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Abstract

We define a new decidable logic for expressing and checking invariants of programs that manipulate dynamically-allocated
objects via pointers and destructive pointer updates. The main feature of this logic is the ability to limit the neighborhood of a
node that is reachable via a regular expression from a designated node. The logic is closed under boolean operations (entailment,
negation) and has a finite model property. The key technical result is the proof of decidability. We show how to express preconditions,
postconditions, and loop invariants for some interesting programs. It is also possible to express properties such as disjointness of
data-structures, and low-level heap mutations. Moreover, our logic can express properties of arbitrary data-structures and of an
arbitrary number of pointer fields. The latter provides a way to naturally specify postconditions that relate the fields on the entry of
a procedure to the field on the exit of a procedure. Therefore, it is possible to use the logic to automatically prove partial correctness
of programs performing low-level heap mutations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The automatic verification of programs with dynamic memory allocation and pointer manipulation is a challenging
problem. In fact, due to dynamic memory allocation and destructive updates of pointer-valued fields, the program
memory can be of arbitrary size and structure. This requires the ability to reason about a potentially infinite number
of memory (graph) structures, even for programming languages that have good capabilities for data abstraction.
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Usually abstract-datatype operations are implemented using loops, procedure calls, and sequences of low-level pointer
manipulations; consequently, it is hard to prove that a data-structure invariant is reestablished once a sequence of
operations is finished [27].

To tackle the verification problem of such complex programs, several approaches emerged in the last few years
with different expressive powers and levels of automation, including works based on abstract interpretation [35,46,42],
logic-based reasoning [31,43], and automata-based techniques [32,37,8]. An important issue is the definition of a
formalism that (1) allows us to express relevant properties (invariants) of various kinds of linked data-structures, and
(2) has the closure and decidability features needed for automated verification. The aim of this paper is to study such a
formalism based on logics over arbitrary graph structures, and to find a balance between expressiveness, decidability
and complexity.

Reachability is a crucial notion for reasoning about linked data-structures. For instance, to establish that a memory
configuration contains no garbage elements, we must show that every element is reachable from some program variable.
Other examples of properties that involve reachability are (1) data-structure invariants, e.g., the tail of a queue is
reachable from the head of a queue, (2) the acyclicity of data-structure fragments, i.e., every element reachable from
node u cannot reach u, (3) the property that a data-structure traversal terminates, e.g., there is a path from a node to a
sink-node of the data-structure, (4) the property that, for programs with procedure calls when references are passed as
arguments, elements that are not reachable from a formal parameter are not modified.

A natural formalism to specify properties involving reachability is the first-order logic over graph structures with
transitive closure. Unfortunately, even simple decidable fragments of first-order logic become undecidable when
transitive closure is added [21,29].

In this paper, we propose a logic that can be seen as a fragment of the first-order logic with transitive closure. Our
logic (1) is simple and natural to use, (2) is expressive enough to cover important properties of a wide class of arbitrary
linked data-structures, and (3) allows for algorithmic modular verification using programmer-specified loop-invariants,
preconditions, and postconditions.

Alternatively, our logic can be seen as a propositional logic with atomic propositions (called reachability constraints)
modelling reachability between heap objects pointed-to by program variables and other heap objects with certain
properties. The properties are specified using patterns that limit the neighborhood of an object.

For example, we can specify the property that an object v is an element of a doubly-linked list using a the pattern
invf,b, defined by (v f→w)⇒ (w b→v). This pattern says that if v has an emanating forward pointer f that leads to
an object w, then w has a backward pointer b into v. Using the pattern invf,b, we can describe a doubly-linked list
pointed-to by a program variable x by the atomic proposition x[ f→

∗]invf,b in our logic. This reachability constraint
says that any object v reachable from an object pointed-to by x using a (possibly empty) sequence of forward pointers
satisfies the property invf,b.1

The design of our logic is guided by the following principles. First, reachability constraints are closed formulas
without quantifier alternations. This guarantees that we are dealing with alternation-free formulas. Second, reachability
is expressed via the Kleene star operator. We believe that regular expressions yield a more natural notation than the
transitive closure operator. Third, decidability is obtained by syntactically restricting the way patterns are formed. In
particular, the use of equality is limited. Semantically, the restriction means that a pattern cannot relate two nodes
that are distant from one another, unless these nodes are “named”. As a result, a pattern can only describe local
properties. Global properties can only be described using reachability along regular paths that start from “named”
nodes. Therefore, complex properties can be enforced only between “named” nodes. For example, complex sharing
patterns can be created around objects pointed-to by program variables; arbitrary sharing is allowed but cannot be
enforced deep in the data-structure, because the objects that are deep are indistinguishable and distant nodes cannot be
related by a pattern.

The contributions of this paper can be summarized as follows:
• We define the logic L0 where reachability constraints such as those mentioned above can be used. Patterns in such

constraints are defined by quantifier-free first-order formulas over graph structures and sets of access paths are
defined by regular expressions.

1 This and other examples are explained in detail in Section 4.2.
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• We show that L0 has a finite-model property, i.e., every satisfiable formula has a finite model. Therefore, invalid
formulas are always falsified by a finite store.
• We prove that the logic L0 is undecidable.
• We define restrictions on the patterns which lead to a fragment of L0 called L1.
• We prove that the satisfiability (and validity) problem of L1-formulas is decidable. The fragment L1 is the main

technical result of the paper and the decidability proof is non-trivial. The main idea is to show that every satisfiable L1
formula is also satisfied by a tree-like graph. Thus, even though L1 expresses properties of arbitrary data-structures,
because the logic is limited enough, a formula that is satisfied on an arbitrary graph is also satisfied on a tree-like
graph. Therefore, it is possible to answer satisfiability (and validity) queries for L1 using a decision procedure for
weak monadic second-order logic (MSO) on trees.
• We show that despite the restriction on patterns we introduce, the logic L1 is still expressive enough for use in

program verification: various important data-structures, and loop invariants concerning their manipulation, are in
fact definable in L1.
• We show that the proof of decidability of L1 holds “as is” for many useful extensions of L1.

We define Logic of Reachable Patterns (LRP for short) to be one of the decidable extensions of L1 (see Section 9 for
details). The new logic LRP forms a basis of the verification framework for programs with pointer manipulation, which
is a subject of an ongoing work. For instance, in contrast to decidable logics that restrict the graphs of interest (such
as weak monadic second-order logic on trees), our logic allows arbitrary graphs with an arbitrary number of fields.
We show that this is very useful even for verifying programs that manipulate singly-linked lists in order to express
postconditions and loop invariants that relate the input and the output state. By restricting the syntax, we guarantee
that queries posed over arbitrary graphs can be answered by considering only tree-like graphs. This approach allows
us to automate the reasoning about limited but interesting properties of arbitrary graphs. Moreover, our logic strictly
generalizes the decidable logic in [4], which inspired our work. Therefore, it can be shown that certain heap abstractions
including [24,45] can be expressed using LRP formulas.

The rest of the paper is organized as follows: Section 2 defines the syntax and the semantics of L0, and shows that it
has a finite model property; Section 3 shows that L0 is undecidable; Section 4 defines the fragment L1, demonstrates
the expressiveness of L1 on several examples, and defines an interesting extension of L1, called L2; Section 5 presents
the decidability proof for L1, with a detailed proof of the main theorem given in Section 6; Section 7 sketches the proof
of decidability of L2, which does not immediately follow from that of L1; Section 8 contains the complexity results
for L1; Section 9 discusses the limitations and the extensions of the new logics; finally, Section 10 discusses related
work.

2. The L0 logic

In this section, we define the syntax and the semantics of our logic. For simplicity, we explain the material in terms
of expressing properties of heaps. However, our logic can actually model properties of arbitrary directed graphs. Still,
the logic is powerful enough to express the property that a graph denotes a heap.

2.1. Syntax of L0

L0 is a propositional logic over reachability constraints. That is, an L0 formula is a boolean combination of closed
formulas in first-order logic with transitive closure that satisfy certain syntactic restrictions.

Let τ = 〈C,U, F 〉 denote a vocabulary, where
• C is a finite set of constant symbols usually denoting designated objects in the heap, pointed to by program variables.
• U is a set of unary relation symbols denoting properties, e.g., the color of a node in a Red-Black tree.
• F is a finite set of binary relation symbols (edges) usually denoting pointer fields.2

For example, we can describe a doubly-linked list with forward pointer f and backward pointer b, pointed-to
by a program variable x, using the vocabulary in which C = {x}, U = {}, and F = {f, b}. We can describe a Red-
Black tree pointed-to by a program variable root using the vocabulary in which C = {root}, U = {red, black}, and
F = {right, lef t}.

2 We can also allow auxiliary constants and fields including abstract fields [11].
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A term t is either a variable or a constant. An atomic formula is an equality t = t ′, a monadic formula u(t) for
some u ∈ U , or an edge formula t f→t ′ for some f ∈ F , and terms t, t ′. A quantifier-free formula ψ(v0, . . . , vn)

over τ and variables v0, . . . , vn is an arbitrary boolean combination of atomic formulas. We say that a sub-formula ψ
appears positively (negatively) in ϕ, if ψ appears under an even (odd) number of negations in ϕ. Let FV (ψ) denote
the free variables of the formula ψ .

Definition 2.1. A neighborhood formula N(v0, . . . , vn) is a conjunction of edge formulas of the form v f→v′, where
f ∈ F and v, v′ ∈ {v0, . . . , vn}, and monadic formulas of the form u(v) or ¬u(v), where u ∈ U .

Definition 2.2. Let N(v0, . . . , vn) be a neighborhood formula. The Gaifman graph of N , denoted by BN , is an
undirected graph with a vertex for each free variable of N . There is an edge between the vertices corresponding to vi
and vj in BN if and only if (vi f→vj ) appears in N , for some f ∈ F . The distance between logical variables vi and vj
in the formula N is the minimal edge distance between the corresponding vertices vi and vj in BN .

For example, for the formulaN = (v0
f→v1) ∧ (v0

f→v2) the distance between v1 and v2 inN is 2, and its underlying
graph BN looks like this: v1 — v0 — v2.

Definition 2.3. A routing expression is an extended regular expression, defined as follows:

R ::= ∅ empty set
| ε empty path
| f→ f ∈ F forward along edge
| f← f ∈ F backward along edge
| u u ∈ U test if u holds
| ¬u u ∈ U test if u does not hold
| c c ∈ C test if c holds
| ¬c c ∈ C test if c does not hold
| R1.R2 concatenation
| R1|R2 union
| R∗ Kleene star

Intuitively, a routing expression describes a path in the heap.
A routing expression can require that a path traverse some pointer fields backwards. For example, the routing

expression f→
∗
. f←
∗

describes a sequence of f -edges that may look like this: f→ f→ f← f← f←. We use this routing
expression in Section 4.2 to describe disjoint data-structures.

A routing expression has the ability to test properties of heap objects along the path. For example, a routing expression
( f→.¬y)∗ describes a path which does not traverse an object pointed-to by the program variable y. We use this routing
expression to describe a path along which some property holds until the path reaches the object pointed-to by y (see
Section 4.2).

