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Abstract. Completion is a general paradigm for applying inferences to
generate a canonical presentation of a logical theory, or to semi-decide the
validity of theorems, or to answer queries. We investigate what canonicity
means for implicational systems that are axiomatizations of Moore fam-
ilies – or, equivalently, of propositional Horn theories. We build a corre-
spondence between implicational systems and associative-commutative
rewrite systems, give deduction mechanisms for both, and show how
their respective inferences correspond. Thus, we exhibit completion pro-
cedures designed to generate canonical systems that are “optimal” for
forward chaining, to compute minimal models, and to generate canoni-
cal systems that are rewrite-optimal. Rewrite-optimality is a new notion
of “optimality” for implicational systems, one that takes contraction by
simplification into account.

1 Introduction

Knowledge compilation is the transformation of a knowledge base into a canon-
ical form that makes efficient reasoning possible (e.g., [13, 8, 11]). In automated
reasoning the knowledge base is often the “presentation” of a theory, where
we use “presentation” to mean a set of formulæ, reserving “theory” for a pre-
sentation with all its theorems. From the perspective taken here, canonicity of
a presentation depends on the availability of the best proofs, or normal-form
proofs. Proofs are measured by proof orderings, and the most desirable are the
minimal proofs. Since a minimal proof in a certain presentation may not be min-
imal in a larger presentation, normal-form proofs are the minimal proofs in the
largest presentation, that is, a deductively-closed presentation. However, what is
a deductively-closed presentation depends on the choice of deduction mechanism.
Thus, the choices of normal form and deduction mechanism are intertwined.

An archetypal instance of knowledge compilation is completion of equational
theories, where normal-form proofs are valley proofs: a given presentation E
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is transformed into an equivalent, canonical presentation E], such that for all
theorems ∀x̄ u ' v, E] offers a valley proof of ũ ' ṽ, where ũ and ṽ are u

and v with their variables x̄ replaced by Skolem constants. If E] is finite, it
serves as decision procedure, because validity can be decided by “blind” rewriting.
Otherwise, completion semi-decides validity by working refutationally on E and
ũ 6' ṽ (see, e.g., [1, 6], also for more references). More generally, the notion of
canonicity can be articulated into three properties of increasing strength (e.g.,
[4]): a presentation is complete, if it affords a normal-form proof for each theorem,
saturated, if it supports all normal-form proofs for all theorems,3 and canonical,
if it is both saturated and contracted, that is, it contains no redundancies.

This paper studies canonicity for implicational systems. An implicational sys-
tem is a set of implications, whose family of models is a Moore family, meaning
that it is closed under intersection (see [3, 2]). A Moore family defines a clo-
sure operator that associates with any set the least element of the Moore family
that includes it. Moore families, closure operators and implicational systems
have played a rôle in a variety of fields in computer science, including relational
databases, data mining, artificial intelligence, logic programming, lattice the-
ory and abstract interpretations. We refer to [7] and [2] for surveys, including
applications, related formalisms and historical notes.

An implicational systems can be regarded as a Horn presentation of its Moore
family. Since a Moore family may be presented by different implicational systems,
it makes sense to define and generate implicational systems that are “optimal”,
or “minimal”, or “canonical” in a suitable sense, and allow one to compute their
associated closure operator efficiently. Bertet and Nebut [3] proposed the notions
of directness of implicational systems, optimizing computation by forward chain-
ing, and direct-optimality of implicational systems, which adds an optimization
step based on a symbol count. Bertet and Monjardet [2] considered other can-
didates and proved them all equal to direct-optimality, which, therefore, earned
the appellation canonical-directness.

We investigate correspondences between “optimal” implicational systems (di-
rect, direct-optimal) and canonical rewrite systems. This requires us to estab-
lish an equivalence between implicational systems and associative-commutative
rewrite systems, and to define and compare their respective deduction mecha-
nisms. The rewriting framework turns out to be more flexible, because it allows
one to compute during saturation the image of a given set according to the
closure operator associated with the implicational system. Computing the clo-
sure amounts to generating minimal models, which may have practical applica-
tions. Comparisons of presentations and inferences are complemented at a deeper
level by comparisons of the underlying proof orderings. We observe that direct-
optimality can be simulated by normalization with respect to a different proof
ordering than the one assumed by rewriting, and this discrepancy leads us to
introduce a new notion of rewrite-optimality. Thus, while directness corresponds
to saturation in an expansion-oriented deduction mechanism, rewrite-optimality
corresponds to canonicity.

