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We introduce the notion of a partially-flow-sensitive analysis based on the number of read and write
operations that are guaranteed to be analyzed in a sequential manner. We study the complexity
of partially-flow-sensitive alias analysis and show that precise alias analysis with a very limited
flow-sensitivity is as hard as precise flow-sensitive alias analysis, both when dynamic memory
allocation is allowed, as well as in the absence of dynamic memory allocation.
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1. INTRODUCTION

Most static analyses for modern programming languages depend significantly on various
forms of pointer analysis, such as alias analysis, to deal with indirect data references and
modifications. However, precise flow-sensitive alias analysis is known to be undecidable
for single-procedure programs with loops, recursive data structures, and dynamically allo-
cated storage even under the assumption that all paths in theprogram are feasible [Landi
1992b; Ramalingam 1994]. The problem remains undecidable even if the program manip-
ulates only singly-linked lists [Chakaravarthy 2003]. This result is shown for flow-sensitive
analysis:i.e., the analysis is required to respect the order in which statements execute in a
path.

Precise flow-insensitive alias analysis has been shown to beNP-hard for programs with-
out dynamic allocation, but in which pointers can referenceother variables [Horwitz 1997].
However, this proof assumes that there is no bound on the number of memory accesses oc-
curring in a single statement.

In this paper, we present some new complexity results for alias analysis by considering
analyses that have a very restricted, and precisely-defined, form of flow-sensitivity. Tradi-
tionally, the termflow-insensitive analysishas been used to refer to analyses which ignore
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constraints on the order in which statements in a program canexecute. However, such
analyses typically do take into account the order in which computations within a single
statement occur. E.g., the multiple pointer dereferences occurring in a single statement
such as “x = ***p”, must be treated atomically by a precise flow-insensitive analysis.
Note that if this statement is broken into a sequence of statements, the analysis might pro-
duce a different result. (In other words, the choice of the set of the atomic statements
affects the precision of the analysis.) Thus, an analysis which treats “x = ***p” as an
atomic unit, may be viewed as beingpartially flow-sensitive.

In this paper, we first formalize the notion of partially-flow-sensitive analysis as follows.
We consider programs written in a language with a set of primitive statements. (Each
statement can dereference at most one pointer.) Ablock-partitionedprogram is one that
has been partitioned into units of computation calledblocks. Informally, an analysis is said
to beblock-flow-sensitiveif it analyzes code within any given block in a flow-sensitive
fashion, but the analysis may ignore the execution order between blocks. Intuitively, the
ability to analyze certain adjacent, related, statements as a unit (i.e., flow-sensitively) can
obviously help improve the precision of flow-insensitive analyses.

We will particularly consider analyses that are guaranteedto be block-flow-sensitive for
programs where the total number of read and write operationsin a block are less than some
given constants. This allows us to measure the degree of flow-sensitivity of an analysis by
considering the maximal number of read and write operationsin a block. We show that
the problem of a precise flow-sensitive alias analysis can bereduced to the problem of
a precise partially-flow-sensitive alias analysis with a very limited degree of flow sensi-
tivity. This, combined with [Landi 1992a; 1992b; Ramalingam 1994; Muth and Debray
2000; Chakaravarthy 2003], leads to our main results: lowerbounds on the complexity of
partially-flow-sensitive alias analysis.

From a pragmatic perspective, the key results of this paper are a sequence of reductions
that show that certain aspects of flow-sensitive alias analysis are not critical and can be
eliminated via these reductions, allowing analysis designers to focus on simplified sub-
problems.

1.1 Outline

Section 2 formalizes the notion of partially-flow-sensitive alias analysis. Section 3 states
our main results. Section 4 shows that precise partially-flow-sensitive may- and must- alias
analysis is undecidable for programs that use dynamic allocation. Section 5 shows that pre-
cise partially-flow-sensitive may-alias analysis is PSPACE-complete for single-procedure
programs that do not use dynamic allocation. Section 6 concludes.

2. PARTIALLY-FLOW-SENSITIVE ALIAS ANALYSIS

In this section, we formalize the notion of partially-flow-sensitive alias analysis. We define
the syntax and the semantics of a language of primitive statements. In this language, each
statement can dereference at most one pointer. We then definethe notion of a block-
partitioned program, which allows us to formalize the concept of a precise partially-flow-
sensitive (alias) analysis.
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Statement Intended meaning

noop A no-operation statement
x =NULL Nullify variable x

x = y Copy the value of variabley to variablex

x = y→f Copy the value of thef -field of the object pointed-to by variabley to variablex

x→f = y Copy the value of variabley to thef -field of the object pointed-to by variablex
x =alloc T Allocate a fresh object of typeT and assign its address to variablex

x = &rec Assign the address of record variablerec to pointer variablex

Table I. The set of primitive statements.x andy are arbitrary pointer variables andrec is an arbitrary record
variable;f is an arbitrary field-identifier andT is an arbitrary type-identifier.

2.1 Language of Primitive Statements: Syntax

A program consists of a set of type definitions, a set of variable declarations and a single
(non-recursive) procedure.1

The only types allowed are pointers and records, which consist of a set of pointer fields.
As we address only alias analysis, we do not consider other primitive types. The variable
declarations declare a finite set of variables, each of a given record type or pointer type.
Records are allowed to have recursive fields.

We assume the syntactic domainsx ∈ VarId , f ∈ FieldId , and t ∈ TypeId , of
variable identifiers, field identifiers, and type identifiers, respectively. We assume that
flds(t) ⊂ FieldId denotes the (finite) set of fields comprising a record typet ∈ TypeId .
For simplicity, we assume that field identifiers are globallyunique,i.e., for any type iden-
tifiers t1, t2 ∈ TypeId , if t1 6= t2 thenflds(t1) ∩ flds(t1) = ∅.

We consider programs written in a language with the set of primitive statements shown
in Table I. Note that each statement can dereference at most one pointer. Without loss of
generality, we assume that all branches are non-deterministic and that only the addresses
of record variables may be taken.

We utilize a control-flow graph(CFG) to represent a programP . The control-flow graph
consists of a set of vertices(NP ), a set of edges(EP ), a designated entry vertex(nP ), and
a map(MP ) that associates every edge with a primitive statement.

2.2 Language of Primitive Statements: Semantics

Programs in our language are executed using a standard two-level store semantics for
pointer languages (see,e.g., [Milne and Strachey 1977; Reynolds 2002]). We assume
that the operational semantics has the following (rather standard) properties:

• The identifierNULL in our language denotes a special valuenull different from the
address of any heap-allocated object or variable.

• When a program’s execution starts, the contents of every memory cell isnull .

• All fields of a newly allocated object are initialized tonull .

• A program halts if it dereferences anull-valued pointer.

2.2.1 A Formal Definition of a Store-based Semantics.We formalize the notion of a
precise alias analysis using the following (standard) definition of a two-level store seman-

1Thus, we do not consider interprocedural analysis in this paper; as the primary results of this paper are lower
bound results, this is not particularly significant. In particular, our lower bounds also apply to procedural lan-
guages.
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Domain Description
l ∈ Loc Locations
v ∈ Val = Loc ∪ {null} Values
lv ∈ LV = VarId →֒ Loc Environments
rv ∈ RV = Loc →֒ Val Stores
σ ∈ Σ = 2Loc×LV×RV Memory states

Fig. 1. Semantic domains.

tics. We note, however, the our results apply to any definition which satisfies the afore-
mentioned assumptions.

2.2.1.1 Memory States.Figure 1 defines the semantic domains and the meta-variables
ranging over them. We assumeLoc to be an unbounded set of locations. Due to our
simplifying assumptions, a valuev ∈ Val is either a memory location ornull 6∈ Loc.
A memory state is a3-tuple σ = 〈A, lv , rv〉. A is the set ofused(alternatively,active
or allocated) locations. These locations store the contents (r-values [Strachey 1966]) of
pointer variables and of fields.lv is the environment. It maps every pointer variable to the
(immutable and unique) location in which its contents are stored,i.e., lv maps a variable to
its l-value [Strachey 1966]. InC [Kernighan and Ritchie 1988] terminology,lv(x) denotes
&x, the address of variablex, in σ. rv is thestore; it maps a location to its contents. For
example,rv(lv(x)) denotes the value of variablex in σ.

The value of every field of every record variable and of every dynamically allocated
object is kept in its own (unique) location in the store. In addition, we assume that every
record variable and every dynamically allocated object isidentifiedby a unique location in
the store. The latter can be, for example, the address of one of the object’s fields, as inC,
or the location of the object’s header, as inJava.

A common memory layout for objects is placing every field in a fixed offset from the
location which identifies the object. This way is taken, for example, in [Reynolds 2002],
where locations are integers and every object is identified by the location of its first field.
The contents of theith field of an object identified by locationl are stored in locationl + i.