Definition 2.4 (Syntax of L0). A reachability constraint is a closed formula of the form:

∀v0, . . . , vn.R(c, v0)⇒ (N(v0, . . . , vn)⇒ ψ(v0, . . . , vn)) (1)

where c ∈ C is a constant,R is a routing expression,N is a neighborhood formula, andψ is an arbitrary quantifier-free
formula, such that FV (N) ⊆ {v0, . . . , vn} and FV (ψ) ⊆ FV (N) ∪ {v0}. In particular, if the neighborhood formula
N is true (the empty conjunction), then ψ is a formula with a single free variable v0.

An L0 formula is a boolean combination of reachability constraints.

The subformulaN(v0, . . . , vn)⇒ ψ(v0, . . . , vn) defines a pattern, denoted byp(v0). Here, the designated variable
v0 denotes the “central” node of the “neighborhood” reachable from c by following anR-path. Intuitively, neighborhood
formulaN binds the variables v0, . . . , vn to nodes that form a subgraph, andψ defines more constraints on those nodes.3

3 In all our examples, a neighborhood formula N used in a pattern is such that BN (the Gaifman graph of N ) is connected.
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For example, the pattern detf (v0) defined by the formula (v0
f→v1) ∧ (v0

f→v2)⇒ (v1 = v2) ensures that v0 has at

most one outgoing f -edge. The neighborhood formula (v0
f→v1) ∧ (v0

f→v2) contains two edges emanating from the
central node v0. The restriction on the neighborhood is that the edges are in fact the same, because they have the same
source, v0, the same target, v1 = v2, and the same label f .

We use let expressions to specify the scope in which the pattern is declared:

let p1(v0)
def= N1(v0, . . . , vn)⇒ ψ1(v0, . . . , vn) in ϕ

This allows us to write more concise formulas via reuse of pattern definitions. For example, we can say that program
variables x and y are pointing to (potentially shared) doubly-linked lists:

let invf,b(v0)
def= (v0

f→v1 ⇒ v1 b→v0) in x[ f→]invf,b ∧ x[ f→]invf,b
2.1.1. Shorthands

We use c[R]p to denote a reachability constraint (1). Intuitively, the reachability constraint requires that every node
that is reachable from c by following an R-path satisfy the pattern p.

We use c1[R]¬c2 to denote let p(v0)
def= (true⇒ ¬(v0 = c2)) in c1[R]p. In this simple case, the neighborhood is

only the node assigned to v0. Intuitively, c1[R]¬c2 means that the node labeled by constant c2 is not reachable along
an R-path from the node labeled by c1. We use c1〈R〉c2 as a shorthand for ¬(c1[R]¬c2). Intuitively, c1〈R〉c2 means
that there exists an R-path from c1 to c2. We use c1 = c2 to denote c1〈ε〉c2, and c1 /= c2 to denote ¬(c1 = c2).

We use c[R](p1 ∧ p2) to denote (c[R]p1) ∧ (c[R]p2), when p1 and p2 agree on the central node variable. When
two patterns are often used together, we introduce a name for their conjunction (instead of naming each one separately):
let p(v0)

def= (N1 ⇒ ψ1) ∧ (N2 ⇒ ψ2) in ϕ.
For a quantifier-free formula ψ(v0) with a single free variable v0, we write c[R]ψ instead of let p(v0)

def= (true⇒
ψ(v0)) in c[R]p. In particular, for a unary relation symbol u, we use c[R]u to denote let p(v0)

def= (true⇒ u(v0))

in c[R]p. We use u(c) to denote the formula c〈ε〉u (equivalently, c[ε]u). We abuse the notations slightly by writing
N ∧ ψ1 ⇒ ψ2 instead of N ⇒ (ψ1 ⇒ ψ2).

In routing expressions, we use �→ to denote the routing expression ( f1→| f2→| . . . |fm→), the union of all the fields in F .

Similarly, �← denotes the routing expression ( f1←| f2←| . . . |fm←). For example, c1[ �→
∗]¬c2 means that c2 is not reachable

from c1 by any path. Finally, we sometimes omit the concatenation operator “.” in routing expressions.

2.2. Semantics of L0

L0 formulas are interpreted over labeled directed graphs. A labeled directed graph G over a vocabulary τ =
〈C,U, F 〉 is a tuple 〈VG,EG,CG,UG〉 where:
• VG is a set of nodes modelling the heap objects,
• EG:F → P(V G × VG) are labeled edges,
• CG:C → VG provides interpretation of constants as unique labels on the nodes of the graph, and
• UG:U → P(V G) maps unary relation symbols to the set of nodes in which they hold.

The language L(R) of words accepted by a routing expression R is defined as usual for regular expression. The
semantics of L0 formulas is formally defined as follows.

Definition 2.5. Consider a routing expression R and w ∈ L(R). We say that there is a path labeled by w from a
node s1 to a node s2 in G if one of the following conditions holds:
• s1 = s2 and w = ε,
• s1 = s2, w = u for a unary relation symbol u and s1 ∈ UG(u),
• s1 = s2, w = ¬u for a unary relation symbol u and s1 /∈ UG(u),
• s1 = s2, w = c for a constant c and CG(c) = s1,
• s1 = s2, w = ¬c for a constant c and CG(c) /= s1,
• w = f→ for an edge f ∈ F and 〈s1, s2〉 ∈ EG(f ),
• w = f← for an edge f ∈ F and 〈s2, s1〉 ∈ EG(f ),
• w = w1.w2 and there exists a node s3 such that there is a path labeled by w1 from s1 to s3 and there exists a path

labeled by w2 from s3 to s2.
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A node tuple inG satisfies a pattern p if it satisfies the quantifier-free formula that defines p, according to the usual
semantics of the first-order logic over graph structures.

The satisfaction relation |= between a graph G and L0 formulas is defined similarly to the usual semantics the
first-order logic with transitive closure over graphs. A graph G satisfies a formula c[R]p (and we write G |= c[R]p)
if and only if for every w ∈ L(R) and for every node tuple s0, . . . , sn in G, if there is a path labeled by w from c to
s0, then the tuple s0, . . . , sn, satisfies p with s0 used as the central node for p. The meaning of Boolean connectives is
defined in a standard way.

We say that node s ∈ G is labeled withσ ifσ ∈ C and s = CG(σ) orσ ∈ U and s ∈ UG(σ). For an edge 〈s1, s2〉 ∈ G
and f ∈ F , we say that 〈s1, s2〉 is labeled with f , if 〈s1, s2〉 ∈ EG(f ). In the rest of the paper, graph denotes a directed
labeled graph, in which nodes are labeled by constant and unary relation symbols, and edges are labeled by binary
relation symbols, as defined above.

Remark. The translation from L0 to MSO in Section 5.1 provides an alternative definition for the semantics of L0.

2.3. Finite model property

We are interested in checking validity (and satisfiability) of L0 formulas only over finite graphs. The graphs are
finite because they represent data-structures allocated by a program. (However, the graphs may be unbounded, due
to dynamic allocation of memory.) In general, a finite validity problem is considered more difficult than a validity
problem. For example, in first-order logic, the validity problem is recursively enumerable while the finite validity
problem is not. In a logic with the finite model property, the notions of validity and finite validity coincide. Thus, the
finite model property is desirable.

L0 with arbitrary patterns has a finite model property. If formula ϕ ∈ L0 has an infinite model, each reachability
constraint in ϕ that is satisfied by this model has a finite witness.

Theorem 2.6 (Finite model property). Every satisfiable L0 formula is satisfiable by a finite graph.

Sketch of Proof: We show that L0 can be translated into a fragment of an infinitary logic that has a finite model
property. Observe that c[R]p is equivalent to an infinite conjunction of universal first-order sentences. Therefore, ifG
is a model of c[R]p then every subgraph ofG is also its model. Dually, ¬c[R]p is equivalent to an infinite disjunction
of existential first-order sentences. Therefore, if G is a model of ¬c[R]p, then G has a finite subgraph G′ such that
every subgraph of G that contains G′ is a model of ¬c[R]p. It follows that every satisfiable boolean combination of
formulas of the form c[R]p has a finite model. Thus, L0 has a finite model property.

3. Undecidability of L0

The satisfiability and the validity problems of L0 formulas are undecidable. Since L0 is closed under negation, it is
sufficient to show that its satisfiability problem is undecidable. The proof uses a reduction from the tiling problem.

Definition 3.1. Define a tiling problem, T = 〈T ,R,D〉, to consist of a finite list of tile types, T = [t0, . . . tk], together
with horizontal and vertical adjacency relations, R,D ⊆ T 2. Here R(a, b)means that tiles of type b fit immediately to
the right of tiles of type a, and D(a, b) means that tiles of type b fit one step down from those of type a. A solution to
a tiling problem is an arrangement of instances of the tiles in a rectangular grid such that a t0 tile occurs in the top left
node of the grid, and a tk tile occurs in the bottom right node of the grid, and all adjacency relationships are respected.

It is well known that tiling problems of this flavor are undecidable. Therefore, if a logic can express tilings, its
satisfiability problem is also undecidable. Given a tiling problem T , we construct a formula ϕT , such that ϕT is
satisfiable if and only if there exists a solution to T .

The idea is that each node in the graph that satisfies ϕT describes a tile, with unary relation symbols T0, . . . , Tk
encoding the tile types t0, . . . , tk . There is a b-edge between every two nodes that are vertically adjacent in the grid.
There is an n-edge between every two nodes that are horizontally adjacent in the grid, and from the last node of every
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Fig. 1. A sketch of a grid model for a tiling problem T . The n-edges are depicted with solid lines, the b-edges are depicted with dashed lines.
The filled circles denote nodes labeled with “red”.

row to the first node in the subsequent row. The constant c labels the top left node of the grid, the constant c′ labels the
top right node of the grid, the constant c′′ labels the first node of the second row of the grid, and the constant c′′′ labels
the bottom right node of the grid (see sketch in Fig. 1). The unary relation red labels the nodes of the last column of
the grid.

The most interesting part of the formula ϕT ensures that all graphs that satisfy ϕT have a grid-like form. It states that
for every node v that is n-reachable from c, if there is a b-edge from v to u, then there is a b-edge from the n-successor
of v to the n-successor of u:

let p(v) def= (v b→u) ∧ (v n→v1) ∧ (u n→u1)⇒ (v1 b→u1) in c[( n→)∗]p (2)

Theorem 3.2 (Undecidability). The satisfiability problem of L0 formulas is undecidable.

Proof. Given a tiling problem T = 〈T ,R,D〉, we construct an L0 formula ϕT as a conjunction of the following
formulas:

(1) There is n-path from c to c′: c〈( n→)∗〉c′.
(2) There is n-edge from c′ to c′′: c′〈 n→〉c′′.
(3) There is n-path from c′′ to c′′′: c′′〈( n→)∗〉c′′′.
(4) There is b-edge from c to c′′ : c〈 b→〉c′′.
(5) No n-edge exits t : c′′′[ n→]f alse.
(6) For every node v that is n-reachable from s, if there is a b-edge from v to u, then there is a b-edge from the

n-successor of v to the n-successor of u: let p(v) def= (v b→u) ∧ (v n→v1) ∧ (u n→u1)⇒ (v1 b→u1) in c[( n→)∗]p.