3 If minimal proofs are unique, complete and saturated coincide.
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2 Background

Let V be a vocabulary of propositional variables. For a ∈ V , a and ¬a are
positive and negative literals, respectively; a clause is a disjunction of literals,
that is positive (negative), if all its literals are, and unit, if it is made of a single
literal. A Horn clause has at most one positive literal, so positive unit clauses
and purely negative clauses are special cases. A Horn presentation is a set of non-
negative Horn clauses. It is customary to write a Horn clause ¬a1∨· · ·∨¬an∨ c,
n ≥ 0, as the implication or rule a1 · · · an ⇒ c. A Horn clause is trivial if the
conclusion c is the same as one of the premises ai.

An implicational system (see, e.g., [3, 2]) S is a binary relation S ⊆ P(V )×
P(V ), read as a set of implications a1 · · · an ⇒ c1 · · · cm, for ai, cj ∈ V , with
both sides understood as conjunctions of distinct propositions. Using upper case
Latin letters for sets, such an implication is written A ⇒S B to specify that
A ⇒ B ∈ S. If all right-hand sides are singletons, S is a unary implicational
system. Clearly, any non-negative Horn clause is such a unary implication and
vice-versa, and any non-unary implication can be decomposed into m unary
implications, one for each ci.

Since an implication a1 · · · an ⇒ c1 · · · cm is equivalent to the bi-implication
a1 · · · anc1 · · · cm ⇔ a1 · · ·an, again with both sides understood as conjunctions,
it can also be translated into a rewrite rule a1 · · ·anc1 · · · cm → a1 · · · an,
where juxtaposition stands for associative-commutative-idempotent conjunction,
and the arrow → signifies logical equivalence (see, e.g., [9, 5]). A positive literal
c is translated into a rule c → true, where true is a new constant. We will
be making use of a well-founded ordering � on V ∪ {true}, wherein true is
minimal. Conjunctions of propositions are compared by the multiset extension
of �, also denoted �, so that a1 . . . anc1 . . . cm � a1 . . . an. A rewrite rule P → Q

is measured by the multiset {{P, Q}}, and these measures are ordered by a second
multiset extension of �, written �L to avoid confusion. Sets of rewrite rules are
measured by multisets of multisets (e.g., containing {{P, Q}} for each P → Q in
the set) compared by the multiset extension of �L, denoted �C .

A subset X ⊆ V represents the propositional interpretation that assigns true
to all elements in X . Accordingly, X is said to satisfy an implication A ⇒ B if
either B ⊆ X or else A 6⊆ X . Similarly, we say that X satisfies an implicational
system S, or is a model of S, denoted X |= S, if X satisfies all implications in S.

A Moore family on V is a family F of subsets of V that contains V and is
closed under intersection. Moore families are in one-to-one correspondence with
closure operators, where a closure operator on V is an operator ϕ : P(V )→ P(V )
that is: (i) monotone: X ⊆ X ′ implies ϕ(X) ⊆ ϕ(X ′); (ii) extensive: X ⊆ ϕ(X);
and (iii) idempotent: ϕ(ϕ(X)) = ϕ(X). The Moore family Fϕ associated with a
given closure operator ϕ is the set of all fixed points of ϕ:

Fϕ
!
= {X ⊆ V : X = ϕ(X)} ,
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using
!

= for definitions. The closure operator ϕF associated with a given Moore
family F maps any X ⊆ V to the least element of F that contains X :

ϕF (X)
!
= ∩{Y ∈ F : X ⊆ Y } .

The Moore family FS associated with a given implicational system S is the
family of the propositional models of S, in the sense given above:

FS
!
= {X ⊆ V : X |= S} .

Two implicational systems S and S ′ that have the same Moore family, FS = FS′ ,
are equivalent. Combining the notions of closure operator for a Moore family,
and Moore family associated with an implicational system, the closure operator
ϕS for implicational system S maps any X ⊆ V to the least model of S that
satisfies X [3]:

ϕS(X)
!
= ∩{Y ⊆ V : Y ⊇ X ∧ Y |= S} .

Example 1. Let S be {a ⇒ b, ac ⇒ d, e ⇒ a}. The Moore family FS is
{∅, b, c, d, ab, bc, bd, cd, abd, abe, bcd, abcd, abde, abcde}, and ϕS(ae) = abe. ut

The obvious syntactic correspondence between Horn presentations and im-
plicational systems is matched by a semantic correspondence between Horn the-
ories and Moore families, since Horn theories are those theories whose models
are closed under intersection, a fact observed first by McKinsey [12].

A (one-step) deduction mechanism ; is a binary relation over presentations.
A deduction step Q ; Q∪Q′ is an expansion provided Q′ ⊆ Th Q, where Th Q

is the set of theorems of Q. A deduction step Q ∪ Q′
; Q is a contraction

provided Q ∪ Q′ % Q, which means Th Q ∪Q′ = Th Q, and for all theorems, Q

offers a proof that is smaller or equal than that in Q∪Q′ in a well-founded proof
ordering. A sequence Q0 ; Q1 ; · · · is a derivation, whose result, or limit, is

the set of persisting formulæ: Q∞
!