To abstract away from issues such as specific memory layouts,we assume the existence
of a layout functionlvf : Loc →֒ Loc for every field identifierf ∈ FieldId . Given a loca-
tion l identifying a dynamically allocated object (resp. a recordvariable),lvf (l) denotes
the location in the store ofσ in which the value of thef -field of l is kept. It is assumed that
for every locationl ∈ Loc and for every pair of field identifiersf1, f2 ∈ flds(t), if f1 6= f2

thenlvf1
(l) 6= lvf2

(l).

EXAMPLE 2.1. Assume thatP is a program which defines typeT astype T {T*
a, T* b}, i.e., T is a record which has two (recursive) pointer fields,a andb. Assume
that P declaresrec as a record variable of typeT andx as a pointer variable of type
pointer toT. Let σ = 〈A, lv , rv〉 be a memory state ofP .

lv(rec) denotes the unique memory location identifyingrec in memory stateσ. In C

terminology,lv(rec) denotes &rec, the address ofrec. lva(lv (rec)) denotes the loca-
tion which stores the value of thea-field of recordrec. Similarly, lv b(lv (rec)) denotes
the location which stores the value of therec’s b-field. In C terminology,lva(lv(rec))
denotes &(rec.a) andlv b(lv (rec)) denotes &(rec.b).

If x points torecordrec in σ thenrv (lv(x)) = lv(rec). If x points toa dynamically
allocated object identified by locationl thenrv(lv (x)) = l. lva(l) denotes the location

ACM Transactions on Programming Languages, Vol. 8, No. 1, MMM YYYY.
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Axiom Side-condition # Reads # Writes

〈noop, σ〉 σ 0 0
〈x = NULL, σ〉 〈A, lv , rv [lv(x) 7→ null]〉 0 1
〈x = y, σ〉 〈A, lv , rv [lv(x) 7→ ρ(y)]〉 1 1
〈x = y→f, σ〉 〈A, lv , rv [lv(x) 7→ rv(lvf (ρ(y)))]〉 ρ(y) 6= null 2 1
〈x→f = y, σ〉 〈A, lv , rv [lvf (ρ(x)) 7→ ρ(y)]〉 ρ(x) 6= null 2 1
〈x = alloc T, σ〉 〈A ∪ FT ∪ {l}, lv , rv [lv(x) 7→ l]〉 l ∈ Loc \ A, FT ∩ A = ∅ 0 1
〈x = &rec, σ〉 〈A, lv , rv [lv(x) 7→ lv(rec)]〉 0 1

Fig. 2. Meaning of statements.σ = 〈A, lv , rv〉. x andy are arbitrary pointer variables andrec is an arbitrary
record variable;f is an arbitrary field-identifier andT is an arbitrary type-identifier.ρ(y) is a shorthand for the
value ofy in σ, i.e., ρ(y) = rv(lv(y)). Similarly, ρ(x) = rv(lv(x)). FT = {lvf (l) | f ∈ flds(T )}.

which stores the value of thea-field of l. Similarly, lv b(l) denotes the location which
stores the value of theb-field of l. In C terminology,lva(rv (lv(x))) denotes &(x→a) and
lv b(rv(lv (x))) denotes &(x→b).

A memory stateσ = 〈A, lv , rv〉 is anadmissible initial memory statefor a programP ,
if the following conditions hold:

(i) Every variable is mapped to a location,i.e., for every variablex defined inP , lv(x) ∈
Loc.

(ii) The locations used to contain the values of different variables are disjoint: Letbase(x)
be{lv(x)}, if x is a pointer variable, and{lv(x)} ∪ {lvf (l) | f ∈ flds(T )}, if x is
a record variable of typeT . If x and y are different variables defined inP then
base(x) ∩ base(y) = ∅.

(iii) Every memory location in the store is initialized tonull, i.e., rv = λl ∈ Loc.null.

(iv) A, the set of used locations, contains all the locations used to store the values of the
variables declared inP , and only these locations,i.e., letVP be the variables declared
in P , thenA =

⋃

x∈VP
base(x).

We assume that a programP always starts executing in an admissible initial memory state.

2.2.1.2 Operational Semantics.Figure 2 defines the meaning of statements in a stan-
dard two-level store semantics for pointer programs. The semantics is specified for every
primitive statementst ∈ stmsof the form defined in Table I. Themeaningof every state-
mentst is given as a binary relation over a set of memory states[[st ]] ⊆ Σ × Σ. A pair of
memory states〈σ, σ′〉 ∈ [[st ]] iff the execution ofst in memory stateσ may lead to memory
stateσ′. Figure 2 describes the semantics of a statementst in the form of axioms. The
intention is that〈σ, σ′〉 ∈ [[st ]] iff 〈st , σ〉  σ′. The#Readcolumn shows the number of
read memory access to the store done by each statement. The#Write column shows the
number of write memory access to the store done by each statement.

The statementnoop is a no-operation,i.e., it does nothing. The statementx=NULL
nullifies variablex. The statementx=y copies the value of variabley to variablex.

The statementx=y→f (field-dereference) reads the value of fieldf of the object pointed-
to byy and writes that value tox. The statementx→f=y (destructive-update) writes the
value ofy to thef-field of the object pointed-to byx. In both statements, a side-condition
ensures that the program does not dereference a null-valuedpointer: The execution of the
program halts if the dereferenced variable has anull value.

ACM Transactions on Programming Languages, Vol. 8, No. 1, MMM YYYY.
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The statementx=alloc T (dynamic-allocation) allocates an object of typeT and as-
signs its identifying location to variablex. The identifying location is guaranteed to be
fresh, i.e., it is not used in the current memory state. In addition, the statement reserves a
set of fresh locations,FT , to contain the values of the fields of the new object.

We require that for every typeT there be an unbounded number of locationsl ∈ Loc

such thatlv f (l) is defined for everyf ∈ flds(T). This requirement ensures that it is
possible to allocate an unbounded number of objects of typeT. A similar requirement is
placed in [Reynolds 2002].

Forsimplicity, we require that every location is allocated once during theexecution of the
program. This requirement is enforced by the side-condition of thealloc statement, and
the maintenance of the setA of all allocated objects, including ones that are unreachable.
Because every execution starts from an admissible initial memory state, this simplifying
assumption also ensures that the fields of allocated objectsare initialized tonull.

The statementx=&rec assigns&rec’s identifying location tox.
Note that thelv component of a state is immutable. This immutability, combined

with the assumption that a program always starts executing in an admissible initial mem-
ory state, ensures that reading or writing the value of a variable never leads to a null-
dereference.

2.2.2 Flow-Sensitive Executions.We now formalize the (standard) notion of (flow-
sensitive) executions.

DEFINITION 2.2. A sequenceπ over a setS is a total functionπ ∈ {i ∈ N | 1 ≤ i ≤
n} → S for somen ∈ N. Thelength of a sequenceπ, denoted by|π|, is |dom(π)|.

DEFINITION 2.3. A path π of a programP is a sequence overEP , the edges of the
control-flow graph ofP . A pathπ of a programP is realizableif (i) π(1) originates from
P ’s entry vertex, i.e.,π(1) = 〈nP , n〉 for somen ∈ NP , and (ii) π forms a chain of
edges, i.e., for every1 ≤ j < |π|, if π(j) = 〈nj , n

′
j〉 andπ(j + 1) = 〈nj+1, n

′
j+1〉 then

n′
j = nj+1.

DEFINITION 2.4. A traceof a programP is a sequenceτ over the set of memory states
of programP . A traceτ is induced by a pathπ of programP if (i) |τ | = |π| + 1 and
(ii) 〈τ(j), τ(j + 1)〉 ∈ [[M(π(j))]] for every1≤j≤|π|.

Given a traceτ of a programP , we refer toτ(1) as τ ’s initial memory stateand to
τ(|τ |) asτ ’s terminal memory state. If a traceτ ′ is induced by a pathπ, we say thatτ
starts executingin program pointn′, wheren′ is the source of the edgeπ(1) andends
executingin program pointn′′, wheren′′ is the target of the edgeπ(|π|). We refer to the
terminal memory state of a traceτ as thememory state resulting after the execution ofπ.

DEFINITION 2.5. A traceτ of a programP is aflow-sensitive executionof programP

if (i) τ(1) is an admissible initial memory state and (ii)τ is induced by a realizable path.

2.3 Flow Sensitive Alias Analysis

An analysis is said to be asound(resp.precise) flow-sensitive analysisfor a programP ,
if (resp. iff) the information it determines at program point (CFG node)n, is true at every
program state that can result after any flow-sensitive execution of P ending inn.

DEFINITION 2.6. A flow-sensitive may-alias analysisdetermines for a programP and
a program pointn ∈ NP , a setS of pairs of program variables such that if(x, y) 6∈ S then
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x andy never point to the same memory location after any flow-sensitive execution ofP
ending in program pointn.

Note that the above definition implies that given two variables, sayx andy, a precise
flow-sensitive may-alias analysis also determines whetherP has a flow-sensitive execution
after whichx andy point to the same memory location.

DEFINITION 2.7. A flow-sensitive must-alias analysisdetermines for a programP
and a program pointn ∈ NP , a setS of pairs of program variables such that if(x, y) ∈ S

then after any flow-sensitive execution inP ending inn, either bothx andy have anull

value, or both point to the same memory location.