(7) The n-edges and the b-edges reachable from s are deterministic: let detn(v)
def= (v n→v′) ∧ (v n→v′′)⇒

(v′ = v′′) in s[( n→)∗]detn, similarly, for b-edges.
(8) The top left node of the grid has a t0 tile type, and the bottom right node of the grid has a tk tile type:T0(c) ∧ Tk(c′′′).
(9) Each node in the grid has exactly one tile type:

c[( n→)∗]
⎛
⎝ ∧

0≤i<j≤k
¬(Ti ∧ Tj )

⎞
⎠ ∧

⎛
⎝ ∨

0≤i≤k
Ti

⎞
⎠

(9) Every node in the last column of the grid is labeled with red: c′[( b→)∗]red.
(10) To express that only nodes in the last column of the grid are labeled with red, we say that the first row is not

labeled with red, except its last node, and if a node is labeled with red, then its b-predecessor is labeled:

c[( n→.¬c′)∗]¬red ∧ let p(v) def= (w b→v) ∧ red(v)⇒ red(w) in c[( n→)∗]p
(11) Two horizontally adjacent tiles are compatible according to R:

let p(v) def= (v n→w) ∧ ¬red(v)⇒
⎛
⎝ ∨
R(ti ,tj )

(Ti(v) ∧ Tj (w))
⎞
⎠ in c[( n→)∗]p

(12) Two vertically adjacent tiles are compatible according to D:

let p(v) def= (v b→w)⇒
∨

D(ti ,tj )

(Ti(v) ∧ Tj (w)) in c[( n→)∗]p �
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Remark. The reduction uses only two binary relation symbols and a fixed number of unary relation symbols. It can
be modified to show that the logic with three binary relation symbols (and no unary relations) is undecidable.

4. Decidable and useful fragments of L0

In this section we define two fragments of L0 and show their usefulness. In the next section, we show that these
fragments are decidable.

First, we define the L1 fragment of L0, by syntactically restricting the patterns. We show that L1 naturally describes
some commonly-used data-structures, and express verification conditions. Second, we define L2 by extending L1 with
constants in patterns, and show that this extension allows us to describe more complex data-structures.

4.1. The L1 fragment

The L1 fragment is defined by syntactically restricting the patterns which can be used. The fragment L1 permits
arbitrary boolean combinations in patterns, but it restricts the distance between variables and forbids the use of constants
in positive occurrences of equality and edge formulas.

Definition 4.1 (The syntax of L1). In every reachability constraint c[R]p that appears in an L1 formula, the pattern
p(v0)

def= N(v0, . . . , vn)⇒ ψ(v0, . . . , vn) satisfies the following restrictions on ψ :
• (equality restriction) Ifψ contains a positive occurrence of an equality between variables vi = vj , then the distance

between vi and vj in N is at most 2 (distance is defined in Definition 2.2).
• (edge restriction) If ψ contains a positive occurrence of an edge formula of the form vi f→vj , then the distance

between vi and vj in N is at most 1.
• (constant restriction) Positive occurrences of formulas of the form v f→c, c f→v, and v = c in ψ are not allowed.

Remark. Note that formula (2), which is used in the proof of undecidability in Theorem 3.2, is not in L1, because
p contains a positive v1 b→u1 with distance 3 between v1 and u1, while L1 allows edge patterns with distance at
most 1.

4.2. Describing linked data-structures in L1

In this section, we show that L1 can express properties of data-structures. Table 1 lists some useful patterns and their
meanings. For example, the first pattern detf means that there is at most one outgoing f -edge from a node. Another
important pattern unsf means that a node has at most one incoming f -edge. We use the subscript f to emphasize that
this definition is parametric in f .

Well-formed heaps. We assume that C (the set of constant symbols) contains a constant for each pointer variable
in the program (denoted by x, y in our examples). Also, C contains a designated constant null that represents null
values. Throughout the rest of the paper we assume that all the graphs denote well-formed heaps, i.e., the fields of all
objects reachable from constants are deterministic, and dereferencing NULL yields null. In L1 this is expressed by
the formula:

Table 1
Useful pattern definitions (f, b, g ∈ F are edge labels)

Pattern name Pattern definition Meaning

detf (v0) (v0 f→v1) ∧ (v0 f→v2)⇒ (v1 = v2) At most one outgoing f -edge from v0
unsf (v0) (v1 f→v0) ∧ (v2 f→v0)⇒ (v1 = v2) v0 has at most one incoming f -edge
unsf,g(v0) (v1 f→v0) ∧ (v2 g→v0)⇒ f alse v0 is not heap-shared by f -edge and g-edge
invf,b(v0) (v0 f→v1 ⇒ v1 b→v0) Every f -edge from v0 to v1 has a b-edge in

the opposite direction
samef,g(v0) (v0 f→v1 ⇒ v0 g→v1) ∧ (v0 g→v1 ⇒ v0 f→v1) Edges f and g emanating from v0 are parallel
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Table 2
Properties of data-structures expressed in L1

Name Formula

reachx,f,y x〈( f→)∗〉y
the heap object pointed-to by y is reachable from the heap object pointed-to by x

cyclicx,f x〈( f→)+〉x
cyclicity: the heap object pointed-to by x is located on a cycle

unsharedx,f x[( f→)∗]unsf
every heap object reachable from x by an f -path has at most one incoming f -edge

disjointx,f,y,g x[( f→)∗( g←)∗]¬y
disjointness: there is no heap object that is reachable from x by an f -path and also reachable
from y by a g-path

samex,f,g x[( f→| g→)∗]samef,g
the f -path and the g-path from x are parallel, and traverse the same objects

inversex,f,b,y reachx,f,y ∧ x[( f→.¬y)∗]invf,b
doubly-linked lists between two variables x and y with f and b as forward and backward
edges

treeroot,r,l root[( l→| r→)∗](unsl,r ∧ unsl ∧ unsr ) ∧ ¬(root〈( l→| r→)+〉root)
tree rooted at root

treeroot,r,l,b treeroot,r,l ∧ root[( l→| r→)∗]invl,b ∧ invr,b
tree rooted at root with parent pointers b from every tree node to its parent

⎛
⎝∧
c∈C

∧
f∈F

c[�∗]detf
⎞
⎠ ∧

⎛
⎝∧
f∈F

null〈 f→〉null
⎞
⎠ (3)

Using the patterns in Table 1, Table 2 defines some interesting properties of data-structures using L1. The formula
reachx,f,y means that the object pointed-to by the program variable y is reachable from the object pointed-to by the
program variable x by following an access path of f field pointers. We can also use it with null in the place of y. For ex-
ample, the formula reachx,f,null describes a (possibly empty) linked-list pointed-to by x. Note that reachx,f,null implies
that the list is acyclic, because null is always a “sink” node in a well-formed heap. We can also express that there are
no incoming f -edges into the list pointed to by x, by conjoining the previous formula with unsharedx,f . Alternatively,
we can specify the fact that x is located on a cycle of f -edges: cyclicx,f . Disjointness can be expressed by the formula
disjointx,f,y,g that uses both forward and backward traversal of edges in the routing expression. Disjointness of data-
structures is important for parallelization (e.g., see [25]). For example, we can express that the linked list pointed to by
x is disjoint from the linked-list pointed to by y, using the formula disjointx,f,y,f . This formula guarantees that every
node v that is reachable from the node pointed-to by x using an f -path must not be reachable from y using an f -path.
However,vmay be reachable fromy using other edges, orvmaybe a part of another data-structure which shares elements
with y.

The last three examples in Table 2 specify data-structures with multiple fields. The formula inversex,f,b,y de-
scribes a doubly-linked list with variables x and y pointing to the head and the tail of the list, respectively. First,
it guarantees the existence of an f -path. Next, it uses the pattern invf,b to express that if there is an f -edge
from one node to another, then there is a b-edge in the opposite direction. This pattern is applied to all nodes
on the f -path that starts from x and that does not visit y, expressed using the test “¬y” in the routing expres-
sion.

The formula treeroot,r,l describes a binary tree. The first part requires that the nodes reachable from the root (by
following any path of l and r fields) not be heap-shared. The second part prevents edges from pointing back to the root
of the tree by forbidding the root to participate in a cycle. The formula treeroot,r,l,b describes a binary tree rooted at
root with parent pointers b from every tree node to its parent.

The ability to express properties like treeroot,r,l is non-trivial, because we are operating on general graphs, and
not just trees. Operating on general graphs allows us to verify that the data-structure invariant is reestablished after a
sequence of low-level mutations that temporarily violate the invariant data-structure.
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Fig. 2. The reverse procedure performs in-place reversal of a singly-linked list.

4.3. Expressing verification conditions in L1

4.3.1. The reverse procedure
The reverse procedure shown in Fig. 2 performs in-place reversal of a singly-linked list. This procedure is

interesting because it destructively updates the list and the natural specification of its partial correctness requires
reasoning about two fields. Moreover, it manipulates linked lists in which each list node can be pointed-to from the
outside. We show that the verification conditions for the procedure reverse can be expressed in L1. If the verification
conditions are valid, then the program is partially correct with respect to the specification. The validity of the verification
conditions can be checked automatically because the logic L1 is decidable, as shown in the next section. In [49], we
show how to automatically generate verification conditions in L1 for arbitrary procedures that are annotated with
preconditions, postconditions, and loop invariants in L1.

Notice that in this section we assume that all graphs denote valid stores, i.e., satisfy (3). The precondition requires
that x point to an acyclic list, on entry to the procedure. We use the symbols x0 and n0 to record the values of the
variable x and the n-field on entry to the procedure.

prereverse
def= x0〈( n0→)∗〉null

The postcondition ensures that the result is an acyclic list pointed-to by y. Most importantly, it ensures that each
edge of the original list is reversed in the returned list, which is expressed in a similar way to a doubly-linked list, using
inverse formula. We use the relation symbols y7 and n7 to refer to the values on exit.

postreverse
def= y7〈( n7→)∗〉null ∧ inversex0,n0,n7,y7

The loop invariant ϕ shown below relates the heap on entry to the procedure to the heap at the beginning of each
loop iteration (label L1). First, we require that the part of the list reachable from x be the same as it was on entry to
reverse. Second, the list reachable from y is reversed from its initial state. Finally, the only original edge outgoing
of y is to x.

ϕ
def= samex1,n0,n1 ∧ inversex0,n0,n1,y1 ∧ y1〈 n0→〉x1

Note that the postcondition uses two binary relations, n0 and n7, and also the loop invariant uses two binary relations,
n0 and n1. This illustrates that reasoning about singly-linked lists requires more than one binary relation.

The verification condition of reverse consists of two parts, VCloop and VC, explained below.
The formula VCloop expresses the fact that ϕ is indeed a loop invariant. To express it in our logic, we use several

copies of the vocabulary, one for each program point. Different copies of the relation symbol n in the graph model
values of the field n at different program points. Similarly, for constants. For example, Fig. 3 shows a graph that satisfies
the formula VCloop below. It models the heap at the end of some loop iteration of reverse. The superscripts of the
symbol names denote the corresponding program points.

To show that the loop invariant ϕ is maintained after executing the loop body, we assume that the loop condition and
the loop invariant hold at the beginning of the iteration, and show that the loop body was executed without performing
a null-dereference, and the loop invariant holds at the end of the loop body:
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Fig. 3. An example graph that satisfies the VCloop formula for reverse.

Fig. 4. The append procedure concatenates two singly-linked lists.

