing in l also appears in r. 

L e m m a  6. Let S and T be rewrite systems. If T is left-linear and non-annihilating and there 
+ * 

is no overlap between left-hand sides of S and T, then *--TO--*S is contained in ---~S/TO~---T. 

Proof. Suppose that  c 4--- r t--+s d. We distinguish three cases. 

a) If the two reduction steps apply at  disjoint positions, i.e. u[r,l'l~---TU[l,r]--*su[l,r' ], 
then u [ r , l ' l - - s  u [r,r'] ~ - r  u fl,r']. 

b) If the S-reduction step applies in the variable par t  of the T-reduction step, i.e. 

o f t , . . .  ,l],---Tu[ll--*Su[r], then v[l . . . .  , l ] - -*~v[r , . . .  , r]~--Tu[r ] (there has to be at least 

one S-reduct lon step, since T is non-annihilating). 

c) If the T-reduction step applies in the variable par t  of the S-reduction step, i.e. 
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u[rJ~-Tu[l]-.-+sv[l , . . . , l ] ,  then we have u[r]--~sv[r , . . . ,  r]*-'-rv[l . . . .  , l  I. [] 

T H E O R E M  li. Let R, S, and T be rewrite systems such that T is canonical, S / T  terminates, 

and ( S / T )  + and T* commute. I f  R is reducing relative to S / T  and T, then R / T  ~ terminates. 

Proof. The  same as the proof of Theorem 4, except that  instead of S we have S / T ,  and instead 

of  T! we have T*. [] 

E x a m p l e  4. Let  R be the following rewrite system for computing the factorial function (Kamin 

and Levy, 1980): 

f ( s (~) )  - ~  fCp(~(~))) 
f(O) -"* s(O) 

We  use the last rule as a t ransform T and let R I be R - T .  T is length-decreasing,  hence ter- 

minat ing.  The T-normal ized  version RT I of R I is 

I (~(x))  ~ I ( x )  
f (o)  - - .  s(o) 

RTIUT is terminating,  since each rule either decreases the length of a term, or maintains  the 

length and decreases the number  of occurrences of f .  Also, since T is linear, non-annihi la t ing,  

and does not  overlap with lef t -hand sides of RT I, the relations (RTI /T)  + and T* commute.  By 

Theorem 5, R t / T  is terminating,  which, together with terminat ion of T, implies terminat ion of 

R. 

The  terminat ion methods outlined above may  also be applied to equational rewrite systems 

R / E  by using transforms T such tha t  E is contained in T ~.  

Suppose I consists of the axioms for identity,  f ( x , e ) = x  and f ( e , z ) = x .  Let T x be the 

t ransform {f(x,e)---+x, f(e,x)---*x). This t ransform is canonical. Given a rewrite system R,  let 

RI I consist of all rules u---~v, where u and v are T l -normal  forms of l a  and ra ,  respectively, 

l---~r is in R,  and a is a substi tution such tha t  xo is either x or e, for all variables x. If l--*r is 

in RI I, and za  is either x or e, then lt---~r s is also in RI t, where 11 and r t are T / -normal  forms of 

la and rcr, respectively. Let R I contain RI l and, in addition, for every rule e---+r in RI t, where 

rCe,  rules x---+f(x,r) and x---+f(r,x); for every rule l---*e in RI', where l e e ,  rules f(x,l)---+x and 

f( l ,x)--+x; and the rule x-+x,  if e---+e is in R x' (the additional rules are necessary for commuta-  

t ion of  R I and TI). If R is finite, so is RI. 

L e m m a  7. Let R be a rewrite system and T I and R I be as defined above. Then R is reducing 

relative to T I and RI, and R I and TI! commute. 