2.4 Block Partitioned Programs

A block-partitionedprogram is one that has been partitioned into units of computation
called blocks. A block consists of a sequence of primitive statements. Informally, an
analysis is said to be block-flow-sensitive if it analyzes code within any given block in a
flow-sensitive fashion, but the analysis may ignore the execution order between blocks.

We utilize a control-flow graph to represent a block-partitioned program, just as in Sec-
tion 2.1. The only difference is that instead of associatingedges with primitive statements,
we associate them with blocks.

2.4.1 Block-Flow-Sensitive Executions.Intuitively, ablock-flow-sensitive executionof
a block-partitioned programP arbitrarily executesP ’s code blocks, while respecting the
order of statements in every block. We now formalize the notion of block-flow-sensitive
executions.

The semantics defined in Section 2.2.1 induces a (standard)meaningfor every sequence
of statements as the composition of the meanings of the statements comprising the se-
quence. We denote the composed meaning of a sequence of statementsblock by [[[block ]]],
i.e., [[[block ]]] = [[block (1)]] ◦ . . . ◦ [[block (|block |)]].

DEFINITION 2.8. A traceτ of block-partitioned programP is ablock trace induced by
a pathπ of programP if (i) |τ | = |π|+ 1 and (ii) for every1≤j≤|π|, 〈τ(j), τ(j + 1)〉 ∈
[[[M(π(j))]]].

DEFINITION 2.9. A trace τ of a programP is a block-flow-sensitive executionif
(i) τ(1) is an admissible initial memory state and (ii) there exists apath π of program
P such thatτ is a block trace induced byπ.

Note: We define the notion of aflow-sensitiveexecution of ablock-partitioned programby
adapting Definition 2.5 to considerblock tracesinstead oftraces. Note that the modified
definition ensures that the information determined by both flow-sensitive may-alias analy-
sis and must-alias analysis ofblock-partitioned programsis oblivious to the intermediate
memory states occurring during the execution of a block.

EXAMPLE 2.10. Figure 3.I shows the control flow graph of a block-partitioned pro-
gramP3.I . ProgramP3.I , defines typeN astype N {N* n}, i.e., recordN has a single
recursive field,n. P3.I defines six variables of type pointer toN: x, y, p, q, t, andz. The
entry vertex ofP3.I is n1. Every edge inP3.I is identified by a label of the formei, written
above the edge. The code block associated with an edge is written below that edge. We
sometimes refer to the code block associated with edgeei as code blocki.

ACM Transactions on Programming Languages, Vol. 8, No. 1, MMM YYYY.
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I CFG /.-,()*+n1

e1

x=allocN

// /.-,()*+n2

e2

y=allocN

// /.-,()*+n3

e3

p=x;

q=y

// /.-,()*+n4

e4

p=y;

q=x

// /.-,()*+n5

e5

p→n=q;

q→n=p

// /.-,()*+n6

e6

z=p;

t=p→n;

t=t→n

// /.-,()*+n7

II
Realizable
paths

π1 ·
e1

x=allocN

// ·
e2

y=allocN

// ·
e3

p=x;

q=y

// ·
e4

p=y;

q=x

// ·
e5

p→n=q;

q→n=p

// ·
e6

z=p;

t=p→n;

t=t→n

// ·

. . . . . .

Non-
realizable
paths

π2 ·
e2

y=allocN

// ·
e4

p=y;

q=x

// ·
e3

p=x;

q=y

// ·
e4

p=y;

q=x

// ·
e3

p=x;

q=y

// ·

π3 ·
e1

x=allocN

// ·
e3

p=x;

q=y

// ·
e6

z=p;

t=p→n;

t=t→n

// ·

. . . . . .

III Flow-
sensitive

may {q, x}, {p, y}, {z, p}, {z, y}, {t, p}, {t, y}, {t, z}
must {q, x}, {p, y}, {z, p}, {z, y}, {t, p}, {t, y}, {t, z}

Block-
flow-
sensitive

may {q, x}, {p, y}, {z, p}, {z, y}, {t, p}, {t, y}, {t, z},
{p, x}, {q, y}, {z, x}, {t, x}

must {t, z}

Fig. 3. I. ProgramP3.I . II. Realizable paths vs. non-realizable paths. III. Flow-sensitive vs. block-sensitive alias
analysis.

Figure 3.II shows three paths ofP3.I : π1, π2, andπ3. Pathπ1 is a realizable path, while
pathsπ2 andπ3 are not realizable paths.

Pathπ1 is the only realizable path ending inn7. Furthermore, every realizable path of
P3.I is a prefix ofπ1. In every memory state resulting after a flow-sensitive execution
induced byπ1, two objects are allocated. The pointer variablesy, p, z, andt point to one
of the objects. The pointer variablesx andq point to the other object. Then-field of each
object points to the other object.

Pathπ2 is not realizable: The first edge in pathπ2 is e2. This edge does not have the
entry vertex as its source. (A realizable path ofP3.I must start with edgee1.) Furthermore,
code block3 and code block4 appear twice inπ2. This is not possible in a realizable path
of P3.I . At the end of the block-sensitive execution induced byπ2, one object is allocated.
It is pointed-to byy andq. All other variables have anull value.

Pathπ3 is comprised of edgee1, e3, ande6. Note that an attempt to execute the program
according toπ3 leads to a null-dereference: Code block6 attempts to traverse then-field
twice, starting from the object pointed-to byp. However, at the program point in which
code block6 is executed, then-field of the object pointed-to byp has anull value. As a
result, the execution gets stuck: the second dereference cannot be executed.

2.5 Block Flow Sensitive Alias Analysis

An analysis is said to be a sound (resp. precise)block-flow-sensitive analysisfor a block-
partitioned programP , if (resp. iff) the information it determines is true at every program
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On the Complexity of Partially-Flow-Sensitive Alias Analysis · 9

state that can result after block-flow-sensitive executionof P .

DEFINITION 2.11. A block-flow-sensitive may-alias analysisdetermines for a block-
partitioned-programP , a setS of pairs of program variables such that if(x, y) 6∈ S then
x andy never point to the same memory location after any block-flow-sensitive execution
of P .

Note that the above definition implies that given two variables, sayx andy, a precise
block-sensitive may-alias analysis also determines whether P has a block-flow-sensitive
execution after whichx andy point to the same memory location.

DEFINITION 2.12. A block-flow-sensitive must-alias analysisdetermines for block-
partitioned-programP , a setS of pairs of program variables such that if(x, y) ∈ S then
after any block-flow-sensitive execution inP , either bothx and y have anull value, or
both point to the same memory location.

Note: Note that the information determined by both block-flow-sensitive may-alias analy-
sis and must-alias analysis is oblivious to the intermediate memory states occurring during
the execution of a block. Also note that the exact program point in which the aliasing
question is asked is immaterial in Definitions 2.11 and 2.12.

EXAMPLE 2.13. Figure 3.III-Flow-sensitive shows the precise solutions to the flow-
sensitive may- and must - alias analyses of programP3.I at program pointn7. To avoid
clutter, we exploit the symmetry of the aliasing relation and use{x, y} as shorthand for
(x, y) and(y, x). We also omit all pairs of the form(x, x).

The precise flow-sensitive solution of a may-alias analysisof P3.I at program pointn7 is
shown in the row labeledflow-sensitive may: We list every pair of pointer variables which
may bealiased,i.e., point to the same location, after a flow-sensitive execution of program
P3.I ending in program pointn7 (i.e., an execution induced by pathπ1). Note that the
pair{p, q} is not in the solution although after the execution ofy = p inside code block4
p andq point to the same location: The analysis may ignore intermediate memory states
occurring during the execution of a block.

The precise flow-sensitive solution of a must-alias analysis ofP3.I at program pointn7

is shown in the row labeledflow-sensitive must. It contains every pair of pointer variables
which must point to the same location or have anull value after every flow-sensitive execu-
tion of programP3.I ending in program pointn7. The solution coincides with the precise
solution to the may-alias analysis because there is only onerealizable path ofP3.I ending
in n7.

Figure 3.III-Block-flow-sensitive shows the precise solutions to the block-flow-sensitive
may- and must - alias analyses of programP3.I .

The precise block-flow-sensitive solution of a may-alias analysis ofP3.I , is shown in
the row labeledblock-flow-sensitive may: We list every pair of pointer variables which
may bealiased,i.e., point to the same location, after ablock-flow-sensitiveexecution of
programP3.I . Note that, by definition, every flow-sensitive execution isalso a block-
sensitive execution. Thus, every pair listed in the solution of the flow-sensitive may-alias
analysis is listed here too. In addition, the precise block-sensitive solution contains four
more pairs: The pairs{p, x}, {q, y} are added by considering,e.g., executions induced
by the pathe1, e2, e3. The pairs{z, x}, {t, x} are added by considering,e.g., executions
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induced by the pathe1, e2, e3, e5, e6. Again, and for the same reasons mentioned above,
the pair{p, q} is not in the solution.