VCloop
def= (x1 /= null) loop is entered
∧ϕ loop invariant holds on loop head
∧(y6 = x1) ∧ x1〈n1〉x6 ∧ x1〈n6〉y1 loop body
∧samey1,n1,n6 ∧ samex6,n1,n6 rest of the heap remains unchanged

⇒ (x1 /= null) no null-dereference in the body
∧ϕ6 loop invariant after executing loop body

Here, ϕ6 denotes the loop-invariant formula ϕ after executing the loop body (label L6), i.e., replacing all occurrences
of x1, y1 and n1 in ϕ by x6, y6 and n6, respectively. The formula VCloop defines a relation between three states: on
entry to the procedure, at the beginning of a loop iteration and at the end of a loop iteration.

The formula VC expresses the fact that if the precondition holds and the execution reaches the exit of the procedure
(i.e., the loop is not entered because the loop condition does not hold), the postcondition holds on exit: VC

def= pre ∧
(x1 = null)⇒ post .

4.3.2. The append procedure
The append procedure given in Fig. 4 concatenates two singly-linked lists.
To describe the effect of a procedure on the heap, we sometimes use auxiliary relations and constants, whose

interpretation is constrained in the precondition, and used in the postconditions. It allows us to relate the values after
a call to a procedure returns to the values before the corresponding call. Note that the auxiliary constant does not have
an index, because it is not part of the program. In this example, we use the auxiliary constant last to label the last node
of the first list.

The precondition for append requires that x and y point to acyclic and disjoint lists, and defines the meaning of the
new constant last :

preappend = x0〈 n0→
∗〉null ∧ y0〈 n0→

∗〉null ∧ x0[ n0→
∗
. n

0←
∗]¬y0 ∧ x0〈( n0→.¬null)∗〉last ∧ last〈 n0→〉null

The postcondition for append uses x7 to denote the return value, which points to an acyclic list. It uses the constant
last to identify the object whose next field was modified by the procedure.

postappend = x7〈 n7→
∗〉null ∧ x7 = x0 ∧ last〈 n7→〉y0 ∧ x0[( n0→.¬last)∗]samen0,n7 ∧ y0[ n0→

∗]samen0,n7

Unary relations symbols can be used to describe data values from a limited domain, and their interaction with the
structural properties of the heap. For example, for a Red-Black tree we can specify that both children of every red node
are black:
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let rb(v0)
def= (red(v0) ∧ (v0 l→v1)⇒ black(v1)) ∧ (red(v0) ∧ (v0 r→v1)⇒ black(v1))

in root[( l→| r→)∗]rb
Moreover, unary information can be used to describe states of objects, and sets of objects, as shown by the following
example.

4.4. The L2 fragment

The fragment L2 extends L1 by allowing constants to be freely used in patterns, removing the last restriction of
Definition 4.1. For example, the property that a general graph is a tree in which each node has a pointer b back to the
root is expressible in L2, using the pattern true⇒ b(v0, root), but this pattern is not in L1. It can be shown that the
property cannot be expressed in L1, using the same arguments as in Section 7.

5. Decidability of L1

In this section, we show that L1 is decidable for validity and satisfiability. Since L1 is closed under negation, it is
sufficient to show that it is decidable for satisfiability. The proof proceeds as follows:

(1) Translate an L0 formula into an equivalent MSO formula (Lemma 5.2).
(2) Define a class of simple graphs Ak , for which the Gaifman graph (Definition 5.4) is a tree with at most k additional

edges (Definition 5.5).
(3) Show that the satisfiability of MSO logic over Ak is decidable, by reduction to MSO on trees [41] (Lemma 5.6).

We could have also shown decidability using the fact that the tree width of all graphs in Ak is bounded by k, and
that MSO over graphs with bounded tree width is decidable [15,2,48].

(4) Every formula ϕ ∈ L1 can be effectively translated into an equi-satisfiable normal-form formula that is a dis-
junction of formulas in CL1 (Definition 5.9 and Theorem 5.12). It is sufficient to show that the satisfiability of
CL1 is decidable.

(5) Show that if formula ϕ ∈ CL1 has a model, ϕ has a model in Ak , where k is proportional to the size of the
formula ϕ (Theorem 5.14). This is the main part of the proof, given in detail in Section 6.

In Section 7, we extend this proof to show decidability of L2.

5.1. Translation from L0 to MSO

Every regular expression R can be effectively translated into an MSO formula ϕR(x, y), that describes the paths
from x to y labeled with w, for every word w in R. To encode the Kleene star expression, we use a least fixpoint
operation, expressible in MSO.

Lemma 5.1. Every routing expression R can be translated into an MSO formula tr(R)(v1, v2) with two (first-order)
free variables v1 and v2 such that for every graph S and nodes a, b ∈ S, there is an R-path from a to b if and only if
S, a, b |= tr(R)(v1, v2).

Sketch of Proof: For atomic regular expressions and concatenation, we define tr(R)(v1, v2) as follows:

tr(R)(v1, v2)
def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (v1, v2) if R is f→
f (v2, v1) if R is f←¬(c = v1) ∧ (v1 = v2) if R is ¬c
u(v1) ∧ (v1 = v2) if R is u
¬u(v1) ∧ (v1 = v2) if R is ¬u

tr(R1.R2)(v1, v2)
def= ∃v3.tr(R1)(v1, v3) ∧ tr(R2)(v3, v2)

The formula tr(R∗)(v1, v2) holds when the minimal set Y that contains v1 and is closed underR, contains v2. Formally,
we define

tr(R∗)(v1, v2)
def= ∃Y.(v2 ∈ Y ) ∧Q(v1, Y ) ∧ ∀Y ′.Q(v1, Y

′)⇒ Y ⊆ Y ′
where Q(v1, Z) is (v1 ∈ Z) ∧ ∀v′1, v′2.(v′1 ∈ Z) ∧ ϕR(v′1, v′2)⇒ (v′2 ∈ Z).
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For example, the routing expression R
def= ( n→.¬y)∗ is translated into the MSO formula tr(R)(x, v)

def= ∃Y.(v ∈
Y ) ∧Q(x, Y ) ∧ ∀Y ′.Q(x, Y ′)⇒ Y ⊆ Y ′, where Q(x,Z) is (x ∈ Z) ∧ ∀v′1, v′2.(v′1 ∈ Z) ∧ ∃v′3.(f (v′1, v′3) ∧ ¬(x =
v′3) ∧ (v′3 = v′2))⇒ (v′2 ∈ Z).

Using the translation of regular expressions as defined above, it is easy to translate a general L0 formula to an
equivalent MSO formula. For ϕ ∈ L0 over τ , T R2(ϕ) is an MSO formula over the same vocabulary τ . The translation
T R2 is defined inductively:

T R2(c[R]p) def= ∀v0, v1, . . . , vn.ϕR(c, v0)⇒ p(v0, . . . , vn)

T R2(ϕ1 ∧ ϕ2)
def= T R2(ϕ1) ∧ T R2(ϕ2)

T R2(¬ϕ1)
def= ¬T R2(ϕ1)

For example, the L0 formula ϕ
def= x〈 n→∗〉y ∧ x[( n→.¬y)∗]invn,n′ which is part of a loop invariant of the reverse

procedure (Section 4.3.1), is translated into the MSO formula

T R2(ϕ) = tr( n→∗)(x, y) ∧ ∀v0, v1. tr(( n→.¬y)∗)(x, v0)⇒ (n(v0, v1)⇒ n′(v1, v0))

where tr( n→∗) and tr(( n→.¬y)∗) are defined as above.

Lemma 5.2. For all ϕ ∈ L0 and all graphs S, S |= ϕ iff S |= T R2(ϕ).

5.2. Decidability of MSO on Ayah graphs

We define a set T k of undirected graphs, each of which is a tree4 with at most k extra edges.

Definition 5.3. An undirected graph B is in T k if removing self loops and at most k additional edges from B results
in an acyclic (undirected) graph.

For a directed graph we define the corresponding undirected graph:

Definition 5.4. Let G(S) denote the Gaifman graph of the graph S, i.e., an undirected graph obtained from S by
removing node labels, edge labels, and edge directions (and parallel edges).

We define a notion of simple tree-like (directed) graphs, called Ayah graphs.

Definition 5.5 (Ayah graphs). For k ≥ 0, an Ayah graph of k is a graph S whose Gaifman graph is in T k: Ak =
{S|G(S) ∈ T k}.

Examples of graphs in A0, A1, and A2 are shown in Fig. 5. For j = {0, 1, 2}, a structure Sj ∈ Aj is shown in the
left column, and the corresponding Gaifman graph G(Sj ) ∈ T j is shown in the right column; with j dashed edges.
Removing the dashed edges from G(Sj ) yields a tree.

The graph S0 describes an acyclic singly-linked list pointed-to by x. The node labeled with null does not represent
an element of the list: it is a “sink” node which models the null value, as explained in Section 4.2. In G(S0), the
self-loop is not dotted because Definition 5.3 ignores self-loops. (As we show later, self-loops can be easily handled,
while larger cycles require a more complex treatment.) The graph S1 describes a cyclic doubly-linked list. In G(S1),
a single edge represents the parallel edges of S1 with different directions and different labels. The graph S2 describes
a tree with pointers from every tree node to the root. In G(S2), removing a single edge cannot break both cycles, thus
the graph S2 is in A2, but not in A1.

Remark. For every graph S in Ak , the tree width [44,16] of G(S) is at most k + 1, but can it can be strictly less than
that. For example, a graph which consists of 17 simple disjoint cycles is in A17, but its tree width is 2.

The satisfiability problem of MSO logic on Ayah graphs can be reduced to the satisfiability problem of MSO
logic on trees. The latter is decidable, due to the classical result by Rabin [41]. This reduction provides a

4 In this paper, we use the term “tree” instead of the term “forest” to refer to an acyclic graph, possibly undirected.
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Fig. 5. Examples of graphs in A0, A1, and A2. For j ∈ {0, 1, 2}, Sj ∈ Aj (left column) and G(Sj ) ∈ T j (right column). Dashed edges denote
extra edges removing which results in a tree.

constructive way to check satisfiability of L1 formulas, using an existing decision procedure for MSO on trees, MONA
[26].

The reduction consists of two satisfiability-preserving translations: The first is a translation T R3 from MSO on
Ayah graphs to MSO on �-labeled trees, defined below. The second is a translation T R4 from MSO on �-labeled
trees to MSO on (infinite) binary trees.

Lemma 5.6. There are translations T R3 and T R4 between MSO-formulas such that for every MSO-formula ϕ, there
exists a graph S ∈ Ak that satisfies ϕ if and only if there exists a binary tree S′ such that S′ |= (T R3 ◦ T R4)(ϕ).

In this paper, we describe only the translation T R3, and omit the (standard) translation, T R4.

5.2.1. Encoding Ak graphs as �-labeled trees
Given the vocabulary τ = 〈C,U, F 〉 and a number k we define a new vocabulary τ ′ = 〈C′, U ′, {E}〉, where

E is the only binary relation, C′ = C ∪ {c1, . . . , ck} ∪ {d1, . . . , dk}, and U ′ = {Ff , Bf , Lf , F dif , Bd
i

f |f ∈ F, i =
1, . . . , k}.

