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Mileston:

* Thesis (CMU, 1968)

* Mathematical Theory of Computation (1974)

* Logical Basis for Computer Programming (with Waldinger, 1985-8)
* STeP: A tool for deductive verification of systems

* Consummate teacher and advisor
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Software verificati

* The programmer defines what is the desired behavior

* Ensures there is a proof of correctness
* Proof covers all scenarios
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Why verify smart contracts?



Smart Contracts are hard to get right
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Correctness is essential for Smart Con!

Traditional software

* Buggy code is a reality

 Mechanisms for reverting effects of erroneous code
execution

e Continuous code maintenance is standard practice

<\>

Smart Contracts on Blockchains
- Code as law
- Transactions are irreversible, often anonymous

- Smart Contracts are unpatchable
- Upgrade is tricky




Auditing

* The standard procedure for checking contracts
* Expensive $SSS

* Quality depends on the auditors

* Miss bugs

* Not decentralized
* Auditor reputation is the trust authority
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Semi-automatic deductive verification

|
1 1 l

Incorrect Not Correct
Finds bug sure Finds proof




What We Do: Technology for certifying cc

Find bugs or prove their absence
- No false alarms or missed errors
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Define what is required from contracts

- Generic properties
* No overflow
* |solation between contracts [POPL 18]

- Standard requirements

* ERC20, ERC721
Money market, Exchanges...

- Contract-specific correctness
* Wallet should have sufficient number of signers
* Correct libraries

[POPL'18] S. Grossman et. al. Online Detection of Effectively Callback Free Objects with Applications to Smart Contracts



http://www.cs.tau.ac.il/research/yoni.zohar/popl18.pdf

What Customers Say

“Compound worked with Certora to verify the correctness of a preliminary-version
of a core contract.

The tool demonstrated a unique capability to discover not just the obvious corner-
cases, but also subtle cases that would have been difficult, if not impossible, to
find through standard unit-testing.

The Certora team discovered two subtle bugs in the contract which were patched,
as well definitively proving a conjecture which influenced an important design
decision.

Certora's collection of properties proven to hold for all inputs and environments
greatly increased our confidence in the correctness of our contract.”

Geoff Hayes | CTO Al Compound
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Certora - Automatic Exact Verification (AEV)

—

Verification
Report

Smart N ——
Contracts @
Test cases

to show bugs

ST Superior Accuracy  Automatic Zero False Alarms
Most accurate No customization per  All reported errors are

method to detect contract or services real and come with

bugs are required risk explanation

14

Zero Missed Errors

All errors are
eventually detected
and come with formal
checkable proofs




How does Certora-AEV work?
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Hoare Triples

e Useful to explain verification
* Annotate the code with assertions

*{P} Contract {Q}

* Every execution of the contract starting in a state in P results in a state in Q

@)
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© 0 © Contract
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© o e
States
o © 00 © g
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if P then {
Contract;
assert Q;
}




Hoare Triples

e Useful to explain verification

* Annotate the code with assertions

*{P} Contract {Q}
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if P then {
Contract;
assert Q;
}




Example Hoare Trip

{x=0}x:=x+2{x=2} ~valid

{x=0}x:=x+2{x>0} valid

o{x=1}x:=x+y{x>0} =xinvalid  Testy=-3

*{ true } if x<0 then y:=-x else y:=x { y=0 } v valid

*{ y=0 } t:=y; z:=1; while t>0 do z:=z*x; t:=t-1; done { z=x¥ } + valid



Composing Operation:

* Prove that

{P}
command, ;
command,

{Q}

* Find an intermediate assertion R and show
* {P} command, {R}
* {R} command, {Q}?

e Can be found automatically
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Composing Operations Example

* How to prove that { x=0 } x:=5; {?} y:=x+1 { y>0 }

* Prove that
e {x=0}x:=5{x>0}
e {x=0}y:=x+1{y>0}

20



Example Walle

{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;

{ count(m own) = own.len }
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{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;

while (i < own.len) False

i i< A
m_own[own[i]] = true; i<own.len

++1;

[ m_own[own[i]]=true ]

{ count(m own) = own.len } =41

\ 4
[ assert count(m_own)=own.len ]
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{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;
[ m_own[own][i]]=true ]
{ count(m own) = own.len } =41
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wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;

++1;

[ m_own[own][i]]=true ]

{ count(m own) = own.len } (i :=i+1)

\ 4
[ assert count(m_own)=own.len }
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wallet constructor(address[] own)
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while (i < own.len)
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++1;
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{ count(m own) = 0 }

wallet constructor(address[] own)
int 1 = 0;
while (i < own.len)

m own[own[i]] = true;
++1;

[ m_own[own][i]]=true ]

{ count(m own) = own.len } [i:=i+1

A 4
[ assert count(m_own)=own.len }
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Fixed Wall
{ count(m own) = 0 }

wallet constructor fixed(address[] own)
int 1 = 0;
while (i < own.len)
if (m_own[own[i]])
abort;
m own[own[i]] = true;
++1;

{ count(m _own) = own.len }




Fixed Wall
{ count(m own) = 0 }

wallet constructor fixed(address[] own)
int 1 = 0;
while (i < own.len)
if (m_own[own[i]])
abort;
m own[own[i]] = true;
++1;

{ count(m _own) = own.len }




{ count(m own) = 0 }
int 1 = 0;
while (i < own.len) { own.len>i> @ A count(m own) = 1 }
if (m_own[own[i]])

abort;

{ own. len>1 @ A count(m _own) 1 A —m own[own[i]] }

>
m own[own[i]] = true;
{ own.len>1 > @ A count(m own) = 1+1 }
++1;
{ own.len > 1 > 0 A count(m _own) = 1 }

{ count(m_own) > own.len }
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How does Certora-AEV
automatically check correctness?



Secret Sauce — Compilation and Constraint Solving

1

Smart Contracts
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Secret Sauce — Compilation and Constraint Solving

False @ True

x:=0 x:=1
False True
y:=0 y:=1

ensures X==

36




Summan

* Ensured correctness is critical for the adoption of Smart Contracts
* Formal verification is the tool we have

* Enabling technologies
* Modularity
* Mature tools
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