= ∪j ∩i≥j Qi. A fundamental requirement of
derivations is fairness, doing all inferences that are needed to achieve the desired
degree of proof normalization. A fair derivation generates a complete limit and
a uniformly fair derivation generates a saturated limit (see [4] for more details).

3 Direct Systems

A direct implicational system allows one to compute ϕS(X) in one single round
of forward chaining:

Definition 1 (Directness [3, Def. 1]). An implicational system S is direct if

ϕS(X) = S(X), where S(X)
!

= X ∪∪{B : A⇒S B ∧ A ⊆ X}.

In general, ϕS(X) = S∗(X), where

S0(X) = X, Si+1(X) = S(Si(X)), S∗(X) =
⋃

i
Si(X).

Since S, X and V are all finite, S∗(X) = Sk(X) for the smallest k such that
Sk+1(X) = Sk(X).
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Example 2. The implicational system S = {ac⇒ d, e⇒ a} is not direct. Indeed,
for X = ce, the computation of ϕS(X) = {acde} requires two rounds of forward
chaining, because only after a has been added by e ⇒ a, can d be added by
ac⇒ d. That is, S(X) = {ace} and ϕS(X) = S2(X) = S∗(X) = {acde}. ut

Generalizing this example, it is sufficient to have two implications A ⇒S B

and C ⇒S D such that A ⊆ X but C 6⊆ X for ϕS(X) to require more than
one iteration of forward chaining. If A ⊆ X , A⇒S B adds B in the first round.
If, additionally, C ⊆ X ∪ B, then C ⇒S D adds D in a second round. In the
above example, A ⇒ B is e⇒ a and C ⇒ D is ac ⇒ d. The conditions A ⊆ X

and C ⊆ X ∪ B are equivalent to A ∪ (C \ B) ⊆ X , because C ⊆ X ∪ B means
that whatever is in C and not in B must be in X . Thus, to collapse the two
iterations of forward chaining into one, it is sufficient to add the implication
A∪ (C \B)⇒S D. In the example A∪ (C \B)⇒S D is ce⇒ d. This mechanism
can be defined in more abstract terms as the following inference rule:

Implicational overlap

A⇒ BO CO ⇒ D

AC ⇒ D
B ∩ C = ∅ 6= O

One inference step of this rule will be denoted `I . The condition O 6= ∅ is
included, because otherwise AC ⇒ D is subsumed by C ⇒ D. Also, if B ∩ C is
not empty, then an alternate inference is more general. Thus, directness can be
characterized as follows:

Definition 2 (Generated direct system [3, Def. 4]). Given an implica-
tional system S, the direct implicational system I(S) generated from S is the
smallest implicational system containing S and closed with respect to implica-
tional overlap.

A main theorem of [3] shows that indeed ϕS(X) = I(S)(X). Let ;I be
the deduction mechanism that generates and adds implications by implicational
overlap: clearly, ;I steps are expansion steps. Thus, we can rephrase Defini-
tion 2:

Definition 3 (Generated direct system). Given an implicational system S,
the direct implicational system I(S) generated from S is the limit S∞ of a fair
derivation S = S0 ;I S1 ;I · · · .

By applying the translation of implications into rewrite rules (cf. Sect. 2),
we define:

Definition 4 (Associated rewrite system). Given X ⊆ V , its associated

rewrite system is RX
!

= {x→ true : x ∈ X}. For an implicational system S, its

associated rewrite system is RS
!

= {AB → A : A ⇒S B}. Given S and X we

can also form the rewrite system RS
X

!

= RX ∪ RS.
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Example 3. If S = {a⇒ b, ac⇒ d, e⇒ a}, then RS = {ab→ a, acd→ ac, ae→
e}. If X = ae, then RX = {a → true, e → true}. Thus, RS

X = {a → true, e →
true, ab→ a, acd→ ac, ae→ e}. ut

We show that there is a correspondence between implicational overlap and
the classical notion of overlap between monomials in Boolean rewriting (e.g.,[5]):

Equational overlap

AO → B CO → D

M → N
A ∩ C = ∅ 6= O, M � N

where M and N are the normal-forms of BC and AD with respect to {AO →
B, CO → D}. One inference step of this rule will be denoted `E .

Equational overlap combines expansion, the generation of BC ↔ AD, with con-
traction – its normalization to M → N . This sort of contraction applied to
normalize a newly generated formula, is called forward contraction. The con-
traction applied to reduce an already established equation is called backward
contraction. Let ;E be the deduction mechanism of equational overlap: then,
;E features expansion and forward contraction.