Let� = P(C′ ∪ U ′) be the set of all possible node labels from τ ′. A�-labeled tree is a graph S over τ ′ that satisfies
the following:

(1) The E-edges form a directed forest: each node in S has at most one incoming E edge. An E-edge from node u1
to node u2 means that u2 is a child of u1 in the tree.

(2) If a node has no incoming E-edge, then it must not be labeled by Ff , Bf , for any f ∈ F .
We use T� to denote the set of all �-labeled trees.

Every graph in Ak can be represented by a �-labeled tree. For example, consider the cyclic doubly-linked list S1
from Fig. 5, defined over the vocabulary τ with C = {x}, U = {}, and F = {f, b}. The new vocabulary τ ′ consists of
C′ = {x, c1, d1},U ′ = {Ff , Fb, F d1

f , F
d1

b , B
d1

f , B
d1

b }, andF ′ = {E}. The graph S1 can be represented by the following
�-labeled tree (actually, it is a list in this example):
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The graph S represented by a �-labeled tree has the same set of nodes as the tree. The labels of S are defined as
follows. A graph node is labeled with the constants and unary relation symbols that hold for the corresponding node in
the tree. An edge in the tree from node v to v′ represents edges between the corresponding nodes v and v′ in the graph.
Additional labels on tree nodes represent the direction and the labels of the graph edges adjacent to the corresponding
nodes in the graph, as follows.

For each binary relation symbol f ∈ F , we introduce two unary relation symbols Ff and Bf , denoting forward
and backward f -edge. If there is an edge from v to v′ in the tree, and v′ is labeled with Ff in the tree, then there is an
f -edge from v to v′ in S. Similarly, if there is an edge from v′ to v in the tree, and v is labeled with Bf in the tree,
then there is an f -edge from v to v′ in S. There is a self-loop of f on a node v in S if the node v in the tree is labeled
with Lf . Also, each of the k pairs of constants ci and di in a tree represents edges between the nodes corresponding
to ci and di in the graph. If v is labeled with ci and Fd

i

f in the tree, then there is an f -edge from v to the node labeled

with di in S. If v is labeled with ci and Bd
i

f in the tree, then there is an f -edge from the node labeled with di to v in S.
For an MSO formula ϕ over τ , T R3(ϕ) is an MSO formula over the vocabulary τ ′. The translation T R3 is defined

inductively on ϕ, where the only interesting part is the translation of a binary relation formula f ∈ F :
T R3(f (v1, v2)) = (E(v1, v2) ∧ Ff (v2))

∨(E(v2, v1) ∧ Bf (v1))

∨(E(v1, v2) ∧ v1 = v2 ∧ Lf (v1))
k∨
i=1
((ci = v1 ∧ di = v2 ∧ Fdif (v1)) ∨ (ci = v2 ∧ di = v1 ∧ Bdif (v2)))

Lemma 5.7. Let ϕ be an MSO formula. There is a graph S ∈ Ak such that S |= ϕ if and only if there is a �-labeled
tree T ∈ T� such that T |= T R3(ϕ).

Proof. Given a graph S in Ak , we can encode it as a �-labeled tree T as follows. First, remove all self loops and at
most k additional edges from the Gaifman graph of S to obtain an acyclic undirected graph, U . It is easy to transform
the undirected graphU into a directed forest T , by choosing one node in every connected component ofU as a root, and
directing all edges from it downwards. Then, we can set the labels of T uniquely from the labels of the corresponding
nodes in S. To encode that an edge in S is labeled with f , we identify the corresponding edge in T , and label the target
of the edge with a unary relation to remember the label f .

Given T ∈ T� , we can uniquely reconstruct the graph S ∈ Ak that corresponds to it. Every node in T that is labeled
with Ff has exactly one incoming edge, which defines the corresponding edge in S, labeled with f . For each Fd

i

f , at

most one edge can be created in S, because T R3 guarantees that in T the source is labeled with ci , and the target is
labeled with di , which are constants. �

Theorem 5.8. The satisfiability problem of MSO formulas is decidable on Ak .

Proof. Follows from Lemma 5.6 and [41]. �

5.3. Normal form of L0 formulas

We define a normal-form formula to be a disjunction of conjunctions of formulas of the form c〈R〉c′ and c[R]p.

Definition 5.9 (Normal-form formulas). A formula in CL0 is of the form∧
i

¬ (ci[Ri]¬c′i) ∧∧
j

cj [Rj ]pj

A normal-form formula is a disjunction of CL0 formulas.
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A formula ϕ is in CL1 if and only if ϕ ∈ CL0 and ϕ ∈ L1, i.e., all the patterns that appear in ϕ satisfy the requirement
of Definition 4.1.

For a formula ϕ ∈ CL0, we use ϕ� to denote the first part of ϕ, namely
∧
i ¬ci[Ri]¬c′i , and ϕ� to denote the

second part of ϕ, namely
∧
j cj [Rj ]pj . We use |ϕ� | to denote the number of conjuncts in the formula ϕ� .

Note that while L0 is closed under negation, CL0 is not. The following theorem shows that every L0-formula can
be effectively translated into an equi-satisfiable normal-form formula. The main difficulty is to translate a formula of
the form ¬c[R]p, where p is an arbitrary pattern, into a formula in which negation appears only in front of constraints
of the form c′[R]¬c′′.

Definition 5.10. Let θ be the formula¬c[R]p over τ , where p(v0) = N(v0, . . . , vn)⇒ ψ(v0, . . . , vn). We introduce
new constant symbols c0, . . . , cn, and define τ ′ = τ ∪ {c0, . . . , cn}. We define tr(θ) as follows:
• Translate ¬ψ into an equivalent negated normal form formula ψ ′,
• Let θ ′ be c〈R〉c0 ∧N(c0, . . . , cn) ∧ ψ ′(c0, . . . , cn), where every edge formula vi f→vj that appears in N or ψ ′ is

replaced by ci〈 f→〉cj .5

• If ¬c〈R〉c′ appears in θ ′, replace it with c[R]¬c′, to obtain θ ′′.
• Transform θ ′′ into an equivalent disjunctive normal form formula θ ′′′.
• Let tr(θ) be θ ′′′.

The formula tr(θ) is a normal-form formula by Definition 5.9, because it is a disjunction of CL0-formulas. In fact,
tr(θ) is a very simple formula: all the patterns in it are of the form true⇒ c /= v0. Thus, negation can appear only in
front of reachability constraints of the form c[R]¬c′ where R does not contain the Kleene star operator.

Lemma 5.11. For a graph S over τ , if S satisfies θ , then there exists an expansion of S to τ ′, that satisfies tr(θ). For
a graph S′ over τ ′, if S′ |= tr(θ) then the restriction S of S′ to τ satisfies ϕ.

Theorem 5.12. There is a computable translation T R1 from L0 to a disjunction of formulas in CL0 that preserves
satisfiability.

Sketch of Proof: For every formula ϕ ∈ L0 over τ , the formula T R1(ϕ) is a disjunction of formulas in CL0 over τ ′
such that ϕ is satisfiable if and only if T R1(ϕ) is satisfiable. The vocabulary τ ′ is an extension of τ with new constant
symbols. The translation T R1(ϕ) is defined as follows:

(1) Translateϕ into an equivalent formulaϕ′ in negated normal form using deMorgan rules to push negations inwards.
(2) Replace every sub-formula ¬c[R]p that appears in ϕ′ with tr(¬c[R]p), as in Definition 5.10. The resulting

formula ϕ′′ is satisfiable if and only if ϕ′ is satisfiable, by Lemma 5.11. Note that this translation only preserves
satisfiability (not equivalence).

(3) Translateϕ′′ into an equivalent disjunctive normal form formulaϕ′′′. All atomic formulas are of the form c[R]¬c′.
The result of T R1(ϕ) is ϕ′′′.

The translation is applicable to the full L0 logic, in which case the reachability constraints in ϕ� can contain
arbitrary patterns.

The translation T R1 may introduce only patterns of the form true⇒ c2 /= v0 beyond those patterns that appear in
the input formula. This observation yields the following corollary:

Corollary 5.13. For ϕ ∈ L1, the translation T R1 returns a disjunction of formulas in CL1 (and preserves
satisfiability).

5.4. Decidability of L1

The following theorem states that CL1 has an Ayah-model property, i.e., every satisfiable CL1 formula ϕ has a
model in Af (ϕ) where f (ϕ) is defined by

5 Recall from Section 2.1.1 that c〈R〉c′ is a shorthand for ¬c[R]¬c′.
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f (ϕ)
def= 2× n× |C| × |ϕ� | (4)

Here, we assume that for every routing expression that appears in ϕ� there is an equivalent automaton with at most n
states.

Theorem 5.14 (Ayah model property of L1). If ϕ ∈ CL1 is satisfiable, then ϕ is satisfiable by a graph in Af (ϕ), where
f is defined in (4).

A non-trivial proof of this theorem is presented in Section 6.

Theorem 5.15. The satisfiability problem of L1 is decidable.

Proof. Follows from combining the results of Theorem 5.12, Theorem 5.14, Lemma 5.2, Theorem 5.8. �

6. Ayah model property of L1

In this section we provide a detailed proof of the main technical theorem of the paper, Theorem 5.14. Before diving
into the details, we explain the main proof at a high-level.

Given a normal-form formula ϕ ∈ CL1 and a graph S such that S |= ϕ, we construct a graph S′ and show that
S′ |= ϕ and S′ ∈ Ak .

The construction operates as follows. We construct a pre-model S0 of S and ϕ, which satisfies all constraints of the
form c〈R〉c′ in ϕ. The idea is to extract from S a witness path for each constraint of the form c〈R〉c′ in ϕ, and define
S0 to be the union of these witness paths (Section 6.5).

The pre-model S0 may violate some of the constraints of the form c[R]p in ϕ. Consider the case when the pattern
p contains a positive occurrence of edge formula or equality formula. If a graph G violates a constraint c[R]p, then
there is an enabled merge operation or edge-addition operation, depending on the pattern p (Section 6.3).

For example, if p is of the form N(v0, v1, v2)⇒ v1 = v2, it defines a merge operation. We say that this merge
operation is enabled in a graph G (by c[R]p) when G contains a node w0 reachable by an R-path from c and distinct
nodesw1 andw2 forming the neighborhoodN(w0, w1, w2). Applying this operation means merging the nodesw1 and
w2. After mergingw1 andw2, other merge operations may still be enabled inG by c[R]p. If there are no more enabled
operations in G, then G |= c[R]p. Similarly, if p is of the form N(v0, v1, v2)⇒ v1

f→v2, it defines an edge-addition
operation. Applying this operation means adding an f -edge.

Given a pre-model S0, we apply all enabled operations in any order, producing a sequence of distinct graphs
S0, S1, . . . until the last graph S′ has no enabled operations. Thus, S′ satisfies all constraints of the form c[R]p where
p contains a positive occurrence of edge formula or equality formula. We show that applying any enabled operation
preserves witness paths for the constraints of the form c〈R〉c′. Thus, S′ also satisfies all constraints of the form c〈R〉c′.
This construction also guarantees that S′ satisfies all the constraints of the form c[R]p where p is a negative formula.
To show this formally, we use homomorphisms (Section 6.4) which preserves existence of edges and both existence
and absence of labels on nodes (preserving absence of labels is non-standard).

