Deductive Verification

of Smart Contracts
Mooly Sagiv
000 & @
UNIVERSITY N'TN vmwarer CERTORA

OCTOBER 2018

Deductive Verification
of Smart Contracts

A Tribute to the Legacy
of Prof. Zohar Manna 1939-2018

THE
DEDUCTIVE
FOUNDATIONS
OF

COMPUTER
PROGRAMMING

ZOHAR
MANNA
and
RICHARD
WALDINGER

Zohar Manna

Weizmann Inst. & Stanford Uni.
1939-2018

Zohar Manna w"" l'

Amir Pnueli -
Temporal Verification Th:f ;e;fﬂ?vrglol.:gm

of Reactive Systems Concurrent Systems
*Safety« *Specification«

Mileston:

* Thesis (CMU, 1968)

* Mathematical Theory of Computation (1974)

* Logical Basis for Computer Programming (with Waldinger, 1985-8)
* STeP: A tool for deductive verification of systems

* Consummate teacher and advisor

i\

Jean-Marie Y |- Nachum William Pierre
Cadiou Ashok Chandra Jean Vuillemin | Shmuel Katz Adi Shamir Dershowitz Scherlis Wolper
R Marianne Tom Eddie Hugh
Ben Moszkowski Yoni Malachi Baudinet Rajeev Alur Chang McGuire
3 = : ’ /
“Anuchit Nikolaj S. Bernd E. Michael
Anuchitanukul Arjun Kapur Luca de Alfaro Bjorner Tomas E. Uribe Sipma Finkbeiner Coldn
Sriram Matteo W
Calogero Zarba | Sankaranarayanan Ting Zhang Slanina César Sanchez | Aaron Bradley

Software verificati

* The programmer defines what is the desired behavior

* Ensures there is a proof of correctness
* Proof covers all scenarios

L01101000011101011 l l()l Tt s
()()()l()]()l()lll()
0101111001011101 1 11] s ~:.l LOTOTOT011100000

00110101101001001 13
I11110000101111004"
)01010101110110] ‘01‘l00000‘010111'] 50101111

ooom': 1101()1 000011101011011010001(01\\()\\

it]
‘‘‘‘‘

,.~1111'1110.._.,.,._ 0010111011111

EETTINn1nnNn1n1tnini 1‘1 N1T1TNATNATNATNAT1I1NANNANNT

Why verify smart contracts?

Smart Contracts are hard to get right

[g alex van de sande ¥ 2 Follow SpankChain
" Davsa @ p e
@SpankChain

| repeat. There was an attack on the DAO so
we launched our white hat counter attack. More At 6pm PST Saturday, an unknown attacker

updates will follow drained 165.38 ETH (~$38k) from our

— 5O payment.channel smart contract which also
- ! ENASENSE. resulted in $4,000 worth of BOOTY on the
e contract becoming immobilized. Here is what

Manuel Ardoz :
o we know so far:

We Got Spanked: What We Know So Far — SpankChain - M...

Someone .St.OIe ~$32M (~1 53k ether) from At 6pm PST Saturday, an unknown attacker drained 165.38 ETH
three muIt|3|g wallets. More info and b|Og Eh (~$38,000) from our payment channel smart contract which also
post coming soon. resulted in...

medium.com

etherscan.io/address/0xb376 ...
12:08 PM - 19 Jul 2017

 Jorta v :
UPDATE: A user exploited an issue and A ba rrler tO tru St !

thus removed the library code, as it
seems unaware of the consequences.

2:51 AM - 7 Nov 2017

849 PM - & Oct 2018

Correctness is essential for Smart Con!

Traditional software

* Buggy code is a reality

 Mechanisms for reverting effects of erroneous code
execution

e Continuous code maintenance is standard practice

<\>

Smart Contracts on Blockchains
- Code as law
- Transactions are irreversible, often anonymous

- Smart Contracts are unpatchable
- Upgrade is tricky

Auditing

* The standard procedure for checking contracts
* Expensive $SSS

* Quality depends on the auditors

* Miss bugs

* Not decentralized
* Auditor reputation is the trust authority

10

Semi-automatic deductive verification

|
1 1 l

Incorrect Not Correct
Finds bug sure Finds proof

What We Do: Technology for certifying cc

Find bugs or prove their absence
- No false alarms or missed errors

3

NN\

_7
7z

Define what is required from contracts

- Generic properties
* No overflow
* |solation between contracts [POPL 18]

- Standard requirements

* ERC20, ERC721
Money market, Exchanges...

- Contract-specific correctness
* Wallet should have sufficient number of signers
* Correct libraries

[POPL'18] S. Grossman et. al. Online Detection of Effectively Callback Free Objects with Applications to Smart Contracts

http://www.cs.tau.ac.il/research/yoni.zohar/popl18.pdf

What Customers Say

“Compound worked with Certora to verify the correctness of a preliminary-version
of a core contract.

The tool demonstrated a unique capability to discover not just the obvious corner-
cases, but also subtle cases that would have been difficult, if not impossible, to
find through standard unit-testing.