Example 4. For S = {ac ⇒ d, e ⇒ a} as in Ex. 2, we have RS = {acd →
ac, ae → e}, and the overlap of the two rewrite rules gives ace ← acde → cde.
Since ace → ce, equational overlap yields the rewrite rule cde → ce, which
corresponds to the implication ce⇒ d generated by implicational overlap. ut

Since it is designed to produce a direct system, implicational overlap “un-
folds” the forward chaining in the implicational system. Since forward chaining
is complete for Horn logic, it is coherent to expect that the only non-trivial
equational overlaps are those corresponding to implicational overlaps:

Lemma 1. If A⇒ B and C ⇒ D are two non-trivial Horn clauses (|B| = |D| =
1, B 6⊆ A, D 6⊆ C), and A ⇒ B, C ⇒ D `I E ⇒ D by implicational overlap,
then AB → A, CD → C `E DE → E by equational overlap, and vice-versa.
Furthermore, all other equational overlaps are trivial.

Proof. (If direction.) Assume A⇒ B, C ⇒ D `I E ⇒ D. Since B is a singleton
by hypothesis, it must be C = BF , or the consequent of the first implication
and the antecedent of the second one overlap on B. Thus, C ⇒ D is BF ⇒ D

and the implicational overlap of A⇒ B and BF ⇒ D generates AF ⇒ D. The
corresponding rewrite rules are AB → A and BFD → BF , that also overlap on
B yielding the equational overlap

AFD ← ABFD → ABF → AF ,

which generates the corresponding rule AFD → AF .
(Only if direction.) If AB → A, CD → C `E DE → E, the rewrite rules
AB → A and CD → C can overlap in four ways: B ∩ C 6= ∅, A ∩ D 6= ∅,
A ∩ C 6= ∅ and B ∩D 6= ∅, which we consider in order.

6



1. B ∩ C 6= ∅: Since B is a singleton, it must be B ∩ C = B or C = BF for
some F . Thus, CD → C is BFD → BF , and the overlap of AB → A and
BFD → BF is the same as above, yielding AFD → AF . The corresponding
implications A ⇒ B and BF ⇒ D generate AF ⇒ D by implicational
overlap.

2. A ∩D 6= ∅: This case is symmetric to the previous one.
3. A∩C 6= ∅: Let A = FO and C = OG, so that the rules are FOB → FO and

OGD → OG, with O 6= ∅ and F ∩G = ∅. The resulting equational overlap
is trivial: FOG← FOGD ← FBOGD → FBOG→ FOG.

4. B ∩D 6= ∅: Since B and D are singletons, it must be B ∩D = B = D, and
rules AB → A and CB → C produce the trivial overlap AC ← ABC → AC.

ut

Lemma 1 yields the following correspondence between deduction mechanisms:

Lemma 2. For all implicational systems S, S ;I S′ if and only if RS ;E RS′ .

Proof. If S ;I S′ then RS ;E RS′ follows from the if direction of Lemma 1.
If RS ;E R′ then S ;I S′ and R′ = RS′ follows from the only-if direction of
Lemma 1. ut

The next theorem shows that for fair derivations the process of completing
S with respect to implicational overlap, and turning the result into a rewrite
system, commutes with the process of translating S into the rewrite system RS ,
and then completing it with respect to equational overlap.

Theorem 1. For every implicational system S, and for all fair derivations S =
S0 ;I S1 ;I · · · and RS = R0 ;E R1 ;E · · · , we have

R(S∞) = (RS)∞ .

Proof.

(a) R(S∞) ⊆ (RS)∞: for any AB → A ∈ R(S∞), A ⇒ B ∈ S∞ by Definition 4;
then A⇒ B ∈ Sj for some j ≥ 0. Let j be the smallest such index. If j = 0, or
Sj = S, AB → A ∈ RS by Definition 4, and AB → A ∈ (RS)∞, because ;E

features no backward contraction. If j > 0, A⇒ B is generated at stage j by
implicational overlap. By Lemma 2 and by fairness of R0 ;E R1 ;E · · · ,
AB → A ∈ Rk for some k > 0. Then AB → A ∈ (RS)∞, since ;E features
no backward contraction.

(b) (RS)∞ ⊆ R(S∞): for any AB → A ∈ (RS)∞, AB → A ∈ Rj for some
j ≥ 0. Let j be the smallest such index. If j = 0, or Rj = RS , A ⇒
B ∈ S by Definition 4, and A⇒ B ∈ S∞, because ;I features no backward
contraction. Hence AB → A ∈ R(S∞). If j > 0, AB → A is generated at stage
j by equational overlap. By Lemma 2 and by fairness of S0 ;I S1 ;I · · · ,
A ⇒ B ∈ Sk for some k > 0. Then A ⇒ B ∈ S∞, since ;I features no
backward contraction, and AB → A ∈ R(S∞) by Definition 4. ut

Since the limit of the ;I -derivation is I(S), it follows that:
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Corollary 1. For every implicational system S, and for all fair derivations S =
S0 ;I S1 ;I · · · and RS = R0 ;E R1 ;E · · · , we have

R(I(S)) = (RS)∞ .