Finally, the fact that S′ is in Ak is proved by induction. By construction, S0 is in Ak (Lemma 6.11), and Ak is closed
under operations enabled by L1 formulas (Lemma 6.5). The proof of closure properties of Ak is based on closure
properties for a class of undirected graphs, T k (Lemma 6.1).

The rest of the section describes the building blocks of the proof of Theorem 5.14: closure properties of T k

(Section 6.1), closure properties of Ak (Section 6.2), the definition of operations enabled by L1 formulas (Section 6.3),
the definition of homomorphism relation and its properties (Section 6.4), and the definition of witness splitting and
properties of a pre-model (Section 6.5). The proof of Theorem 5.14 concludes the section.

6.1. Trees with extra edges

Recall from Definition 5.3 that T k is a set of undirected graphs that are trees with k extra edges. In this section we
prove that T k is closed under merging of vertices at distance at most 2.
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The distance between the vertices v1 and v2 in an undirected graph B is the number of edges on the shortest path
between v1 and v2 in B.

Merging two vertices in an undirected graph is defined in the usual way, by gluing these vertices. Formally, let
the undirected graph B ′ denote the result of merging nodes v1 and v2 in B. The set of vertices of B ′ is V B

′ def=
(V B \ {v1, v2}) ∪ {v12}, where v12 is a new vertex. Let m:V B → V B

′
be defined as follows:

m(v) =
{
v12 if v = v1 or v = v2
v otherwise

If there is an edge e between the vertices v1 and v2 in B then there is an edge m(e) between m(v1) and m(v2) in B. If
there is an edge e between v′1 and v′2 in B ′ then there exist vertices v1 and v2 in B such that m(v1) = v′1, m(v2) = v′2,
and there is an edge between v1 and v2 in B.

Lemma 6.1. Assume that B is in T k and vertices v1 and v2 are at distance at most two in B. The graph B ′ obtained
from B by merging v1 and v2 in B is also in T k .

Proof. By definition of T k , there exists a set of edges D ⊆ E such that B \D, denoted by T , is acyclic and
|D| ≤ k. We show how to transform D into D′ ⊆ E′ such that B ′ \D′, denoted by T ′, is acyclic and |D′| ≤ k.
We consider only the case when v1 and v2 are at distance of exactly two in B, i.e., there is a vertex v0 distinct form
v1 and v2, an edge e1 between v1 and v0, and an edge e2 between v0 and v2. We consider three cases, depicted in
Fig. 6.
• If e1, e2 /∈ D, let D′ = {m(e)|e ∈ D}.
• Assume that e1 /∈ D and e2 ∈ D. If v2 is not reachable from v1 in T , let D′ = {m(e)|e ∈ D}, thus |D′| ≤ k.

If v2 is reachable from v1 in T , there is at most one (simple) path from v1 to v2 in T , because T is acyclic. If the
path contains e1, we define D′ as before: D′ = {m(e)|e ∈ D}.

If the path from v1 to v2 does not contain e1, let e3 be the first edge on the path from v1 to v2 (see the second
case in Fig. 6).6 To obtain D′ from D, we remove e2 and add e3: D′ = ({m(e)|e ∈ D} \ {m(e2)}) ∪ {m(e3)}. The
size of D′ is the same as the size of D, because e2 ∈ D.
• Assume that e1, e2 ∈ D. If v2 is not reachable from v1, we can use the simple construction D′ = {m(e)|e ∈ D}.

It follows that |D′| = |D| − 1, because both e1 and e2 are mapped to the same edge e′ = m(e1) = m(e2), and no
multiple edges are allowed.

If v2 is reachable from v1, let e3 be the first edge on the path. We define D′ = {m(e)|e ∈ D} ∪ {m(e3)} (see the
third case in Fig. 6). Same construction applies when v1 or v2 are reachable from v0. �

6.2. Ayah graphs

In this section we prove that Ak is closed under edge-addition operations at distance at most one (Lemma 6.2), and
under merge operations at distance at most 2 (Lemma 6.3).

The distance between nodes v1 and v2 in a graph S is the distance between v1 and v2 in G(S), i.e., the number of
edges on the shortest path between v1 and v2 in G(S).

It is easy to see that Ak is closed under edge-addition operations at distance at most one, which means adding an
edge in parallel to an existing one (distance one) or adding a self-loop (distance zero).

Lemma 6.2 (Adding edges at distance ≤ 1 in Ak). Assume that the graph S′ is obtained from S by adding an edge
from v1 to v2 in S. If S is in Ak and nodes v1 and v2 are at distance at most 1 in S, then S′ is in Ak .

Proof. Distance at most 1 between v1 and v2 means that there is already an edge between v1 and v2. Addition of edges
to S in parallel to existing edges does not affect the G(S), and self-loops do not affect T k . �

6 Note that we cannot use the simple D′ definition as before, because merging v1 and v2 in T to obtain T ′ creates a cycle that does not involve
e1. We observe that, in this case, the subgraph reachable from v1 through e1 in T remains acyclic after the merge operation, because it is disjoint
from the subtree of v2. Thus, e1 need not be removed from T .
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Fig. 6. Merge operation on T k-graphs. Dotted lines represent additional edges, i.e., edges of a T k-graph that do not belong to the tree. The vertex
v12 and the edge e12 in T ′ result from merging the vertices v1 and v2, and the edges e1 and e2 in T .

Merging two nodes in a graph is defined in the usual way by gluing these nodes. Formally, let S′ be the result of
merging the nodes v1 and v2 in S. The set of nodes of S′ is V S

′ def= (V S \ {v1, v2}) ∪ {v12}, where v12 is a new node.
We define m:V S → V S

′
as follows:

m(v) =
{
v12 if v = v1 or v = v2
v otherwise

The interpretation of constant and relation symbols in S′ is defined as follows:
(1) For every constant symbol c ∈ τ , and for every node v ∈ S, v is labeled with c in S if and only ifm(v) is labeled

with c in S′.
(2) For every unary relation symbol σ ∈ τ , and for every node v ∈ S, if v is labeled with σ in S thenm(v) is labeled

with σ in S′.
(3) For every unary relation symbol σ ∈ τ , and for every node v′ ∈ S′, if v′ is labeled with σ in S′ then there exists

a node v in S such that m(v) = v′ and v is labeled with σ in S.
(4) For every binary relation symbol σ ∈ τ , and every pair of nodes w1, w2 ∈ S, if there is an edge from w1 to w2

labeled with σ then there is an edge from m(w1) to m(w2) in S′ labeled with σ .
(5) For every binary relation symbol σ ∈ τ , and every pair of nodes w′1, w′2 ∈ S′, if there is an edge from w′1 to w′2

labeled with σ in S′ then there are nodes w1 and w2 in S such that m(w1) = w′1, m(w2) = w′2, and there is an
edge from w1 to w2 in S labeled with σ .

Later, we guarantee that merge operations are applied only to those nodes which are labeled by the same unary
relations and constants.

The proof that Ak is closed under merge operations at distance at most two is based on the result of Lemma 6.1
from the previous section.

Lemma 6.3 (Merging nodes at distance ≤ 2 in Ak). Assume that the graph S′ is obtained from S by merging v1 and
v2 in S. If S is in Ak and nodes v1 and v2 are at distance at most 2 in S, then S′ is in Ak .
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Proof. To show that S′ ∈ Ak , it is sufficient to show that G(S′) ∈ T k . We use the definitions of a Gaifman graph
and a merging operation. First, merging the nodes of G(S) that correspond to v1 and v2 in G(S), results in G(S′).
Second, the distance between v1 and v2 in G(S) is at most 2 because the distance between the corresponding
nodes in S is at most 2. Third, G(S) ∈ T k , because S ∈ Ak . Thus, using Lemma 6.1, we get that G(S′) ∈
T k . �

6.3. Graph operations enabled by L1 formulas

The notion of enabled operations defined in this section is used for defining the construction in the proof of
Theorem 5.14.

Let p(v0)
def= N(v0, . . . , vn)⇒ ψ(v0, . . . , vn) be an L1 pattern. Let S be a graph, and w1, w2 nodes in S.

We say that merge operation ofw1 andw2 is enabled (by c[R]p) when (a) the equality between variables (v1 = v2)

appears positively in ψ , (b) we can assign nodes w0, . . . , wn to v0, . . . , vn, respectively, such that there is an R-path
from c to w0, N(w0, . . . , wn) holds but ψ(w0, . . . , wn) does not hold, and (b) w1 and w2 are distinct nodes. Merging
the nodes w1 and w2 disables this merge operation (other merge operations may still be enabled after merging w1 and
w2).

We say that edge-addition between w1 and w2 is enabled (by c[R]p) when (a) the edge formula (v1
f→v2) appears

positively in ψ , (b) we can assign nodes w0, . . . , wn to v0, . . . , vn, respectively, such that there is an R-path from c to
w0,N(w0, . . . , wn) holds but ψ(w0, . . . , wn) does not hold, and (c) there is no f -edge from w1 to w2. We can add an
f -edge from w1 and w2 to discharge this assignment.

Lemma 6.4. Let N(v0, . . . , vn) be a neighborhood formula, and S be a graph with an assignment to v0, . . . , vn that
satisfies N . If the variables v1 and v2 are at distance at most k in N , then the nodes assigned to v1 and v2 are at
distance at most k in S.

Proof. Follows from the definition of neighborhood as a conjunction of edges (Definition 2.2). �

The following lemma is the key observation of the proof.

Lemma 6.5. Let p(v0)
def= N(v0, v1, . . . , vn)⇒ ψ(v0, . . . , vn) be an L1 pattern. Let S be a graph, and w1, w2 nodes

in S. Assume that a merge (an edge-addition) operation is enabled in a graph S between nodes w1 and w2 by a
reachability constraint c[R]p. If S ∈ Ak , then the result of merging (adding an edge) between w1 and w2 is a graph
in Ak .

Proof. Suppose that a merge operation is enabled in S between nodes w1 and w2. It is possible to assign nodes
w0, . . . , wn to the variables v0, . . . , vn, such that N holds. In particular, w1 is assigned to v1 and w2 is assigned to v2,
and the equality v1 = v2 appears positively in ψ . According to the equality restriction on L1 patterns, v1 and v2 are at
distance at most 2 in N . By Lemma 6.4, w1 and w2 are at distance at most 2 in S. Thus, by Lemma 6.3 we get that
the result of merging w1 and w2 is a graph in Ak , because S is in Ak . The proof for edge-addition is similar, using
Lemma 6.2. �

6.4. Homomorphism preservation

In this section, we give a slightly non-standard definition of homomorphism between graphs. It preserves existence
of edges and both existence and absence of labels on nodes (preserving absence of labels is non-standard). The
homomorphism relation is preserved by CL1 formulas, and also by merging operations.

Definition 6.6 (Homomorphism). Let S1 and S2 be graphs over the same vocabulary τ . A homomorphism from S1 to
S2 is a mapping h:V S1 → V S2 such that

(1) for every constant symbol and unary relation symbol σ ∈ τ , and for every v ∈ S1, v is labeled with σ in S1
if and only if h(v) is labeled with σ in S2,
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(2) for every binary relation symbol σ ∈ τ , and every pair of nodes v1, v2 ∈ S1, if there is an edge from v1 to v2 in
S1 labeled with σ , then there is an edge from h(v1) to h(v2) in S2 labeled with σ .