Proof. Tha t  R is reducing relative to T I and R I follows from the definition of R I. For  commu- 

tat ion,  it suffices to show that,  for all rules l---~r in R I and all terms c and substi tut ions a, 

u---~R,V , where u and v are Tx-normal  forms of ella] and u[ra], respectively. Wi thou t  loss of  

generality,  we may assume that  e and a are irreducible in T I. Let a t be a substi tut ion such tha t  

xo a is e, if xa is e, and xo a is x, otherwise. The  assertion can be easily shown if l--+r is no t  in 

RI I. If l----~r is in RI I, then, by the remark above, lt--+r I is in RI I, where l I and r t are T - n o r m a l  
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forms of  l a  t and ra', respectively. Since a=alop, for some substi tut ion p, we obtain  la--,Tr!lt p 

and ra---,T~!rtp. Since c, l'p, and rip are irreducible in TI, are irreducible in TI, the  assertion 

can be easily established. 1:3 

PROPOSITION 4. An equational system R / I  terminates if and only if R I terminates. 

Proof. The  if-direct ion follows from Lemma 7. The  only- i f -di rect ion holds because R I is con- 

ta ined in R/ I .  [3 

The  requ i rement - - in  the theorems a b o v e - - t h a t  the t ransform T be canonical may  be some- 

wha t  relaxed. We say tha t  a rewrite system R is confluent modulo E if, for all terms s, t, u, 

and v wi th  u~--as++£t'--*aV there exist terms u'  and v '  such tha t  u--+au +'~1~ v +--a v. 

L e m m a  8. (Huet, 1980) Let R be a terminating rewrite system. Then R is confluent modulo E 

if and only if, for all terms s and t, s+-~guRt implies S--+R!O<-+Eo<--R!t. 

In other  words, if R is terminat ing and confluent modulo E ,  then two terms are equivalent  in 

EOR if and only if their  respective R - n o r m a l  forms are equivalent  in E .  

T H E O R E M  6. Let R, S, and T be rewrite systems and E be an equational theory. Suppose that 

T is terminating and confluent modulo E, S /E  is terminating, and S and T! commute. If R is 

reducing relative to S and T, then R / (EUT ~) terminates. 

Proof. Let  tl---~/~ t24-+guT ta---* R t4+-~EUT''" be an infinite sequence. Under  the given 

assumptions,  an infinite sequence of S / E  reduction steps can be constructed as follows: 

R (EUT)" R (EUT)"  R 

T" reducing T* T* 

co,,tZuenc, co,,1~uonce 
3, > 

S ~ modulo E S modulo E S 

T! T! 

T* T* 

T! T! 

reducing 

commutation 

reducing 

commutation 

T ~ 

TT 

Fig. 4 

COROLLARY 2. Let R, S, and T be rewrite systems and B be an equational theory. Suppose 

that T is terminating and confluent modulo E, ( S / T ) / E  is terminating, and (S /T )  + and T* 

commute. If  R is reducing relative to S / T  and T, then R / (EUT ~') terminates. 
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Recall that Lemma 5 provides a local test for commutation of ( S / T )  + and T*. In the next sec- 

tion we consider particular transforms in depth. 

5. T r a n s f o r m s  B a s e d  on D i s t r | b u t i v | t y  a n d  A s s o e i a t i v | t y  

Equational rewrite systems R / E ,  where E is a set of assoclativity and commutativity 

axioms, are of particular importance in practice. We will apply the transformation techniques 

outlined above to the termination problem for such systems (AC termination). 

Let f be some operator symbol in F.  An  associativity axiom for f is an equation of the 

form f ( x , f ( y , z ) ) = f ( f ( x , y ) , z )  or f ( f ( x , y ) , z ) = f ( x , f ( y , z ) ) ,  a commutativity axiom is an equa- 

tion of the form f ( x , y ) = f ( y , x ) .  An  equational rewrite system R / E  is called associative- 

commutative if E contains only associativity and commutativity axioms. From now on let A C  

denote a set of associativity and commutativity axioms for which any associative operator is also 

commutative and vice versa. We say that f is in A O  to indicate that f is an associative- 

commutative operator. 

Let :> be an ordering, called a precedence ordering, on the set of operator symbols F.  We 

define the rewrite relation R P O recursively as follows: 

a) /(''' ~ ' " " )'--'Rl'oS, 

b) f (  • • • s • • • )- '*ReOf( " " " sl " " " sn " " " ), if s---*Reosi, for l < i < n ,  

c) s = f  (s l, . . . , sn)--*Rp 0 g(t 1 . . . .  , tk) , if f > g and s----~Rp 0 ti, for l < i < k .  