The precise block-flow-sensitive solution of a must-alias analysis ofP3.I is shown in the
row labeledblock-sensitive must. Only t andz are determined to be must-alias: The values
of z andt are always set by block6: Variablez is assigned the value ofp and variablet
is assigned, inC notations , the value ofp→n→n. The only block which sets the values
of then-fields is block5. In any block-sensitive execution, if block5 does not cause a
null-dereference, then it sets then-field of the object pointed-to byp to point to the object
pointed-to byq, and vice versa. Note that because both destructive updatesare in the same
block, they are always executed as a unit. Thus, either the traversal of then-fields done in
block6 is successful, and returns to the point of origin,i.e., to the object pointed-to byp,
or it leads to a null-dereference which halts the execution.In the latter case, the analysis
also does not continue along the path.

The last point,i.e., the analysis not “continuing” along a path after a null-dereference
occurs, will play a key role in our arguments.

2.6 Partially Flow Sensitive Alias Analysis

We measure the degree of flow-sensitivity in block-flow-sensitive analysis of a programP
by measuring the “size” of its blocks.

We can measure the “size” of a block in a number of ways. The simplest measure is
to count the number of statements in a block. Thus, we may say that a block is ak-
block if it hask statements. This measurement has the advantage of being both intuitive
and simple. However, it blurs certain subtle distinctions between differentk-blocks. For
example, consider the following statements:x=y andx=y→f. Each statement is also a
1-block. However, the first block performs only one read operation while the second block
performs two consecutive read operations. Intuitively, a precise analysis of the second
block requires a higher degree of flow sensitivity.

Thus, we define a finer measurement by separately counting thenumber of memory
locations read and the number written in a block. The exact bookkeeping method used for
this purpose is not critical, (it changes our results only bya constant factor). In this paper,
we use the following definition to get a reasonably intuitivemeasure.

We first introduce the notion of a local variable (or temporary). A local variable is one
that is always initialized in a block before it is used. As a result, local variables cannot
be used to communicate values between blocks (or between different executions of the
same block). Thus, we may think of local variables as being “local” to each block. We
will typically use variable names of the formri for local variables. For any blockB, let
rd(B) be the number of non-local read occurrences in blockB. Similarly, letwr(B) be
the number of non-local write occurrences in blockB. A block B is said to be an(r, w)-
block if rd(B) = r and wr(B) = w. We say that a block-partitioned programP is
an (r, w)-block-partitioned program, if every blockB of P is such thatrd(B) ≤ r and
wr(B) ≤ w.

Note that any primitive statement can be encoded by a(2, 1)-block. Furthermore, a
“high level” statement of the formx= y → f1 → f2 → · · · → fk can be compiled into a
(k + 1, 1)-block of primitive statements. This should illustrate themotivation behind the
above definitions.

An analysis is said to be an(r, w)-partially-flow-sensitiveanalysis, if it is a block-flow-
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sensitive analysis for all(r, w)-block-partitioned programs. As a special case, an analy-
sis is said to be(∞, w)-partially-flow-sensitive if it is block-flow-sensitive for all block-
partitioned programs with blocksB such thatwr(B) ≤ w.

DEFINITION 2.14. An (r,w)-partially-flow-sensitive may-alias analysisis a block-
flow-sensitive may-alias analysis for all(r, w)-block-partitioned-programs.

DEFINITION 2.15. An (r,w)-partially-flow-sensitive must-alias analysisis a block-
flow-sensitive must-alias analysis for all(r, w)-block-partitioned-programs.

Note: As in Definitions 2.11 and 2.12, the exact program point in which the aliasing ques-
tion is asked is immaterial in Definitions 2.14 and 2.15.

We can now summarize the Horwitz’s result [Horwitz 1997] as:precise(∞, 1)-partially-
flow-sensitive alias analysis is NP-hard. On the other hand,Andersen’s analysis [Andersen
1994] is a sound(2, 1)-partially-flow-sensitive may-alias analysis.

In this paper, we limit the allowed alias questions to be equality of variables,i.e., we
consider only questions of the formarex andy may- (resp. must-) alias?

3. MAIN RESULTS

In this paper, we show that precise flow-sensitive alias analysis can be reduced to precise
(3,3)-partially-flow-sensitive alias analysis (with dynamic memory allocation) and to (5,2)-
partially-flow-sensitive analysis (without dynamic memory allocation). This allows us to
show that

• Precise (3,3)-partially-flow-sensitive may-alias and must-alias analysis is undecidable
for programs that use dynamically allocated memory.

• Precise (5,2)-partially-flow-sensitive may-alias is PSPACE-complete for programs that
do not use dynamically allocated memory.

We remind the reader that in this paper, we only consider pointer programs comprised
of a single (non-recursive) procedure.

4. REDUCING FLOW-SENSITIVE ALIASING TO PARTIALLY-FLOW-SENSITIVE
ALIASING

In this section, we show that alias analysis with a very limited flow-sensitivity is as hard as
flow-sensitive alias analysis. Specifically, we show that any programP can be transformed
into a (3, 3)-block-partitioned programQ such that the block-flow-sensitive solution for
Q yields the flow-sensitive solution forP . Because precise flow-sensitive alias analysis is
undecidable for heap manipulating programs [Landi 1992b; Ramalingam 1994; Chakar-
avarthy 2003], this shows that precise(3, 3)-partially-flow-sensitive alias analysis is also
undecidable.

We present the reduction in two stages: Section 4.1 describes a reduction that uses an
unbounded number of fields and Section 4.2 shows how the number of fields used can be
bounded.

4.1 A Reduction with an Unbounded Number of Fields

As explained earlier, a programP is represented by a set of type definitions, a set of
variable declarations, and a labeled CFG, where every edge of the CFG is annotated with
a statement. We assume, without loss of generality, that allvariables are pointers. (Thus,
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Component Program P Program Q Remark
Type type T{T* f; ... } type T{T* fld; ... } Program Q contains all type
definitions ... ... definitions of program P, plus

type PState{ a new type called PState.
T* p; PState has a fieldp of type
... pointer to T for every pointer
} variablep of type pointer to T

in program P
Variables T* p PState* atn i Program Q contains a variable

... ... at n i of type pointer to PState
for every nodeni in P’s CFG

CFG Nodes NP = {n1, . . . , nm} NQ = NP ∪ {n0} Q’s CFG is comprised of
Entry n1 n0 P’s CFG, plus a new entry
Edges EP = {e1, . . . , ek} EQ = EP ∪ {e0} node,n0, connected

wheree0 = 〈n0, n1〉 to P’s entry node,n1

Map MP maps P’s edges to MQ maps Q’s edges to MQ(e0) is at 0 =alloc
primitive statements blocks of primitive PState, andblock(e) for

statements e ∈ EP (block is defined
in the caption)

Alias question Are x andy may- (resp. Are at n→x and atn→y The program point is immaterial
must-) alias at node n? may- (resp. must-) alias? for the aliasing question in Q

Fig. 4. A transformation of an arbitrary program P into a (3,3)-block program Q. For an edgee = 〈ni, nj〉 ∈ EP ,
block(e) is at n j = at n i; at n i = null; TRANS(MP (e), atn j). The function TRANS is defined in Table II.

any record will have to be heap allocated. In particular, we rule out the use of statements
which take the address of variables,e.g., x=&rec.)

Figure 4 illustrates how we transform a given programP into a(3, 3)-block-partitioned
programQ.

The first step in the transformation augments the type definitions in programP with the
definition of a new typePState which contains a fieldp for every variablep in P . The
idea is to use a single (heap-allocated) record of typePState to capture the values of all
variables inP . The state of programP is captured inQ by aPState record plus the part
of the heap reachable from that record.

As a result, we would like to replace the set of all variables declared inP with a single
pointer variable of type pointer toPState. For reasons that will become clear soon, we
actually use a pointer variableat n i of type pointer toPState for every vertexni in the
CFG. These extra variables are used to ensure flow-sensitivity by converting control-flow
information (the “program counter”) into data, as outlinedbelow.

We add the statement “at n 0 = alloc PState” to programQ to create the single
record that is used to store the value of all variables inP , wheren0 is the entry vertex of
the CFG. We then transform every statement in programP associated with an edge from
n i ton j into a block in programQ as follows: we first add atransition guardthat copies
at n i to at n j and then setsat n i to null; we then transform the original statement
by replacing references to any variablex by a reference toat n j→x. The statement
produced by this substitution may not be a primitive statement, but can be compiled into
a sequence of primitive statements as shown in Table II. Thus, the execution of the block
associated with edgen i to n j in programQ “passes the baton” to noden j. Further,
this block can execute successfully (without a null dereference) only after the execution of
some other edge (with targetn i) passes the baton on to noden i.
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Statement Transformation Encoding code block
noop noop noop
x= NULL at n→x=NULL r1 = at n; r1→x = NULL
x= y at n→x=at n→y r1 = at n; r2 = r1→y; r1→x = r2

x= y→f at n→x=at n→y→f r1 = at n; r2 = r1→y; r3 = r2→f ; r1→x = r3

x→f = y at n→x→f = at n→y r1 = at n; r2 = r1→x; r3 = r1→y; r2→f = r3

x= alloc T at n→x=alloc T r1 = at n; r2 = alloc T ; r1→x = r2

Table II.TRANS(st , at n): Transformation of a primitive statementst which annotates a CFG edge entering
noden (which is represented by the variableat n).