Lemma 6.7. Let h: S1 → S2 be a homomorphism. If S1 |= c1〈R〉c2 then S2 |= c1〈R〉c2. Dually, if S2 |= c[R]p, and
p does not contain positive occurrences of edge formulas or equality formulas, then S1 |= c[R]p.

Sketch of Proof: If S1 |= c1〈R〉c2, there exists an R-path from c1 to c2. By definition of homomorphism from S1 to S2,
the same path exists in S2. Thus, S2 |= c1〈R〉c2.

For the sake of contradiction, assume that S2 |= c[R]p but S1 �|= c[R]p. That is, there exists an R-path from c to
some node v in S1 and v does not satisfy the pattern p. The same path exists in S2, due to the homomorphism from S1
to S2. To obtain a contradiction, we show that h(v) does not satisfy the pattern p in S2. The formula p is of the form
N ⇒ ψ , whereN contains only positive occurrences of edge formulas. By assumption, we get thatψ does not contain
positive occurrences of edge formulas or equality formulas. Thus, the formula p does not contain positive occurrences
of edge formulas and equality formulas. If S1 does not satisfy p, there exists a subgraph in S2 which satisfies ¬p. This
subgraph exists in S2 as well, due to homomorphism.7 Thus, S2 satisfies ¬p, and a contradiction is obtained.

Lemma 6.8. Assume that f is a homomorphism from S1 to S, and S2 is obtained by merging the nodes v1 and v2 in
S1. If f (v1) = f (v2) then there is a homomorphism from S2 to S.

6.5. Witness splitting

A witness W for c1〈R〉c2 in a graph S, is a path in S, labeled with a word w ∈ L(R), from the node labeled with
c1 to the node labeled with c2. Note that the nodes and edges on a witness path for R need not be distinct. S contains
a witness for c1〈R〉c2 if and only if S |= c1〈R〉c2.

Using a witness W for c1〈R〉c2 in S, we construct a graph W ′ that consists of a path, also labeled with w, that
starts at the node labeled by c1 and ends at the node labeled by c2. Intuitively, we create W ′ by duplicating a node of
S each time the witness path W traverses it, unless the node is labeled with a constant. The nodes in W ′ are named
tv,l where v is a node in S and l ≥ 0 is an integer. For l > 0, a node tv,l in W ′ corresponds to the lth occurrence
of v on the witness path W , if a node v in S is not labeled with a constant. If v is labeled with a constant, we
create for it a unique node tv,0 in W ′ even if v is traversed several times by W . As a result, all shared nodes in W ′
are labeled with constants. Also, every cycle contains a node labeled with a constant. By construction, W ′ satisfies
c1〈R〉c2.

For example, consider the formula

ϕ
def= x〈 f→

∗〉z ∧ y〈 f→.( g→+.(c|u). f→)∗〉z ∧ c[ε]unsf (5)

where u is a unary relation symbol and c is a constant symbol. Fig. 7 shows a graph S which satisfies ϕ. The shortest
witness path for x〈 f→

∗〉z is labeled with the word f→. f→. f→. The shortest witness path for y〈 f→.( g→+.(c|u). f→)∗〉z is

labeled with the word f→. g→. g→. g→.u. f→. g→.c. f→. Note that this witness traverses each of the nodes labeled by u and
by c twice. To split this witness, the node marked by u is duplicated, while the node marked by c is not duplicated,
because c is a constant. After splitting the witnesses, we construct a pre-model of S, denoted by S0, by taking the
union of both witness paths and merging the nodes of the different witness paths which are labeled with the same
constant.

Formally, the witness pathW is a sequence of nodes from S: t1, t2, . . . , tr , where ti ∈ S. Let C(ti) denote the set of
constant symbols that label the node t : C(ti)

def= {σ ∈ C|CS(σ) = ti}. We define a mapping d(ti) as follows:

d(ti)
def=
{
tv,0 if C(ti) /= ∅ and ti is the node v
tv,l if ti is the lth occurrence of the node v ∈ S on the path W

7 Note that¬pmay contain negative occurrences of unary formulas, but these are also preserved under the (non-standard) homomorphism relation
we are using.
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Fig. 7. The graph S satisfies the formula in (5), and S ∈ A1. A pre-model of S is S0. Note that S0 ∈ A0. The graph S1 is the result of applying a
merge operation to S0. Note that S1 satisfies the formula in (5), and S1 ∈ A0. The graph S1 is the final result of the construction used in the proof
of Theorem 5.14.

W ′ is a graph with nodes {d(t1), . . . , d(tr )}. If the witness path W goes from ti to ti+1 through an edge labeled with
fi ∈ F , then there is an edge in W ′ labeled with fi from d(ti) to d(ti+1). Note that W ′ contains only edges traversed
by the witness path. For every unary relation and constant symbol σ ∈ C ∪ U and node ti ∈ W , d(ti) is labeled with
σ in W ′ if and only if ti is labeled with σ in S.

We say that W ′ is the result of splitting the witness W . We say that W is the shortest witness for c1〈R〉c2 if any
other witness path for c1〈R〉c2 is at least as long as W .

For a formula ϕ ∈ CL1 and a graph S such that S |= ϕ, we define a pre-model of a S and ϕ to be the graph S0
constructed as follows.
• Let Wi denote a shortest witness in S for every ci〈R〉c′i in ϕ� .
• Let W ′i be the result of splitting the witness Wi . Let t iv,l be the names the nodes of W ′i .
• Let S′0 be a disjoint union of all Wi’s.
• For every c ∈ C, if S′0 does not contain any node labeled with c, add a new node t0v,0 to S′0, where v is the node in

S labeled with c. For all σ ∈ C ∪ U , t0v,0 is labeled with σ in S′0 if and only if v is labeled with σ in S.

• The graph S0 is the result of merging all nodes that are labeled with the same constants, i.e., nodes t iv,0 for all i are

merged and the new node named t0v,0.
Note that S′0 cannot be used as a legal interpretation for L0 formulas over τ , because it may contain several nodes
labeled with the same constant, or no interpretation for some constants. These problems are addressed by the last two
steps of the construction.

By construction, S0 contains a witness for each c1〈R〉c2 in ϕ� .

Lemma 6.9. If S |= ϕ and S0 is a pre-model of S and ϕ, then S0 |= ϕ� .

Lemma 6.10. Let S0 be a pre-model of S and ϕ. There is a homomorphism h0: S0 → S defined by h0(t
i
v,l) = v.

Proof. We define h′0: S′0 → S by h′0(t
i
v,l) = v. The mapping h′0 preserves existence of edges and the presence and

absence of node labels between S′0 and S because it is preserved for every W ′ separately, by definition of witness
splitting, and S′0 is a disjoint union of W ′i s. Thus, h′0 is a homomorphism.

Because S0 is obtained from S′0 by merging nodes that are mapped by h′0 to the same node in S, the mapping h0 is
also a homomorphism, by Lemma 6.8. �
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Lemma 6.11. For ϕ ∈ CL1, if S0 is a pre-model of S and ϕ, then S0 ∈ Af (ϕ), where f is defined in (4).

Proof. Recall that for every routing expression that appears in ϕ� there is an equivalent automaton with at most n
states. If a node is visited more than once in the same state of the automaton, the path can be shortened by removing
the part traversed between the two visits. Thus, a shortest witness visits a node at most n times. In the worst case, each
time a shortest witness visits a node, it enters and exits the node with a different edge. Because S0 consists of |ϕ� |
shortest witnesses, there are at most 2× n× |ϕ� | edges adjacent to any node.

In fact, by construction of S0, only nodes labeled by constants in S0 can have more than two adjacent edges. Thus,
every (simple) cycle in S0 must go through a constant. To break all cycles in S0 (and, thus, in its Gaifman graph), it is
sufficient to remove all the edges adjacent to nodes labeled with constants, i.e., at most k = 2× n× |ϕ� | × |C| edges.
It follows that S0 ∈ Ak .8 �

6.6. Ak-model property of L1

Theorem 5.14 (Ayah model property of L1). If ϕ ∈ CL1 is satisfiable, then ϕ is satisfiable by a graph in Af (ϕ), where
f is defined in (4).

Proof. Given a graph S such that S |= ϕ, we construct a graph S′ and show that S′ ∈ Ak and S′ |= ϕ.
First, we construct a pre-model S0 of S and ϕ, and define the mapping h0: S0 → S according to Lemma 6.10. Then,

we apply all enabled merge operations and all enabled edge-addition operations in any order, producing a sequence of
distinct graphs S0, S1, . . . , Sr , until Sr has no enabled operations. The result S′ = Sr .

Formally, for every c[R]p ∈ ϕ and ever pair of nodes w1, w2 ∈ Sj :
• If a merge operation is enabled, and hj (w1) = hj (w2) in Sj then construct Sj+1 by merging w1 and w2, and define
hj+1: Sj+1 → S to be hj+1(w) = hj (w1) if w is the result of merging w1 and w2, otherwise hj+1(w) = hj (w).
• If an edge-addition operation is enabled for f ∈ F , and there is an f -edge from hj (w1) to hj (w2) in S then construct
Sj+1 by adding an f -edge from w1 to w2, and define hj+1: Sj+1 → S to be the same as hj .
For example, the pre-model S0 shown in Fig. 7 does not satisfy the constraint c[ε]unsf from (5), which requires that

the node labeled with c have at most one incoming f -edge. The result of applying the corresponding merge operation
is the structure S1, also shown in Fig. 7.

An enabled merge operation is not applied to Sj if the corresponding nodes in the original model S are distinct.
Similarly, an enabled edge-addition is not applied, unless the corresponding edge is present in S. This allows us to deal
with disjunctions in patterns. For example,

let p(v0)
def= (v0

f→v1)⇒ (v0 = v1 ∨ (v0
g→v1) ∨ (v0

g′→v1)) in
c〈 f→

∗〉c′ ∧ c[ f→
∗]p ∧ (c /= c′)

Suppose thatS0 looks like this: . The nodesw1 andw2 are labeled with the constants c and c′, respectively.

Both merge and edge-addition operations are enabled in S0 by c[ f→
∗]p. Had we applied the merge operation, we would

have immediately obtained a contradiction with c /= c′. However, if we consult the original model, we find out that
the corresponding nodes are distinct,9 but there is a g-edge between them. Therefore, adding a g-edge to S0 would not
lead to a contradiction.
Remark. Even when we consult with S whether to apply an enabled operation or not, we do not merge more than
necessary, or add more edges than necessary. In the previous example, after adding g the formula holds, i.e., the edge-
addition operation of g′ is not enabled any more. However, a different order of application of the enable operations
may produce different graphs at the end. Fortunately, it does not affect the size of Ak , or the decidability.

The process described above terminates after a finite number of steps, because in each step either the number of
nodes in the graph is decreased (by merge operations) or the number of edges is increased (by edge-addition operations).

8 This bound is not tight.
9 The nodes h0(w1) and h0(w2) in S are distinct, because our construction of pre-model S0 does not split nodes labeled by constants.
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Fig. 8. Construction and homomorphisms in the proof of decidability.

For a fixed vocabulary and a fixed number of nodes, the number of edges that can be added to the graph is bounded,
because a pair of nodes in a graph can have at most one f edge in each direction, for every f ∈ F .