4 Computing Minimal Models

The motivation for generating I(S) from S is to be able to compute, for any
subset X ⊆ V , its minimal S-model ϕS(X) in one round of forward chaining.
In other words, one envisions a two-stage process: in the first stage, S is sat-
urated with respect to implicational overlap to generate I(S); in the second
stage, forward chaining is applied to I(S) ∪ X to generate ϕI(S)(X) = ϕS(X).
In the rewrite-based framework, these two stages can be replaced by one. For
any X ⊆ V we can compute ϕS(X) = ϕI(S)(X), by giving the rewrite system
RS

X as input to completion and extracting rules of the form x → true. For this
purpose, the deduction mechanism is enriched with contraction rules, for which
we employ a double inference line:

Simplification

AC → B C → D

AD → B C → D
AD � B

AC → B C → D

B → AD C → D
B � AD

B → AC C → D

B → AD C → D
,

where A can be empty, and

Deletion
A↔ A

,

which eliminates trivial equivalences.

Let ;R denote the deduction mechanism that extends ;E with simplifi-
cation and deletion. Thus, in addition to the simplification applied as forward
contraction within equational overlap, there is simplification applied as back-
ward contraction to any rule. The following theorem shows that the completion
of RS

X with respect to ;R generates a limit that includes the least S-model of
X :

Theorem 2. For all X ⊆ V , implicational systems S, and fair derivations
RS

X = R0 ;R R1 ;R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY ⊆ (RS
X)∞ .
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Proof. By Definition 4, RY = {x→ true : x ∈ Y }. The proof is by induction on
the construction of Y = ϕS(X).
Base case: If x ∈ Y because x ∈ X , then x → true ∈ RX , x → true ∈ RS

X

and x → true ∈ (RS
X)∞, since a rule in the form x → true is irreducible by

simplification.
Inductive case: If x ∈ Y because for some A ⇒S B, B = x and A ⊆ Y , then
AB → A ∈ RS and AB → A ∈ RS

X . By the induction hypothesis, A ⊆ Y implies
that, for all z ∈ A, z ∈ Y and z → true ∈ (RS

X)∞. Let j > 0 be the smallest index
in the derivation R0 ;E R1 ;E · · · such that for all z ∈ A, z → true ∈ Rj .
Then there is an i > j such that x → true ∈ Ri, because the rules z → true
simplify AB → A to x → true. It follows that x → true ∈ (RS

X )∞, since a rule
in the form x→ true is irreducible by simplification. ut

Then, the least S-model of X can be extracted from the saturated set:

Corollary 2. For all X ⊆ V , implicational systems S, and fair derivations
RS

X = R0 ;R R1 ;R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY = {x→ true : x→ true ∈ (RS
X )∞} .

Proof. If x → true ∈ (RS
X )∞, then x ∈ RY by the soundness of equational

overlap and simplification. The other direction was established in Th. 2. ut

Example 5. Let S = {ac⇒ d, e⇒ a, bd⇒ f} and X = ce. Then Y = ϕS(X) =
acde, and RY = {a → true, c → true, d → true, e → true}. On the other hand,
for RS = {acd → ac, ae → e, bdf → bd} and RX = {c → true, e → true},
completion gives

(
RS

X

)
∞
{c → true, e → true, a → true, d → true, bf → b},

where a→ true is generated by simplification of ae→ e with respect to e→ true,
d→ true is generated by simplification of acd→ ac with respect to c→ true and
a→ true, and bf → b is generated by simplification of bdf → bd with respect to
d→ true. So,

(
RS

X

)
∞

includes RY , which is made exactly of the rules in the form

x → true of
(
RS

X

)
∞

. The direct system I(S) contains the implication ce ⇒ d,
generated by implicational overlap from ac ⇒ d and e ⇒ a. The corresponding
equational overlap of acd → ac and ae → e gives e ← ace ← acde → cde

and hence generates the rule cde → ce. However, this rule is redundant in the
presence of {c→ true, e→ true, d→ true} and simplification. ut

5 Direct-Optimal Systems

Direct-optimality is defined by adding to directness a requirement of optimality,
with respect to a measure |S | that counts the sum of the number of occurrences
of symbols on each of the two sides of each implication in a system S:

Definition 5 (Optimality [3, Sect. 2]). An implicational system S is optimal
if, for all equivalent implicational system S ′, |S | ≤ |S′ | where

|S |
!
=

∑

A⇒SB

|A|+ |B| ,
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where |A| is the cardinality of set A.