Consider any pathα in programP ’s CFG from its entry vertex to some vertexn, and
let σ be the program state inP after execution along pathα. Let α′ be the corresponding
path in programQ’s CFG consisting of the edgee0 fromn 0 ton 1 followed byα, and let
σ′ be the program state inQ after execution along pathα′. It should be clear thatσ′ is an
equivalent representation of stateσ. Specifically, it should be clear that pointer variables
x andy will have the same value inσ iff at n→x andat n→y have the same value in
stateσ′.

The key aspect of the transformation, however, relates to a sequenceξ of edges inQ’s
CFG that does not constitute a path. Execution along any sequenceξ of edges inQ’s CFG
will either result in a null-dereference or will produce a state that is equivalent to the state
produced by execution along a path fromQ’s entry vertex ton, wheren is the target vertex
of the last edge in sequenceξ.

Specifically, consider how the pointer to the record allocated in the entry edge is copied
to otherat n variables. The transition guards that do this ensure that atmost oneat n
variable points to this object. Further, the sequence ofat n variables that point to this
object must form a valid path in the CFG, starting from the entry vertex. However, note
that in a block-sensitive analysis it is possible for the entry edge to be executed at any point,
creating newerPState records. (Recall that the code block associated with the entry edge
doesnot begin with a transition guard, i.e., it is comprisedonly of the statement “at n 0
= alloc PState”.) In the general case, it is possible for multiplePState records
to exist, and for multipleat n variables to be non-null (i.e., to point to these records).
However, no twoat n variables can point to the same record at the same time. This gives
us the desired result, as shown below.

Let ξ = [e1, · · · , eq] be an arbitrary sequence ofQ’s edges and letn be the target of
edgeeq. Consider the execution of the code block associated with any edgeei that is not
the entry edge. Letei = (v, w). If the execution of the code block does not cause a null-
dereference, thenat v must be non-null before the execution of the statements. However,
at v can be assigned a non-null value only by the execution of the block associated with
some edge whose target isv. Let j be the largest integer less thani such that the target of
ej is v. (It follows from the previous argument that such aj exists.) We definej to be the
logical predecessor indexof i (in the sequenceξ).

We can identify a sequence of indices[z1, · · · , zq′ ] such thatzq′ = q, and for1 < i ≤ q′,
zi−1 is the logical predecessor index ofzi in ξ, andez1

is the entry edge. The corresponding
sequenceγ of edges[ez1

, · · · , ezq′
] forms a realizable path from the entry vertex to vertexn

in Q such that the state after the execution ofξ atn is equivalent to the state after execution
of γ atn (where the notion of equivalence is as explained previously).

A key property that guarantees this result is the following.Let j be the logical prede-
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cessor index ofi in ξ. Consider anyp such thatj < p < i. The execution of edgeep

does not affect the visible state seen during the execution of ei. Specifically, let the source
vertex of edgeep beu. Then, the record that pointerat u points to before the execution
of ep is different from the record thatat v points to before the execution ofei. Further,
the heap reachable fromat u is completely disjoint from the heap reachable fromat v.
The disjointness is ensured by the following properties: (i) at u andat v point to dif-
ferent state records, and (ii) the transformation of the statements ensures that references to
allocated objects are obtained by traversing through the same state record. Thus, once an
object has been allocated and its location assigned to a fieldof one state record, it cannot
be pointed-to by a field of any other state record.

Thus, execution along an arbitrary sequenceξ ends up simulating parallel executions
along one or more realizable paths in the CFG, without any interference between these
simulations. The key reason for the correctness of the transformation, whose proof fol-
lows immediately from the preceding discussion, is that executions halt once a null-pointer
dereference occurs (see Section 2.2).

THEOREM 4.1. The block-flow-sensitive aliasing solution forQ coincides with the
flow-sensitive aliasing solution forP .

Let us now measure the flow-sensitivity of the programQ. Note that the transition
guardat n j=at n i; at n i = NULL; can be encoded by the following operations
consisting of1 read operation and2 write operations:

r1 = at n i; at n j = r1; at n i = NULL

Every simple statement can be encoded by at most4 operations (see Table II) containing
at most3 reads and1 write. Note that the first operation in the code block pertaining to
any statement, with the exception ofnoop, is always to read the value of the variable
pertaining to the “current” CFG node. However, because every transformed statement is
preceded by a transition guard which stores a value into thatvariable, we can save this read
operation.

The aliasing questionat n→x == at n→y can also be encoded using a total of4
operations with3 reads:

r1 = at n; r2 = r1→x; r3 = r1→y; equal = compare(r2, r3)

The following corollary follows immediately from the aboveresults:

COROLLARY 4.2. Precise(3, 3)-partially-flow-sensitive may-alias and must-alias anal-
yses are undecidable in the presence of dynamic memory allocation.

Note: It is possible to ask an alternative aliasing question, onewhich only requires de-
termining information regarding aliasing of variables, using a slightly more complicated
transformation: We add to programQ two pointer variables, sayat n x andat n y, of
the same types asx andy, respectively. Variablesat n x andat n y can capture the
values ofat n→x andat n→y, respectively, whenever a state record is propagated to
at n. The values ofat n→x andat n→y are fetched using the following code block:

r1 = at n; r2 = r1→x; r3 = r1→y; at n x = r2; at n y = r3.

This code block isnot guarded. Thus, it can be encoded using3 reads and2 writes. The
modified aliasing question isareat n x andat n y may- (resp. must) alias?Note that
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Component Program P Program B Remark
Type type T{T* f; ... } type T{T* fld; ... } The one user-defined type.
definitions

type VarList{ The variable list:
VarList* n; · next variable
T* px; · variable value

}

Variables T* p 1, ... pv VarList* hd; Head of the variables list
... VarList* t; Temporary
... T* lh; Left-hand operand
... T* rh; Right-hand operand

Aliasing Are p i andp j may- (resp. Are lh andrh may- (resp. Edge〈ncheck , n′
check

〉
question must-) alias at nodencheck ? must-) alias at noden′

check
? is labeled by anop in P

Fig. 5. The data types and the variables used in the transformation of an arbitrary programP into a programB

which uses only6 variables. ProgramP hasv pointer variables.

at n x andat n y do not participate in the simulation. They function as “place holders”
that can be assigned the values ofat n→x andat n→y wheneverat n points to a state
record. Becauseat n x andat n y are always assigned as a unit, they preserve both
may- and must- aliasing information regardingat n→x andat n→y in programQ, and
thus, also regardingx andy in programP .

4.2 Bounding the Number of Fields

In this section, we show that precise (3,3)-partially-flow-sensitive may-alias and must-
alias analysis is undecidable even when the number of fields is bounded. This result is not
implied by Theorem 4.1 because the number of fields used by thetransformation in Sec-
tion 4.1 is proportional to the number of variables in the transformed programP . Specifi-
cally, thePState record has ap-field for every variablep in programP .

The main idea is to simulate a programP , which uses an unbounded number of vari-
ables, using a programB, which uses only a bounded number of variables. The simula-
tion ensures that theflow-sensitivealiasing solution to programB yields theflow-sensitive
aliasing solution to programP . Applying the transformation of Section 4.1 to programB

achieves the desired result.
In this section, we assume that the program has only1 user defined type, namelyT . This

does not limit the generality of our result for two reasons. First, it is trivial to convert any
program that usesk user defined typesT1, . . . , Tk into a program that uses a single typeT

which contains all of their fields.2 Second, to obtain a lower bound, it suffices to apply the
transformation to programs that use a single type which has2 recursive fields: determining
may- and must- aliasing for these programs is undecidable [Ramalingam 1994].

The crux of the simulation is an encoding of the program variables by a linked list. The
list nodes are of typeVarList (see Figure 5). Every node has2 fields: n, a successor
field, andpx, a data field. The value of a variablexi is encoded by thepx-field of the
(i−1)-th list element. The transformation produces a program which uses (only) the4
variables shown in Figure 5.

We transform the control flow graph of programP into that ofB using the following
procedure:

2Without loss of generality, we can assume that fields have unique names.
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(1) B starts by constructing the list which encodesP ’s variables. This is done by a code
sequence (i.e., a chain of edges labeled by primitive statements) which repeats the
following statementsv times:3

t=hd; hd=alloc VarList; hd→n=t;

Note that in the memory state the results after the executionof the above code sequence
hd points to a list withv nodes. Thepx-field of every list node has the valuenull,
which is the value a variable should have when the program starts.