The recursive path ordering > rpo associated with > is the transitive closure "-~Po of -'*RPO" 

L e m m a  9. (Dershowitz, 1982) Let > be a precedence ordering on the set of operator symbols F .  

Then > rpo is well-founded if and only if  > is well-founded. 

Recall that a reduction ordering > is compatible with A C  if s ~-~Acu > v ~ A o t  implies s > t, 

for all terms s, t, u, and v. A rewrite system R / A C  terminates if and only if there is a reduc- 

tion ordering > that is compatible with AC,  such that l---~Rr implies l :>r .  Unfortunately, 

many reduction orderings are not compatible with AC.  For instance, the recursive path order- 

ing >rpo is not: if f is in A C  and a>rpob, then 

f ( a , f ( b , b ) ) * ' + A c f ( f ( a , b ) , b ) > r p o f ( a , f ( b , b ) ) ,  

but  f ( a , f ( b , b ) ) > r p o f ( a , f ( b , b ) )  is false. 

We will design a transform T such that, for some set of equations E, (a) T is terminating 

and confluent modulo E, (b) A C  is contained in E U T  ~,  (c) ( S / T ) / E  is terminating, and (d) 

( S / T )  + and T* commute. For S we will use the recursive path ordering, restricted to terms 

irreducible in T. For E we use the permutation congruence ~ ,  which is the smallest stable 

congruence, such that f ( X , u , Y , v , Z ) ~ f ( Z , v , Y , u , Z ) .  If property (a) is satisfied then T -  

irreducible terms are unique up to equivalence in E and may serve as representatives for A C -  

equivalence classes. A natural choice for such a canonical representation are "flattened" terms. 

Let L be the rewrite system consisting of all reduction rules (on varyadic terms) of the form 

f ( X , f ( Y ) , Z ) - - ~ f ( X , Y , Z ) ,  where f is in A C ,  Y denotes a sequence of variables Yl, " • " ,  Yn of 

length n:>2, and X and Z are sequence of variables of length k and l, respectively, where 

k + l ~ l .  For example, f ( x , f ( y , z ) ) - - * f ( x , y , z )  is a "flattening rule", but f ( f ( x ) ) - - - } f (x )  is not. 
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Terms irreducible in L are called flattened. 

L e m m a  10. The rewrite system L is canonical, L / ~  is terminating, and AC is contained in 

~ U L  ~.  

Any recursive path ordering >r~o contains L and is compatible with the permutat ion 

congruence ~ .  Therefore ( R P O / L ) / ~  is terminating. Unfortunately, the commutation pro- 

per ty  (d) is not satisfied, a~ the following example illustrates: if f is in A C  and f > g ,  then 

/ (a,b )'-+Reog(a,b ) and 
f(a,b,c)'~-" L f(f(a,b),c)'---*Rp 0 f(g(a,b),e). 

Both f (a ,b ,c )  and f (g(a,b) ,c)  are flattened, but  f(g(a,b),c)--~RPOf(a,b,c ). However, if the 

transform T contains, in addition to L, the rewrite rule f (g(x,y),z)--*g(f (x ,z) , f  (y,z)), then 

f ( a,b ,c )-"*Rpo g( f ( a,c ),f ( b ,c ) )+'-Tg( f ( a,b ),c ). 

Let :> be a well-founded precedence ordering. A distributivity rule for f and g is a rewrite 

rule of the form 

/ ( x , g ( r ) , z )  ~ g(f (x ,  y l , z ) , . .  • ,/(x, yn,z)), 
where Y is a sequence Yl, • • • , Yn of length n ~ l ,  f > g ,  and neither f nor g are constants. For  

example, x*(y+z)---*x*y+x*z and -(x+y)---+(--x)+(-y) are distributivity rules. Such sets of 

distr ibutivity rules are terminating (they are contained in :> rpo) but  not canonical, in general. 

For  example, if f distributes over both g and h, then the term f (g(x),h(y)) can be transformed 

to two different terms, g(h(f  (x,y))) or h(g(f(x,y))) .  To guarantee that  properties (a)-(d) above 

are satisfied, we have to impose certain restrictions on sets of distributivity rules. 