From an implicational system S, one can generate an equivalent implica-
tional system that is both direct and optimal, denoted D(S), with the following
necessary and sufficient properties (cf. [3, Thm. 2]):

– extensiveness: for all A⇒D(S) B, A ∩ B = ∅;
– isotony: for all A⇒D(S) B and C ⇒D(S) D, if C ⊂ A, then B ∩D = ∅;
– premise: for all A⇒D(S) B and A⇒D(S) B′, B = B′;
– non-empty conclusion: for all A⇒D(S) B, B 6= ∅.

This leads to the following characterization:

Definition 6 (Direct-optimal system [3, Def. 5]). Given a direct system
S, the direct-optimal system D(S) generated from S contains precisely the im-
plications

A⇒∪{B : A⇒S B} \ {C : D ⇒S C ∧D ⊂ A} \A ,

for each set A of propositions – provided the conclusion is non-empty.

From the above four properties, we can define an optimization procedure,
applying – in order – the following rules:

Premise
A⇒ B, A⇒ C

A⇒ BC
,

Isotony
A⇒ B, AD ⇒ BE

A⇒ B, AD ⇒ E
,

Extensiveness
AC ⇒ BC

AC ⇒ B
,

Definiteness
A⇒ ∅

.

The first rule merges all rules with the same antecedent A into one and imple-
ments the premise property. The second rule removes from the consequent thus
generated those subsets B that are already implied by subsets A of AD, to en-
force isotony. The third rule makes sure that antecedents C do not themselves
appear in the consequent to enforce extensiveness. Finally, implications with
empty consequent are eliminated. This latter rule is called definiteness, because
it eliminates negative clauses, which, for Horn theories, represent queries and
are not “definite” (i.e., non-negative) clauses. Clearly, the changes wrought by
the optimization rules do not affect the theory. Application of this optimization
to the direct implicational system I(S) yields the direct-optimal system D(S) of
S.

The following example shows that this notion of optimization does not cor-
respond to elimination of redundancies by contraction in completion:
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Example 6. Let S = {a ⇒ b, ac ⇒ d, e ⇒ a}. Then, I(S) = {a ⇒ b, ac ⇒
d, e ⇒ a, e ⇒ b, ce ⇒ d}, where e ⇒ b is generated by implicational overlap of
e ⇒ a and a ⇒ b, and ce ⇒ d is generated by implicational overlap of e ⇒ a

and ac ⇒ d. Next, optimization replaces e ⇒ a and e ⇒ b by e ⇒ ab, so that
D(S) = {a ⇒ b, ac ⇒ d, e ⇒ ab, ce ⇒ d}. If we consider the rewriting side,
we have RS = {ab → a, acd → ac, ae → e}. Equational overlap of ae → e

and ab → a generates be → e, and equational overlap of ae → e and acd →
ac generates cde → ce, corresponding to the two implicational overlaps. Thus,
(RS)∞ = {ab→ a, acd→ ac, ae→ e, be→ e, cde→ ce}. The rule corresponding
to e ⇒ ab, namely abe → e, would be redundant if added to (RS)∞, because
it would be reduced to a trivial equivalence by ae → e and be → e. Thus, the
optimization consisting of replacing e ⇒ a and e ⇒ b by e ⇒ ab does not
correspond to a rewriting inference. ut

The reason for this discrepancy is the different choice of ordering. Seeking
direct-optimality means optimizing the overall size of the system. For Ex. 6, we
have |{e⇒ ab} | = 3 < 4 = |{e⇒ a, e⇒ b} |. The corresponding proof ordering
measures a proof of a from a set X and an implicational system S by a multiset
of pairs 〈|B|, #BS〉, for each B ⇒S aC such that B ⊆ X , where #BS is the
number of implications in S with antecedent B. A proof of a from X = {e}
and {e ⇒ ab} will have measure {{〈1, 1〉}}, which is smaller than the measure
{{〈1, 2〉, 〈1, 2〉}} of a proof of a from X = {e} and {e⇒ a, e⇒ b}.

Completion, on the other hand, optimizes with respect to the ordering �.
For {abe → e} and {ae → e, be → e}, we have ae ≺ abe and be ≺ abe, so
{{ae, e}} ≺L {{abe, e}} and {{be, e}} ≺L {{abe, e}} in the multiset extension �L of
�, and {{{{ae, e}}, {{be, e}}}} ≺C {{{{abe, e}}}} in the multiset extension �C of �L.
Indeed, from a rewriting point of view, it is better to have {ae → e, be → e}
than {abe→ e}, since rules with smaller left hand side are more applicable.