(2) Every edgee is replaced by a code sequence which simulates the statementst =
MP (e). Specifically, for a statementst with a left-hand operandp l and right-hand
operandp r, we generate the following code sequence:

rh = getVarVal(r); Retrieves the current value ofp r, as encoded in the list, intorh .
lh = getVarVal(l); Retrieves the current value ofp l, as encoded in the list, intolh.
st |lh/p l,rh/p r Same operation asst , but withlh andrh replacing the left-hand

operand and the right-hand operand, respectively.
t→px=lh Stores the current value ofx in the list of variables (optional).

We usegetVarVal(d), where1 ≤ d ≤ v, as shorthand for a code sequence that re-
trieves the value of variablep d from the variable list,i.e.,

z = getVarVal(d) : t=hd initializes lookup
t=t→n Repeatedd−1 times.
· · ·
z=t→px Stores the encoded value ofp d into z.

In casest assigns a value top l (which is the usual case) we add the last statement,
t→px=lh. Note that prior to its execution,t points to theVarList node that
encodes the value ofp l.

(3) The edgeecheck = 〈ncheck , n′
check〉, the only edge which originates from the CFG

node in which we ask the aliasing question inP regardingp i andp j (see Figure 5),
is replaced by the following code sequence:

lh = getVarVal(i); Setsp i to its current (i.e., encoded) value.
rh = getVarVal(j); Setsp j to its current (i.e., encoded) value.
// lh == rh ?

This code sequence stores the current values of the variablesp i andp j, as stored in
the list, intolh andrh, respectively. The alias question inB is asked right after this
code sequence.

Clearly, programB simulates the execution of programP . Thus, the following theorem
is immediate.

THEOREM 4.3. The flow-sensitive aliasing solution forB coincides with the flow-
sensitive aliasing solution forP .

Applying the above transformation to an arbitrary programP , which has a single user
defined typeT that has2 recursive fields, results in a programB which has4 variables and

3Recall that programP hasv variables.
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4 fields (T ’s 2 fields andVarList’s 2 fields.) Applying the transformation of Section 4.1
to programB results in a programQ which has8 fields (programB’s 4 fields and one
field for every one of its variables). Recall, however, thatQ uses3 user defined types:T ,
which has2 recursive fields;PState, which has2 fields of type pointer toVarList and
2 fields of type pointer toT ; andVarList, which has1 field of type pointer toT and1
recursive field. Obviously, we can replace these3 data types by a single data type which
has4 recursive fields. Furthermore, the aliasing solution to (the modified) programQ also
yields the aliasing solution to programP . Thus, the following corollary is immediate.

COROLLARY 4.4. Precise(3, 3)-partially-flow-sensitive may-alias and must-alias anal-
yses are undecidable in the presence of dynamic memory allocation for programs with4
fields.

5. REDUCTION WITHOUT DYNAMIC ALLOCATION

In this section, we consider programs that do not use dynamicmemory allocation. In
this case, we present a transformation, similar in spirit tothe one given in Section 4, that
does not use dynamic memory allocation. Flow-sensitive may-alias analysis is PSPACE-
complete for pointer programs with records and recursive fields [Landi 1992a; Muth and
Debray 2000]. Our reduction shows that a(5, 2)-partially-flow-sensitive may-alias analysis
is as hard as a flow-sensitive analysis. Obviously, it cannotbe harder. Thus, we can
establish that(5, 2)-partially-flow-sensitive may-alias analysis is PSPACE-complete.

Again, we present the reduction in two stages: Section 5.1 gives a transformation that
uses an unbounded number of fields and Section 5.2 bounds their number.

5.1 A Reduction with an Unbounded Number of Fields

A program consists of type definitions, variable declarations and a CFG, just as in Sec-
tion 4. However, the program does not use a heap or dynamic memory allocation. In-
stead, record variables can be declared and have their address assigned to pointer vari-
ables. Specifically, we use the statementp=&rec which assigns the address of the record
variablerec to the pointer variablep.

The main idea behind the transformation of a programP into a block-partitioned pro-
gramQ such that the block-flow-sensitive solution forQ yields the flow-sensitive solution
for P is similar to the idea behind the transformation in Section 4.1. However, instead of
using a heap-allocated record to store the values ofP ’s variables, we useP ’s variables.
This eliminates the use of dynamic memory allocation in the transformation. However,
this introduces a few problems in the reduction.

We noted in Section 4.1 that execution along an arbitrary sequenceξ simulates multiple
executions along one or more realizable paths in the CFG. There was no interference be-
tween these simulations (in the original transformation) because they operate on different
state records from which disjoint parts of the heap were reachable. However, since the
current transformation usesP ’s variables, this is no longer true; the executions of blocks
in arbitrary order will have an effect on each other.

We address this problem by ensuring that an execution along any sequenceξ of edges in
Q’s CFG will result in a null-dereference unless it “corresponds” to a path in the program
P . We noted that with the original transformation, it was possible to follow a pathα in Q,
and then start following a new pathβ, and to then resume execution along pathα. We will
avoid this possibility with the new transformation by simulating the progress of a program
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counter that may only point to a single program location. This will ensure that the program
never resumes an interrupted execution. Again, the precisetreatment of null-valued pointer
dereferences will play a key role.

Before we formally define the transformation, we illustrateit using the CFG fragment
shown in Figure 6(a). This CFG fragment consists of an edgee1 whose target is a branch
node with two successor edgese2 ande3, where the edges are labeled with statementsst1,
st2, andst3, respectively. The transformation generates specialaction-recordsat1,at2,
andat3 for each one of the edgese1,e2, ande3, respectively. The action records are
depicted in Figure 6(c-b). These records have fields namedstmt1, stmt2, stmt3, and
next (and possibly other fields, depending on the rest of the program). The relationship
between an edgeei and its corresponding action-record,ati, is encoded by creating a self
reference atati using thestmti-field. Lines1,4, and5 in Figure 6(d) show the code that
is generated by the transformation to create these self references. (Every line of the code
comprises a single block.)

The fact that in the CFG fragment (only) edgese2 ande3 can be executed following
edgee1 is encoded by having thenext-field of the action-recordat1 point to one of the
action records corresponding to one of these edges. Lines2 and3 in Figure 6(d) show the
code that is generated by the transformation to update thenext field of theat1 action-
record. Figure 6(b) and Figure 6(c) depict the state of the action recordsat1,at2, andat3

after the execution of lines1,4,5 followed by line2 or line3, respectively. (Recall that in a
block-sensitive execution lines can be executed in an arbitrary order.)

Figure 6(e) shows how action records are utilized in the simulation of the code fragment
shown in Figure 6(a). Lines6, 7, and8 are used to simulate statementsst1, st2, and
st3, respectively. The pointer variablepc acts as the program counter. It points to the
currentaction-record: the action-record corresponding to the edge which is labeled by the
next statement to be executed. Every line of code (i.e., block) begins with aguardwhich
traverses the self reference and then setspc to thenext-field of the current action-record,
effectively advancing the program counter. For example, executing line6 when thenext-
field of action-recordat1 points toat2 (resp. at3), as depicted in Figure 6(b) (resp.
Figure 6(c)), leads to the execution ofst1 followed by the execution ofst2 (resp. st3).
Note, however, that an attempt to execute either line7 or line 8 whenpc points to the
action-recordat1 results in a null-dereference. This demonstrates how the guard ensures
the orderly execution of statements.

The transformation of a programP into programQ is given in Figure 7. In the fol-
lowing, we assume without loss of generality that the original programP starts with an
initialization section in which all pointer variables and all fields of all record variables
are nullified. In addition, we assume thatP ’s CFG has no sink nodes.4 We also assume
that there is a single aliasing query that we are interested in, at a specific program point,
ncheck , which is the source of a singlenop-labeled edgeecheck = 〈ncheck , n′

check〉. The
nodencheck is not part of the initialization section.

The transformation encodes the control-flow of the originalprogramP by representing
CFG edges as records, and the connections between edges as pointers. We start by intro-
ducing an action-record for representing a CFG edge. Every edgee in P ’s CFG is matched
with an action-record variable. The fieldstmte encodes this matching. The fieldstmte

4The assumption thatP ’s CFG has no sink nodes does not limit the generality of out result: any sink can be
augmented with a selfnop-labeled edge without affecting the aliasing solution.
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(b)(a) (c)

e1:st1

e2:st2 e3:st3

stmt_1
stmt_2
stmt_3

….
next

stmt_1
stmt_2
stmt_3

….

next

stmt_1
stmt_2
stmt_3

….

next

stmt_1
stmt_2
stmt_3

….
next

stmt_1
stmt_2
stmt_3

….

next

stmt_1
stmt_2
stmt_3

….

next

at1:

at3:at2:

at1:

at3:at2:

1 : pb = &ate1
; pb→stmt 1 = pb;

2 : pb = &ate1
; pb→next = &ate2;

3 : pb = &ate1
; pb→next = &ate3;

4 : pb = &ate2
; pb→stmt 2 = pb;

. . .

5 : pb = &ate3
; pb→stmt 3 = pb;

. . .

. . .

6 : pc = pc→stmt 1; pc = pc→next; st1;
7 : pc = pc→stmt 2; pc = pc→next; st2;
8 : pc = pc→stmt 3; pc = pc→next; st3;

. . .