The Certora team discovered two subtle bugs in the contract which were patched,
as well definitively proving a conjecture which influenced an important design
decision.

Certora's collection of properties proven to hold for all inputs and environments
greatly increased our confidence in the correctness of our contract.”

Geoff Hayes | CTO Al Compound

13

Certora - Automatic Exact Verification (AEV)

—

Verification
Report

Smart N ——
Contracts @
Test cases

to show bugs

ST Superior Accuracy Automatic Zero False Alarms
Most accurate No customization per All reported errors are

method to detect contract or services real and come with

bugs are required risk explanation

14

Zero Missed Errors

All errors are
eventually detected
and come with formal
checkable proofs

How does Certora-AEV work?

. g

—_— Verification
E i E — AEV Report
w” —
Ww”
Smart Contracts EVM/eWASM —_— Q
Test cases

to show bugs

15

Hoare Triples

e Useful to explain verification
* Annotate the code with assertions

*{P} Contract {Q}

* Every execution of the contract starting in a state in P results in a state in Q

@)
0° o o O
© 0 © Contract
-0 @ N
© o e
States
o © 00 © g

16

if P then {
Contract;
assert Q;
}

Hoare Triples

e Useful to explain verification

* Annotate the code with assertions

*{P} Contract {Q}

* Every execution of the contract starting in a state in P results in a state in Q

@)
O “ @ o
© 0 Contract
@
© o e
States

17

if P then {
Contract;
assert Q;
}

Example Hoare Trip

{x=0}x:=x+2{x=2} ~valid

{x=0}x:=x+2{x>0} valid

o{x=1}x:=x+y{x>0} =xinvalid Testy=-3

*{ true } if x<0 then y:=-x else y:=x { y=0 } v valid

*{ y=0 } t:=y; z:=1; while t>0 do z:=z*x; t:=t-1; done { z=x¥ } + valid

Composing Operation:

* Prove that

{P}
command, ;
command,

{Q}

* Find an intermediate assertion R and show
* {P} command, {R}
* {R} command, {Q}?

e Can be found automatically

19

Composing Operations Example

* How to prove that { x=0 } x:=5; {?} y:=x+1 { y>0 }

* Prove that
e {x=0}x:=5{x>0}
e {x=0}y:=x+1{y>0}

20

Example Walle

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;

{ count(m own) = own.len }

21

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;

while (i < own.len) False

i i< A
m_own[own[i]] = true; i<own.len

++1;

[m_own[own[i]]=true]

{ count(m own) = own.len } =41

\ 4
[assert count(m_own)=own.len]

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;
{ count(m own) = own.len } =41

\ 4
[assert count(m_own)=own.len]

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;
{ count(m own) = own.len } =41

\ 4
[assert count(m_own)=own.len]

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;
[m_own[own][i]]=true]
{ count(m own) = own.len } =41

A 2 @

[assert count(m_own)=own.len]

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;
[m_own[own][i]]=true]
{ count(m own) = own.len } =41

A 2 @

[assert count(m_own)=own.len }

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;

++1;

[m_own[own][i]]=true]

{ count(m own) = own.len } (i :=i+1)

\ 4
[assert count(m_own)=own.len }

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;

++1;

[m_own[own][i]]=true]

{ count(m own) = own.len } (i :=i+1)

\ 4
[assert count(m_own)=own.len }

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;

++1;

[m_own[own][i]]=true]

{ count(m own) = own.len } [i:=i+1

\ 4
[assert count(m_own)=own.len }

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;

[m_own[own][i]]=true]

{ count(m own) = own.len } [i:=i+1

A 4
[assert count(m_own)=own.len }

® ©

Fixed Wall
{ count(m own) = 0 }

wallet constructor fixed(address[] own)
int 1 = 0;
while (i < own.len)
if (m_own[own[i]])
abort;
m own[own[i]] = true;
++1;

{ count(m _own) = own.len }

Fixed Wall
{ count(m own) = 0 }

wallet constructor fixed(address[] own)
int 1 = 0;
while (i < own.len)
if (m_own[own[i]])
abort;
m own[own[i]] = true;
++1;

{ count(m _own) = own.len }

{ count(m own) = 0 }
int 1 = 0;
while (i < own.len) { own.len>i> @ A count(m own) = 1 }
if (m_own[own[i]])

abort;

{ own. len>1 @ A count(m _own) 1 A —m own[own[i]] }

>
m own[own[i]] = true;
{ own.len>1 > @ A count(m own) = 1+1 }
++1;
{ own.len > 1 > 0 A count(m _own) = 1 }

{ count(m_own) > own.len }

33

How does Certora-AEV
automatically check correctness?

Secret Sauce — Compilation and Constraint Solving

1

Smart Contracts

35

Secret Sauce — Compilation and Constraint Solving

False @ True

x:=0 x:=1
False True
y:=0 y:=1

ensures X==

36

Summan

* Ensured correctness is critical for the adoption of Smart Contracts
* Formal verification is the tool we have

* Enabling technologies
* Modularity
* Mature tools

37