Let F D be a set of non-constant operator symbols f containing all A C operators. Let D be 

the set of all distributivity rules for f and g, where f and g are in F D and f > g .  The rewrite 

system T=LUD,  where L consists of all flattening rules for operators in FD, is called the A -  

transform corresponding to :> and F D. Let F t be F--{c},  if c is minimal among all constants, 

or F ,  if there is no such constant. 

De f in i t i on  4. A precedence ordering > satisfies the associative path condition for FD, if F D 

can be partit ioned into two sets {f l ,  • • • ,  f , }  and {gl . . . . .  gin}, such that  n ~ m  and 

a) gi is minimal in F t, for l ~ i ~ m ,  

b) f / > g / ,  for l < i < n ,  

c) f i  is minimal in F'--{gi}, for l < i < : n .  

For  example, if f ,  g, h and i are in FD, then the precedence orderings shown in Figs. 5(a) and 

5(b) do not satisfy the associative path condition, but  the ordering in Fig. 5(c) does. 

L e m m a  11. Let > be a precedence ordering that satisfies the associative path condition, T be 

the corresponding A-transform, and S be the corresponding rewrite system consisting of all pairs 

l--+r such that l>rpo r and I and r are irreducible in T. Then 

a) T is terminating and confluent modulo ~ ,  

b) A C  is contained in E U T  ~,  

c) ( S / T ) / ~  is terminating, and 

d) ( S / T )  + and T* commute. 
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Sketch of proof. Par t  (b) follows from Lemma 10. The recursive path ordering >rpo contains 

bo th  S and  T and is compatible with the permutat ion congruence ~ .  Therefore ( S / T ) / ~  is 

terminat ing.  For  confluence T modulo --- it suffices to prove c'-**Ts'-~t~--Td, for all "critical 

overlaps" c~--Tu--*T d or c+--TU~d. The restrictions on the precedence ordering > are essen- 

t ial  for the proof of this confluence property. 

By Lemma 5, ( S / T )  + and T* commute if, for all terms s, t, and u with s~-'-TU---~st , there 

exist terms v and w, such that  s---+TV--*# w ~-'T" This is implied by the following two properties: 

(i) Monotonicity. If l--*r is in S, then, for any term c, l l - -~r  I, where l I and r I are T -  

normal  forms of c [l} and  c [r], respectively. 

(it) Stability. If l---*r is in S, then, for any subst i tut ion a, ll--++r I, where I I and r I are T -  

normal  forms of la and ra, respectively. 

Both properties can be proved by induction on the length of l and r. [] 

f h 

g 

f 

g h 

f h 

g i 

a) b) c) 

Fig. 5 

D e f i n i t i o n  6. Let T be the A- t r ans fo rm corresponding to some precedence ordering > .  The 

associative path ordering > apo is defined by: 

s >a~ot if and only if, s*)rpot* , 

where s* and t* are T -no rma l  forms of s and t, respectively. 

Summariz ing the results above we have the following theorems for A C  termination.  

THEOREM 7. If  > is a well-founded precedence ordering that satisfies the associative path con- 

dition, then the corresponding associative path ordering > apo is a reduction ordering and is com- 

patible with A C. 

THEOREM 8. Let > be a precedence ordering that satisfies the associative path condition and 

T be the corresponding A-transform. Suppose that T t is contained in T ~. If l>apor , for every 

rule l---*r in R,  then R /( TIUAC) terminates. 
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Transformation techniques for AC termination were first suggested by Dershowltz, et al. 

(1983). The associative path ordering described above is simpler than the ordering given by 

Bachmair and Plaisted (1985). In particular, Theorem 7 implies that  

if s >apot, then sa>apota , for any substitution a. 

This "lifting lemma" allows efficient implementations of the associative path ordering based on 

the reeursive path ordering. The A-t ransform may also be used in combination with a lexieo- 

graphic path ordering. More precisely, operators that  are not in A C  may be given lexicographic 

status, i.e. some positions in a term may be given more significance than others (see Kamin & 

Levy, 1980). A-transforms may be extended to include symbolic interpretations of non -AC 

operators. That  is, the results above also hold for transforms T=T1UT2, where T 1 is an A -  

transform corresponding to a precedence ordering > and a set of operator symbols FD, and Te 

consists of a single rule f ( x l ,  . . . ,  xn)-"*t[xl, . . . ,  xn], where f is not in F/). 