(d) (e)

Fig. 6. Illustrating the transformation. (a) A fragment of aCFG. (b) Encoding of edgee2 as the successor of edge
e1. (c) Encoding of edgee3 as the successor of edgee1. (d) Construction of the action-records. (e) Simulation
of statement execution.

has a non-null value only in action recordate, where it points back to the recordate in
which it is contained. The action-record also uses a pointerfield next to point to the next
action to be executed. A precise definition of the action-record is given in Figure 7.

ProgramQ consists of two main parts. The first part consists of theEB andEG edges
(see Figure 7). The second part is a copy ofP ’s CFG. Thee0 edge connects the two parts.

The first part is responsible for setting thestmte andnext fields. Note that thestmte

field is always assigned the same value (Specifically, thestmte field of record variable
ate is always assigned the address ofate.) Thestmte fields are assigned by theEB

edges. In contrast, thenext field of an action-record matching an edgee can be set to the
addresses of any of the action records that match the edges following e in P ’s CFG. In a
block-flow-sensitive execution, the assignments to thenext fields allow to create all the
possible executions inP , and just these executions. Thenext fields are assigned by the
EG edges.

Thee0 edge fires off the simulation ofP ’s executions. It setspc, the “program counter”,
to the address of the first edge in the CFG. Note that in a block-flow-sensitive execution,
this statement can happen at any stage. However, because a program always starts with an
initialization section, all the values that might have beenstored inP ’s variables prior to the
execution of thee0 edge have been nullified.

The second part,i.e., the copy ofP ’s CFG, is responsible for executingP ’s statements.
Every edgee ∈ EP is mapped to a block comprised of a transition guard and thee’s
original statement inP . The transition guard ensures that whenpc points to an action-
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Component Program P Program Q Remark
Type type T{T* f; ... } type T{T* fld; ... } Program Q contains all type
definitions ... ... definitions of program P,

type Action{ plus a new type called Action
Action* stmt 1; that is used to represent
... CFG edges. An action has an
Action* stmt k; stmt i field of type pointer
Action* next; to Action for every edgeei

} in P ’s CFG
Variables T x T x Program Q contains all the

... ... variables in P, and a record
Action ate variable of type Action for
Action* pc every edgee ∈ EP ;
Action* pb a “program counter”, pc;
Action* pbn and the “program builders”,

pb and pbn
CFG Nodes NP = NQ = NP ∪ Q’s CFG is comprised of

{n1, . . . , nm} NB ∪ NG ∪ {bk+1} P’s CFG augmented withbi

NB = {bi, b
′
i | 1 ≤ i ≤ k} andgi,j nodes.

NG =

{

gi,j

∣

∣

∣

∣

∣

ei, ej ∈ EP

ei = 〈na, nb〉
ej = 〈nb, nc〉

} There is abi node and ab′i
node for every edge
ei ∈ EP .
Thebk+1 node (k= |EP|)
separatesP ’s original
CFG from the added nodes.
There is a nodegi,j for

Entry n1 b1 every pair of consecutive
Edges EP = EQ = EP ∪ EB ∪ EG ∪ {e0} edgesei, ej in P .

{e1, . . . , ek} EB = {〈bi, b
′
i〉 | 1 ≤ i ≤ k} TheEG edges “guess”

EG = {〈b′i, gi,j〉 | gi,j ∈ NG} a path inP ’s CFG.
∪ {〈gi,j , bi+1〉 | gi,j ∈ NG} TheEB edges construct

e0 = 〈bk+1, n1〉 actions corresponding
to P’s statements

Map MP maps P’s MQ maps Q’s edges to MQ(e) is
edges to primitive blocks of primitive build(ei) if e = 〈bi, b

′
i〉,

statements statements nxt(ei, ej) if e = 〈b′i, gi,j〉,
nop if e = 〈gi,j , bi+1〉),
pc = &stmte0

if e = e0,
andblock(e) if e ∈ EP

Alias question Are x andy may- Are pc→stmt c→x and Edgeecheck originates
(resp. must-) alias pc→stmt c→y may- (resp. from nodencheck

at nodencheck ? must-) alias ?

Fig. 7. A transformation of an arbitrary program P into a(5, 2)-block-partitioned programQ without using
dynamic allocation. For an edgee = 〈bi, b

′
i〉 , build(e) is pb=&stmt ei; pb→stmt i=pb. If, however,e

originates from the node in which we ask the aliasing question, build(e) is pb=&stmt ei; pb→stmt i=pb;
pb→check=pb. For an edgee = 〈b′i, gi,j〉, nxt(e) is pb=&stmt ei; pbn=&stmt ej ; pb→next=pbn.
For edgeeh = 〈ni, nj〉 ∈ EP , block(eh) is pc=pc→stmt h; pc=pc→next; MP (eh).

recordateh
, the only statement that can be executed is the one labelingeh in P , i.e.,

MP (eh). Specifically, the transition guard of edgeeh ∈ EP is pc = pc→stmt h;
pc = pc→next. The guard traverses the fieldstmt h before it advancespc. Because
the only (possibly) non-nullstmt field in ateh

is stmt h, an attempt to execute any
statement other thanMP (eh) whenpc points toateh

will lead to a null-dereference.
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Clearly, every flow-sensitive execution of programP , has a corresponding block-sensitive
execution of programQ. Furthermore, every block-sensitive execution of programQ cor-
responds to a series of flow-sensitive executions of programP , where each execution starts
from a memory state in which all the pointer variables and allthe pointer fields have a
null value. Thus, the following theorem is immediate:

THEOREM 5.1. The block-flow-sensitive aliasing solution forQ coincides with the
flow-sensitive aliasing solution forP .

Let us now measure the flow-sensitivity of the programQ. Any primitive statement
requires at most2 read operations and1 write operation. The transition guard for an edge
e can be encoded by the following4 operations consisting of3 read operations and1 write
operation:

r1 = pc; r2 = r1→stmte; r3 = r2→next ; pc = r3

Every “build” edge and every “nxt” edge can be encoded using asingle write operation.
(Recall that getting the address of a record variable does not require a read memory access
to the store.)

The aliasing questionpc→stmt c→x == pc→stmt c→y can also be encoded us-
ing a total of3 read operations and1 write operation:

r1 = pc; r2 = r1→stmt c; r3 = r2→x; r4 = r2→y; equal = compare(r3, r4)

The following corollary follows immediately:

COROLLARY 5.2. Precise(5, 2)-partially-flow-sensitive may-alias analysis is PSPACE-
complete for pointer programs that do not use dynamic memoryallocation.

Note: It is possible to ask an alternative aliasing question, onewhich only requires de-
termining information regarding aliasing of variables, using a slightly more complicated
transformation. The new transformation is similar to the one described at the end of Sec-
tion 4.1.

We add to programQ two pointer variables, sayat c x andat c y, of the same types
as x and y, respectively. Variablesat c x and at c y capture the values of
pc→stmt c→x and pc→stmt c→y, respectively, whenever the program counter
“points” to edgeecheck . The values ofpc→stmt c→x andpc→stmt c→y can be
captured using the following code block:

r1 = pc; r2 = r1→stmt c; r3 = r2→stmt c;
r4 = x; r5 = y; at c x = r4; at c y = r5 .

This code block doesnot advance the program counter. Thus, it can be encoded using
5 reads and2 writes. The modified aliasing question isare at c x and at c y may-
(resp. must) alias?Note thatat c x andat c y do not participate in the simulation.
They function as “place holders” that can be assigned the values ofx andy whenever
the program counter “points” to edgeecheck . Because they are always assigned as a unit,
they preserve both may- and must- aliasing information regardingpc→stmt c→x and
pc→stmt c→y in programQ, and thus, regardingx andy in programP .

5.2 Bounding the Number of Fields

In this section we show that precise(5, 2)-partially-flow-sensitive may-alias analysis is
PSPACE-complete in the absence of dynamic memory allocation even when the number of
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fields is bounded. This result is not implied by Theorem 5.1 because the number of fields
used by the transformation in Section 5.1 is proportional tothe size of the transformed
programP . Specifically, theAction record has astmt-field for every edge inP ’s CFG.

Examining the reduction in Section 5.1, we notice that having a field for every CFG
edge is, in a sense, redundant. Theonly role of the guard fieldstmt i is to ensure that
MP (ei), the statement labeling edgeei = 〈na, nb〉, can be executed only when the pro-
gram counter (pc) points tona. (This is achieved by preceding the execution ofMP (ei)
with a dereference ofstmt i.) However, we can achieve a similar effect by using a field
for every uniquestatementst ∈ {MP (e) | e ∈ EP } in P instead of having one for every
CFG-edge, e ∈ EP . The guard in the block code pertaining to a CFG-edgeei will be
pc=pc→stmtMP (ei); pc= pc→next. This makes the number of fields required by
the reduction proportional to the number of different statements in programP .