6 Rewrite-Optimality

It is apparent that the differences between direct-optimality and completion
arise because of the application of the premise rule. Accordingly, we propose
an alternative definition of optimality, one that does not require the premise
property, because symbols in repeated antecedents are counted only once:

Definition 7 (Rewrite-optimality). An implicational system S is rewrite-
optimal if ‖S ‖ ≤ ‖S′ ‖ for all equivalent implicational system S ′, where the
measure ‖S ‖ is defined by:

‖S ‖
!
= |Ante(S)|+ |Cons(S)| ,

for Ante(S)
!

= {c : c ∈ A, A⇒S B}, the set of symbols occurring in antecedents,

and Cons(S)
!

= {{c : c ∈ B, A ⇒S B}}, the multiset of symbols occurring in
consequents.
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Unlike Definition 5, where antecedents and consequents contribute equally,
here symbols in antecedents are counted only once, because Ante(S) is a set,
while symbols in consequents are counted as many times as they appear, since
Cons(S) is a multiset. Rewrite-optimality appears to be appropriate for Horn
clauses, because the premise property conflicts with the decomposition of non-
unary implications into Horn clauses. Indeed, if S is a non-unary implicational
system, and SH is the equivalent Horn system obtained by decomposing non-
unary implications, the application of the premise rule to SH undoes the decom-
position.

Example 7. Applying rewrite optimality to S = {a ⇒ b, ac ⇒ d, e ⇒ a} of
Ex. 6, we have ‖{e ⇒ ab} ‖ = 3 = ‖{e ⇒ a, e ⇒ b} ‖, so that replacing {e ⇒
a, e ⇒ b} by {e ⇒ ab} is no longer justified. Thus, D(S) = I(S) = {a ⇒
b, ac ⇒ d, e ⇒ a, e ⇒ b, ce ⇒ d}, and the rewrite system associated with D(S)
is {ab → a, acd → ac, ae → e, be → e, cde → ce} = (RS)∞. A proof ordering
corresponding to rewrite optimality would measure a proof of a from a set X and
an implicational system S by the set of the cardinalities |B|, for each B ⇒S aC

such that B ⊆ X . Accordingly, a proof of a from X = {e} and {e⇒ ab} will have
measure {{1}}, which is the same as the measure of a proof of a from X = {e}
and {e⇒ a, e⇒ b}. ut

Let ;O denote the deduction mechanism that includes implicational overlap
and the optimization rules except premise, namely isotony, extensiveness and
definiteness. We deem canonical, and denote by O(S), the implicational sys-
tem obtained from S by closure with respect to implicational overlap, isotony,
extensiveness and definiteness:

Definition 8 (Canonical system). Given an implicational system S, the
canonical implicational system O(S) generated from S is the limit S∞ of any
fair derivation S = S0 ;O S1 ;O · · · .

The following lemma shows that every inference by ;O is covered by an
inference in ;R:

Lemma 3. For all implicational systems S, if S ;O S′, then RS ;R RS′ .

Proof. We consider four cases, corresponding to the four inference rules in ;O :

1. Implicational overlap: If S ;O S′ by an implicational overlap step, then
RS ;R RS′ by equational overlap, by Lemma 2.

2. Isotony: For an application of this rule, S = S ′′ ∪ {A⇒ B, AD ⇒ BE} and
S′ = S′′ ∪ {A ⇒ B, AD ⇒ E}. Then, RS = RS′′ ∪ {AB → A, ADBE →
AD}. Simplification applies to RS using AB → A to rewrite ADBE → AD

to ADE → AD, yielding RS′′ ∪ {AB → A, ADE → AD} = RS′ .
3. Extensiveness: When this rule applies, S = S ′′ ∪ {AC ⇒ BC} and S′ =

S′′∪{AC ⇒ B}. Then, RS = RS′′ ∪{ACBC → AC}. By mere idempotence
of juxtaposition, RS = RS′′ ∪ {ABC → AC} = RS′ .
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4. Definiteness: If S = S′ ∪ {A ⇒ ∅}, then RS = RS′ ∪ {A ↔ A} and an
application of deletion eliminates the trivial equation, yielding RS′ . ut

However, the other direction of this lemma does not hold, because ;R fea-
tures simplifications that do not correspond to inferences in ;O:

Example 8. Assume that the implicational system S includes {de ⇒ b, b ⇒ d}.
Accordingly, RS contains {deb→ de, bd→ b}. A simplification inference applies
bd→ b to reduce deb→ de to be↔ de, which is oriented into be→ de, if b � d,
and into de → be, if d � b. (Were ;R equipped with a cancellation inference
rule, be ↔ de could be rewritten to b ↔ d, whence b → d or d → b.) The
deduction mechanism ;O can apply implicational overlap to de⇒ b and b⇒ d

to generate de⇒ d. However, de⇒ d is reduced to de⇒ ∅ by the extensiveness
rule, and de⇒ ∅ is deleted by the definiteness rule. Thus, ;O does not generate
anything that corresponds to be↔ de. ut