E x a m p l e  5. (Boolean algebra). The following canonical rewrite system for boolean algebra is 

due to Hsiang (1985). We outline a termination proof using an associative path ordering. R 

consists of the following rules: 

x@ false --* x 

xAfalse --+ false 
xAtrue ~ x 

(xOy)Az --', (xAz)@(yAz) 
x O z  ~ false 

• Dy ~ ( z A y ) O ( z G t r u e )  

~x  --+ xGtrue 

The operators ~ and A are in AC. Let > be the precedence ordering shown in the Hasse 

diagram in Fig. 6, and T be the A-t ransform corresponding to > and F/)={A,O},  extended by 

a symbolic interpretation {false--*true }. The fifth rule of R is a distributivity rule and is placed 

in T t. Let R I be R - T  I. Since l>apor  , for all rules l---~r in R l, we may conclude, by Theorem 

8, that  R' / (T 'UAC)  terminates. The system T ' / A C  also terminates (see Example 2), which 

implies termination of R / A  C=( R'U T') /A  C. 

E x a m p l e  6. (Modules). Let A be an associative-commutative ring with identity. An A -  

module M over A is an algebraic structure consisting of operations ~:M×M---*M and 

• :A×M--~M~ such that  ( M , ~ )  is an abelian group (the identity of the group is denoted by f~, the 

inverse to ~ by I) and the following identities hold: a '(~'x)=(t~*fi) 'x,  l ' x=z ,  

(tx+~)'x=(a'x)(/9"x) and a'(x y)=(a'x)(~'y).  For the sake of readability we use Greek letters for 

variables ranging over elements of A, and Roman letters for variables ranging over elements of 

M. The following rewrite system R was obtained with the rewrite rule laboratory RRL (see 

Kapur  & Sivakumar, 1984): 
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~+0  --* c~ 
, + ( - ~ )  --, o 

--0 ~ 0 

- - (~+~)  --* (--~)+(--~) 
~ ' ( ~ + ~ )  --* ( ~ ) + ( ~ * ~ )  

a*O ~ 0 
~*(-~)  --, - ( ~ ' ~ )  

x O #  "* z 
~.(~.~) -~  (~*~) .z  

l ' x  --* x 
(~+Z)'~ ~ (~ 'z )O(Z'~)  

~ ' ( ~ G y )  --" (~ ' z )@(~ 'y )  
( -~.~)®(~.~)  -~  r~ 

0"x --~ D 
a'D -~ D 

z(~) ~ C-1)'~ 

The  operators  +, *, and O are in AC. To prove terminat ion of R / A C  we use the associative 

pa th  ordering corresponding to the precedence ordering > shown in the Hasse d iagram in Fig. 7. 

The  opera tor  • has lexicographic status (right to left). Let  T I consist of the sixth and e ighth 

rule, and R t be R--T  I. Then  T I is contained in the A - t r a n s f o r m  7' corresponding to > .  Since 

l>~por , for all rules l--*r in R t, RS/(TIUAC) is terminating.  Termina t ion  of Tt/AC can be 

proved separately, which implies terminat ion of R / A  C. 

V D 

A 

t 
@ 

true/false 
o111~ 

Fig. 6 Fig. 7 
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A-transforms may also be used for proving termination of ordinary rewrite systems. 

Example 7. (Assoeiativity and endomorphism). Let R be the following rewrite system (Ben 

Cherifa and Lescanne, 1985): 

(~ .y) .~  ~ ~ . (y .~)  

f(~).fCy) --, fC~.y) 
fC~).(fCy).~) - ,  fC~.y).~ 

Let T ~ be the first rule of R and R t be R - R  I. Since T I is terminating, R terminates if R r / T  ~ 

terminates. Let T be the A-transform corresponding to a precedence ordering > ,  where f is 
smaller than • and f and • are in F/). Then we have I>apor , for both rewrite rules l--~r in R I. 

Since T n is contained in T ~', R~/T ~ is terminating. 