Unfortunately, the number of different statements in a program is also unbounded. It
depends on the number of variables and the number of fields in the program. In the rest of
this section, we show how to bound the number of statements inP thatneed to be guarded
in the simulated program.

We begin by first bounding the number of fields used inP . We can assume the program
has only one user defined type, namelyT . This does not limit the generality of our result
(see Section 4.2). Furthermore, we can assume thatT has at most2 fields: any type with
k fields f1, . . . , fk can be represented by a list withk elements. Every list element has
2 recursive pointer fields: a successor field a data field. The value of pointer fieldfk is
recorded by the data field of thek−1 list node.

To bound the number of pointer variables, we will use the sameidea as in Section 4.2
and encode the values of these variables in a list comprised of VarList record variables.
Unfortunately, such a transformation will not do for recordvariables: taking the address of
a variable requires specifying its name. This means that thenumber of different statements
inherently depends on the number of record variables.

Before we describe how to overcome the aforementioned obstacle, we make some sim-
plifying assumptions regarding programP . These assumptions do not affect the generality
of our result. We assume thatP has a pointer variablep i for every record variablerec i.
Furthermore,P consists of2 parts: P1 followed byP2. P1 assigns the address of every
record variable to its corresponding pointer variable. We refer to the pointer variablep that
corresponds to record variablerec as theconstant record pointercorresponding torec.
P2, which is the rest of the program, never uses the address-of operator. Instead, whenever
the address of a record variable is needed, the value of the corresponding constant record
pointer is used.P2 also consists of2 parts:P init

2 followed byP
prog
2 . P2 starts its execution

by a code sequenceP init
2 which nullifies all the fields of all the record variables and all the

pointer variables, except the constant record pointers. The latter are never modified byP2.
We assume thatP has totallyv pointer variablesp 1,. . . ,p v.

We are now ready to describe the transformation. We encodeP ’s variables by a linked
list of VarList nodes in the same way we did in Section 4.2. This results in a program
that utilizes the4 pointervariables defined in Figure 5, the samerecordvariables used by
programP , andv+1 new record variablesvl1, . . . ,vlv+1 of typeVarList. Record
variablevli represents the value ofP ’s pointer variablep i. Thevlv+1 node is adummy
node.

We transform the control flow graph of programP into that of ProgramB. The latter
consists of2 parts:B1 followed byB2. The transformation is done as follows:
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(1) B1 constructs and initializes the list encodingP ’s variables. It consists of a chain of
edges annotated with the following code blocks. First,B1 links theVarList nodes.
Thei-th node,1≤ i≤ v, is linked using the following code block:

r1=&vli; r2=&vli+1; r1→n=r2

Then, for a nodevl i which records the value of the constant record pointer variable
corresponding to a record variablerec, B1 assumes the role ofP1 and assigns the
address ofrec into thepx-field of vl i using the following code block:

r1=&vli; r2=&rec; r1→px=r2

Finally, B1 assigns tohd the address ofvl1, the first node in the variable list using
the statementhd = &vl1.
Note that in the memory state which results after the execution ofB1, the variablehd
points to a list withv + 1 nodes. Thepx-field of every list node has the valuenull,
unless that node represents a constant record pointer. In the latter case, thepx-field
points to the corresponding record.

(2) We transformP2 into B2 according to stages(2) and (3) of the transformation de-
scribed in Section 4.2. Note thatB2 also starts in a code sequenceBinit

2 which nulli-
fies all the variables and all the pointer fields of all the records; followed by the rest of
the program,Bprog

2 .

Clearly, the only difference between programP and programB is that while program
P can find the value of a variable directly, programB has to do it by traversing the list
variables. Thus, the following theorem follows immediately:

THEOREM 5.3. The flow-sensitive aliasing solution forB coincides with the flow-
sensitive aliasing solution forP .

We now transform programB into a (5, 2)-block-partitioned programQ. The code
sequence inB1 is already partitioned into(0, 1) blocks. Thus, we leave it intact. We
transform the CFG ofB2 according to the transformation of Section 5.1, treating the entry
node toB2 as the entry node to the program.

Note that during a block-sensitive execution of programQ, the code blocks that con-
struct the variable list can be executed any time and any number of times. However,
their effect is always the same. The transformation of Section 5.1 ensures that the or-
derly execution of the program statements inB2 is faithfully simulated. Furthermore, in
any execution ofQ, the construction of the variable list has to be completed prior to the
simulation ofBprog

2 . The reason for this is thatB2 begins by executingBinit
2 . There, it

traverses the variable list and thepx-fields of nodes pertaining to constant record pointers.
A successful traversal ensures that the list construction is completed. Note that although
list-constructing code blocks can be executed later on, they will not modify either a field
or thepc pointer. Thus, the following theorem follows immediately.

THEOREM 5.4. The flow-sensitive aliasing solution forQ coincides with the block-
flow-sensitive aliasing solution forB.

Let us count the number of fields used in programQ. First, programB uses4 variables
and2 types: T andVarList. Both have2 recursive fields. Clearly, we can rewriteB
to use a single type that has2 recursive fields. Transforming programB into programQ
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requires at most13 different statements that need to be guarded.5 Consequentially, the
Action record in programQ has14 fields. (Recall that we have oneAction record
for every CFG edge ofB2. Every record encodes a specific statement using one of the13
stmt fields. It also stores its successor using thenext field.) Clearly, programQ can be
rewritten using a single record type with13 fields. Thus, the following corollary follows
immediately:

COROLLARY 5.5. Precise(5, 2)-partially-flow-sensitive may-alias analyses are PSPACE-
complete for programs with14 fields.

6. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we define a notion of partially-flow-sensitiveanalysis. We define a degree of
flow-sensitivity based on the maximum number of memory locations read and the maxi-
mum number of memory locations written in a block which is guaranteed to be analyzed
in a sequential manner. We show that precise alias analysis with a very limited flow-
sensitivity is as hard as flow-sensitive alias analysis.

The numerical bounds we found are not absolute. In particular, alternative measure-
ments lead to different bounds. For example, measuring a block by the number of state-
ments it contains shows that precise5-flow-sensitive may-alias and must-alias analyses are
undecidable in the presence of dynamic memory allocation.6 We chose a measurement
which strikes us as being both simple and intuitive, yet sensitive enough to make certain
seemingly important distinctions between blocks (see Section 2.4 and 2.6) but not too sen-
sitive. Changing the assumption that every memory cell in the initial store contains anull
value (see Section 2.2.1.1), may also affect our results by aconstant factor.

Several interesting questions regarding partially-flow-sensitive analysis are left open. An
interesting family of analyses for which we do not have lowerbounds are(k, 1)-partially-
flow-sensitive alias analyses. These analyses coincide with the standard flow-insensitive
analyses as they require analysis ofsingleassignments involving up tok − 1 field derefer-
ences while respecting the order of field dereferences in every assignment. Another open
question is to find tighter lower bounds on the number of fieldsthat a program can use. Our
reductions use recursive data structures. An interesting question is whether similar bounds
can be shown for programs with multi-level non-recursive pointers.

The key aspect underlying our reductions is the fact that theanalysis is required to han-
dle “null-pointer dereferences” accurately: If a particular interleaving of blocks leads to a
null-pointer dereference, the analysis is not supposed to continue on with analysis along
this path. This argues that an analysis which ignores possible null-pointer dereferences
and keeps on analyzing paths causing such dereferences may not be subject to the com-
plexity results of this paper. This is one possible over-approximation of the actual program
executions that may be helpful in analysis design.

5 Only the statements of programB2 need to be guarded. According to stages (2) and (3) of the transformation
described in Section 4.2, programB2 is comprised of (a subset of) the following13 statements: (i)5 statements
are used to manipulate theVarList: t=hd, t=t→n, rh=t→px, lh=t→px, t→px=lh; (ii) 7 statements
are the original statements, withlh andrh replacing the left-hand and the right-hand operands:noop, x=NULL,
x=y, x=y→f , y→f=x, wheref is one of the2 recursive fields,i.e., eitherpx or n; (iii) 1 statement is needed
to stmt c, the edge in which the aliasing question is asked.
6In Section 4.1, we show this result for(3, 3)-partially-flow-sensitive analyses. Note that in the number-of-
statement measurement, we can gain a better bound by placing2 non-local read operations in1 statement. Our
measurement, on the other hand, is insensitive to this sort of changes, which we consider to be a merit.
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While this paper focuses only on some theoretical aspects, namely lower bounds, of
analyses for block-partitioned programs, we believe that partially-flow-sensitive analyses
could be a promising approach to striking a balance between scalability of flow-insensitive
analyses and precision of flow-sensitive analyses. Furthermore, our reduction techniques
can help in the design of new analyses. They can allow the analysis designers to focus
on a restricted version of the problem and develop analyses for the restricted version (i.e.,
develop partially-flow-sensitive analyses). Then, using our reductions, they will be able to
apply their analysis to arbitrary programs. (This is similar to the way the SSA transfor-
mation allows one to achieve flow-sensitive analysis using aflow-insensitive analysis in
certain contexts in the absence of pointer indirection.)
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