This example can be generalized to provide a simple analysis of simplification
steps, one that shows which steps correspond to ;O-inferences and which do
not. Assume we have two rewrite rules AB → A and CD → C, corresponding
to non-trivial Horn clauses (|B| = 1, B 6⊆ A, |D| = 1, D 6⊆ C), and such that
CD → C simplifies AB → A. We distinguish three cases:

1. In the first one, CD appears in AB because CD appears in A. In other
words, A = CDE for some E. Then, the simplification step is

CDEB → CDE, CD → C

CEB → CE, CD → C

(where simplification is actually applied to both sides). The corresponding
implications are A ⇒ B and C ⇒ D. Since A ⇒ B is CDE ⇒ B, implica-
tional overlap applies to generate the implication CE ⇒ B that corresponds
to CEB → CE:

C ⇒ D, CDE ⇒ B

CE ⇒ B
.

The isotony rule applied to CE ⇒ B and CDE ⇒ B reduces the latter to
CDE ⇒ ∅, which is deleted by definiteness: a combination of implicational
overlap, isotony and definiteness simulates the effects of simplification.

2. In the second case, CD appears in AB because C appears in A, that is,
A = CE for some E, and D = B. Then, the simplification step is

CEB → CE, CB → C

CE ↔ CE, CB → C
,

and CE ↔ CE is removed by deletion. The isotony inference

C ⇒ B, CE ⇒ B

C ⇒ B, CE ⇒ ∅
,

generates CE ⇒ ∅ which gets deleted by definiteness.
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3. The third case is the generalization of Ex. 8: CD appears in AB because D

appears in A, and C is made of B and some F that also appears in A, that
is, A = DEF for some E and F , and C = BF . The simplification step is

DEFB → DEF, BFD → BF

BFE ↔ DEF, BFD → BF
.

Implicational overlap applies

DEF ⇒ B, BF ⇒ D

DEF ⇒ D

to generate an implication that is first reduced by extensiveness to DEF ⇒ ∅
and then eliminated by definiteness. Thus, nothing corresponding to BFE ↔
DEF gets generated.

It follows that whatever is generated by ;O is generated by ;R, but may
become redundant eventually:

Theorem 3. For every implicational system S, for all fair derivations S =
S0 ;O S1 ;O · · · and RS = R0 ;R R1 ;R · · · , for all FG → F ∈ R(S∞),
either FG→ F ∈ (RS)∞ or FG→ F is redundant in (RS)∞.

Proof. For all FG → F ∈ R(S∞), F ⇒ G ∈ S∞ by Definition 4, and F ⇒
G ∈ Sj for some j ≥ 0. Let j be the smallest such index. If j = 0, or Sj = S,
FG → F ∈ RS = R0 by Definition 4. If j > 0, F ⇒ G was generated by
an application of implicational overlap, the isotony rule or extensiveness. By
Lemma 3 and the fairness of the ;R-derivation, FG→ F ∈ Rk for some k > 0.
If FG→ F persists, then FG→ F ∈ (RS)∞. Otherwise, FG→ F gets rewritten
by simplification and is, therefore, redundant in (RS)∞. ut

Since the limit of the ;O-derivation is O(S), it follows that:

Corollary 3. For every implicational system S, for all fair derivations S =
S0 ;O S1 ;O · · · and RS = R0 ;R R1 ;R · · · , and for all FG→ F ∈ RO(S),
either FG→ F is in (RS)∞ or else FG→ F is redundant in (RS)∞.

7 Discussion

We analyzed the notions of direct and direct-optimal implicational system in
terms of completion and canonicity. We found that a direct implicational system
corresponds to the canonical limit of a derivation by completion that features ex-
pansion by equational overlap and contraction by forward simplification. When
completion also features backward simplification, it computes the image of a
given set with respect to the closure operator associated with the given implica-
tional system. In other words, it computes the minimal model that satisfies both
the implicational system and the set. On the other hand, a direct-optimal impli-
cational system does not correspond to the limit of a derivation by completion,
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because the underlying proof orderings are different and, therefore, normaliza-
tion induces two different notions of optimization. Thus, we introduced a new
notion of optimality for implicational systems, termed rewrite optimality, that
corresponds to canonicity defined by completion up to redundancy.

Directions for future work include generalizing this analysis beyond proposi-
tional Horn theories, studying enumerations of Moore families and related struc-
tures (see [10] and Sequences A102894–7 and A108798–801 in [14]), and exploring
connections between canonical systems and decision procedures, or the rôle of
canonicity of presentations in specific contexts where Moore families occur, such
as in the abstract interpretations of programs.
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