@. S u m m a r y  

We have presented termination methods based on commutation properties, and have 
developed an abstract framework for describing transformation techniques. These general 
results have led us to the development of various particular transforms, including methods for 

proving termination of equational rewrite systems R / E ,  where E contains associativity, commu- 

tativity, and identity axioms. It should be possible to automate, to a certain degree, the process 

of developing transforms for certain classes of rewrite systems by using a "completion-like" pro- 

cedure as suggested by Jouannaud and Munoz (1984). 

References  

[1] Bachmair, L., and Ptaisted, D.A. (1985). Termination orderings for associative- 

commutative rewriting systems, J. of Symbolic Computation 1, 329-349. 

[2] Ben Cherifa, A., and Lescanne, P. (1985). A method for proving termination of rewriting 
systems based on elementary computations on polynomials, unpublished manuscript. 

[3] Dershowitz, N. (1981). Termination of linear rewriting systems, Proc. 8th EATCS Int. Col- 
loquium on Automata, Languages and Programming, S. Even and O. Kariv, eds., Lect. 

Notes in Comp. Science 115, New York, Springer, 448-458. 

[4] Dershowitz, N. (1982). Orderings for term-rewriting systems, Theoretical Computer Sci- 

ence 17, 279-301. 

[5] Dershowitz, N. (1985a). Computing with rewrite systems, Information and Control 64, 

122-157. 

[6] Dershowitz, N. (1985b). Termination. Proc. 1st Int. Conf. on Rewriting Techniques and 
Applications, Dijon, France, Leer. Notes in Comp. Science, Springer, 180-224. 

[7] Dershowitz, N., Hsiang, J., Josephson, N.A., and Plaisted, D.A. (1984). Associative- 

commutative rewriting. Proc. 8th IJCAI, Karlsruhe, @40-944. 



20 

[8] Guttag, J.V., Kapur, D., and Musser, D.R. (1983). On proving uniform termination and 
restricted termination of rewriting systems. SIAM Computing 1P, 189-214. 

[9] Hsiang, J. (1985). Refntational theorem proving using term-rewriting systems. Artificial 

Intelligence 25, 255-300. 

[10] Huet, G. (1980). Confluent reductions: abstract properties and applications to term rewrit- 
ing systems. J. A CM $7, 797-821. 

[11] Huet, G. and Hutlot, J.M. (1982). Proofs by induction in equational theories with construc- 
tors. J. of Comp. and System Sciences 25, 239-266. 

[12] Jouannaud, J.-P., and Munoz, M. (1984). Termination of a set of rules modulo a set of 
equations, Proe. 7th Int. Conf. on Automated Deduction, R. Shostak, ed., Lect. Notes in 
Comp. Science 170, Berlin, Springer, 175-193. 

[13] Kamin, S., and Levy, J.J. (1980). Two generalizations of the recursive path ordering. 
Unpublished manuscript, Univ. of Illinois at Urbana-Champaign. 

[14] Kapur, D., and Sivakumar, G. (1984). Architecture of and experiments with RRL, a 
rewrite rule laboratory. Proc. NSF Workshop on the Rewrite Rule Laboratory, Rensellaer- 
vitle, New York, 33-56. 

[15] Lankford, D.S. (1979). On proving term rewriting systems are noetherian. Memo MTP-3, 
Mathematics Department, Louisiana Tech. Univ., Ruston, Louisiana. 

[16] Manna, Z., and Ness, S. (1970). On the termination of Markov algorithms. Proc. Third 

Hawaii Int. Conf. on System Science, 789-792. 

[17] Musser, D.R. (1980). On proving inductive properties of abstract data types. Proc. 7th 

ACM Syrup. on Principles of Programming Languages, Las Vegas~ 154-162. 

[18] O'Donnell, M.J. (1985). Equational logic as a programming language. MIT Press, Cam- 
bridge, Massachusetts. 

[19] Plaisted, D.A. (1984). Associative path orderlngs, Proc. NSF Workshop on the Rewrite Rule 

Laboratory, Rensellaerville, New York, 123-126. 

[20] Raoult, J.C., and Vuillemin, J. (1980). Operational and semantic equivalence between 
recursive programs, J. A CM 27, 772-796. 

[21] Rosen~ B. (1973). Tree-manipulating systems and Church-Rosser theorems, J. ACM ZO, 

160-187. 