To show that S′ ∈ Ak , we prove a stronger claim that for all j , Sj ∈ Ak . In particular, it follows that S′ ∈ Ak . Recall
that all operations applied in the process above are enabled by L1 patterns. The key observation of the proof is that Ak

is closed under all operations enabled by L1 patterns (Lemma 6.5). This is the only place in our proof where we use
the distance restriction of L1 patterns. The proof proceeds by induction on the process described above. Initially, S0 is
in Ak , by Lemma 6.11. By inductive hypothesis, Sj ∈ Ak . Because Sj+1 is obtained from Sj by an operation that is
enabled by an L1 pattern, we get that Sj+1 ∈ Ak , using Lemma 6.5.

To show that S′ |= ϕ, we observe that the graphs generated by the process above are related to each other by different
homomorphism relations (Definition 6.6), as depicted in Fig. 8.

First, each step of the process can be seen as a transformation tj from Sj−1 to Sj , which is defined by an operation
applied at step j . That is, tj is either a merge operation or an edge-addition operation. It is easy to see that both
operations are homomorphisms. Therefore, each tj is a homomorphism, for all j .

Second, we define a mapping fj from S0 to Sj as a composition tj ◦ · · · ◦ t0; the mapping fj is a homomorphism,
because it is a composition of homomorphisms. Initially, S0 |= ϕ� , according to Lemma 6.9. For all Sj , from the
existence of a homomorphism fj from S0 to Sj we get that Sj |= ϕ� , by Lemma 6.7. In particular, S′ |= ϕ� .

Third, we show that for all j , hj defined by the process above is a homomorphism. Initially, h0: S0 → S is a
homomorphism, according to Lemma 6.10. If tj is a merge operation of w1 and w2, then the process applies this
operation only if hj (w1) = hj (w2). From the inductive hypothesis that hj is a homomorphism, we get that hj+1 is a
homomorphism, by Lemma 6.8.

For every c[R]p ∈ ϕ� , if p does not contain positive occurrences of edge formulas or equality formulas, then by
Lemma 6.7 and the existence of a homomorphism hr from S′ to S, S′ |= c[R]p, because S |= c[R]p.

For the sake of contradiction, assume that the process terminates, but S′ �|= c[R]p, wherep(v0)
def= N(v0, . . . , vn)⇒

ψ(v0, . . . , vn). That is, we can assign nodes w0, . . . , wn to v0, . . . , vn, respectively, such that there is an R-path
from c to w0, N(w0, . . . , wn) holds but ψ(w0, . . . , wn) does not hold. Consider the assignment hr(w0), . . . , hr (wn)

in S. Because homomorphism preserves existences of paths and edges, there is an R-path from c to hr(w0), and
N(hr(w0), . . . , hr (wn)) holds. Because S |= c[R]p, we know thatψ(w0, . . . , wn) holds. Therefore, there is an atomic
formula θ that appears positively in ψ and evaluates to f alse in S′ and to true in S.

If θ is an equality formula v1 = v2, then the merge operation of w1 and w2 in S′ is enabled (because θ is f alse
in S′), and h(w1) = h(w2) in S (because θ is true in S), contradiction to the assumption that the process terminated.
Similarly, if θ is an edge formula v1

f→v2, then the edge-addition operation of w1 and w2 in S′ is enabled (because θ is
f alse in S′), and there is an f -edge from h(w1) to h(w2) in S (because θ is true in S), contradiction to the assumption
that the process terminated. Thus, S′ |= ϕ� . �

7. Decidability of L2

In this section, we show how to modify the proof of decidability of L1, to prove the decidability of L2.
We start by explaining why the proof of Theorem 5.14 does not go through for L2. Recall that if a graph is in Ak ,

and an operation that is enabled by an L1 reachability constraint is applied, then the result is in Ak , due to the distance
restrictions in L1 patterns (see Lemma 6.5). In L2, this nice property no longer holds.
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Fig. 9. The graph G4.

For example, consider the L2 constraint

let p(v0)
def= (v0

f→v1)⇒ (v1
g→c) in c[ f→

∗]p
Given k, we construct a graph Gk that consists of an f -path of k + 3 disjoint nodes, but only k + 1 nodes on the

path have a g-edge back to c. Fig. 9 shows G4. The graph Gk is in Ak , but violates the reachability constraint above.
Thus, it has an edge-addition operation enabled for adding a g-edge between the first and the last nodes. It is easy to
see that after adding the edge, we get a graph G′k that is not in Ak .10

If the construction of Theorem 5.14 is applied to an L2 formula, it might generate a graph in which the number
of extra edges is proportional to the number of nodes, due to the use of constants in patterns, and not bounded by the
size of the formula. The good news is that the extra edges have one of the endpoints labeled with a constant, except,
possibly a small number of them. The proof of decidability of L2 is based on the fact that each extra edge has one of
its endpoints labeled with a constant.

We define a graph operation rem that removes all edges to and from nodes labeled with constants. Formally, the
result of rem(S) is a graph S′ with the same set of nodes as S, such that there is an f -edge from v1 to v2 in S′ if and
only if there is an f -edge from v1 to v2 in S and the nodes v1 and v2 are not labeled by any constants in S. Arem

k is the

set of graphs on which rem yields a graph in Ak , i.e., Arem
k

def= {S | rem(S) ∈ Ak}.

7.1. Arem
k -model property of L2

We define graph operations enabled by L2 formulas (similarly to Section 6.3), and prove that Arem
k is closed under

those operations (similarly to Lemma 6.5).
Let p(v0)

def= N(v0, . . . , vn)⇒ ψ(v0, . . . , vn) be an L2 pattern. Let S be a graph, w1 be a node in S, and c2 ∈ C.
We say that edge-addition between w1 and c2 is enabled (by c[R]p) when (a) (v1

f→c2) (resp. (c2
f→v1)) appears

positively in ψ , (b) we can assign nodes w0, . . . , wn to v0, . . . , vn, respectively, such that there is an R-path from c to
w0, N(w0, . . . , wn) holds, but ψ(w0, . . . , wn) does not hold, and (c) there is no f -edge from w1 to the node labeled
with c2 in S (resp. to w1 from the node labeled with c2).

Lemma 7.1. Assume that a graph operation is enabled in a graph S by an L2 reachability constraint. If S ∈ Arem
k

then the result of applying the operation is a graph S′ ∈ Arem
k .

Proof. For graph operations that do not involve constants, the result follows directly from Lemma 6.5.
Assume that S ∈ Arem

k . Suppose that an edge-addition operation between a node w1 and c2 is enabled in a graph
S. The graph S′ is the result of adding the edge between w1 and the constant c. In this case, rem(S) and remS′ is the
same graph. Thus, S′ ∈ Arem

k . �

Remark. We can show that Arem
k is closed under merge operations enabled by a pattern with v1 = c. However, this

situation never occurs in the construction used in Theorem 5.14, because we do not split nodes that are labeled with
constants, when we create a pre-model.

The following theorem shows that L2 has Arem
k -property, i.e., every satisfiable L2 formula has a model in Arem

k .
The proof is similar to the proof of Theorem 5.14, except the use of Lemma 7.1 to show that the result S′ ∈ Arem

k .

Theorem 7.2 (Arem
k -Model property). If ϕ ∈ L2 is satisfiable, then there exists a graph S such that S |= ϕ and

S ∈ Arem
k , where k = f (ϕ) and f is defined in (4).

10 The tree width of G(Gk) is k and the tree width of G(G′
k
) is k + 1.
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7.2. MSO is decidable on Arem
k

In this section, we show a reduction from the satisfiability problem of MSO logic on Arem
k to the satisfiability of

MSO on Ak , which is decidable by Theorem 5.8. This reduction completes the proof of decidability of L2.

Lemma 7.3. There is a translation T R5 between MSO-formulas such that for every MSO-formula ϕ, there exists a
graph S ∈ Arem

k such that S |= ϕ if and only if there exists a graph S′ ∈ Ak such that S′ |= T R5(ϕ).

Given the vocabulary τ = 〈C,U, F 〉 and a number k we define a new vocabulary τ ′ = 〈C,U ′, F 〉, where U ′ =
U ∪ {Fcf , Bcf |f ∈ F, c ∈ C}.

For an MSO formula ϕ over τ , T R5(ϕ) is an MSO formula over the vocabulary τ ′. The translation T R5 is defined
inductively on ϕ, as usual. For a binary relation formula f ∈ F , we define:

T R5(f (v1, v2)) = (E(v1, v2) ∧ Ff (v2)) ∨ (E(v2, v1) ∧ Bf (v1))∨
c∈C∪{d1,...,dk}

(c = v1 ∧ Fcf (v2)) ∨ (c = v2 ∧ Bcf (v1))

Intuitively, a tree node v is labeled with Fcf if and only if there is an f -edge from v to the node labeled by c in the
corresponding Ayah graph. A tree node v is labeled with Bcf if and only if there is an f -edge to v from the node labeled
by c in the corresponding Ayah graph. This allows us to encode both the direction and the label of the extra edges.

Remark. We have chosen a simple encoding that is not parsimonious in the number of additional unary relations. For
example, if an edge has two constants on its adjacent nodes, it can be encoded in more than one way. This ambiguity
can be resolved using ordering between constants, but we ignore it here, to simplify the presentation.

Theorem 7.4. The satisfiability problem of MSO formulas is decidable on Arem
k .

Proof. Follows from Lemma 7.3 and Theorem 5.8. �

Theorem 7.5. The satisfiability problem of L2 is decidable.

Proof. Follows from combining Theorem 5.12, Theorem 7.2, Lemma 5.2, and Theorem 7.4. �

8. Complexity

In Section 5, we proved decidability by reduction to MSO on trees, which allows us to check satisfiability of L1
formulas using MONA decision procedure [26]. Alternatively, we can directly construct a tree automaton from an L1
formula, and can then check emptiness of the automaton, which yields a double-exponential procedure.11

However, a naive translation of L1 formulas to automata does not yield a practical decision procedure. First, the
size of the automaton is exponential in the input vocabulary, regardless of the complexity of the input formula. Second,
a naive translation produces two-way alternating tree automata. To the best of our knowledge, there are no tools that
can check emptiness of such automata. A translation from two-way alternating tree automata to tree automata that can
be handled by existing tools, such as MONA [26], Timbuk [18], or H1 [39], is at least exponential.

We are investigating tableaux-based techniques to implement a decision procedure for validity, satisfiability, and
model generation for L1. A tableaux-based decision procedure can be adaptive to specific formulas, and the formulas
that come up in practice are quite simple.

The worst case complexity of the satisfiability problem of L1 formulas is at least NEXPTIME (Section 8.1), but
it remains elementary (in contrast to MSO on trees, which is non-elementary [36]). The complexity depends on the
bound k of Ak models, according to Theorem 5.14.

Bounded-model property of L1. We can show that L1 has a bounded model property: every satisfiable L1 formula
has a model whose size is a (elementary) function of the size of the formula. The translation of L1 formulas to automata
and the finite-model property (Theorem 2.6) yield a double-exponential bound on the size of a model. We believe that

11 The proof is not included in the paper, because we are investigating tighter upper and lower bounds.



G. Yorsh et al. / Journal of Logic and Algebraic Programming 73 (2007) 111–142 137

it can be improved. Bounded-model property is important for example for guaranteeing termination of tableaux-based
decision procedures.

Bounded branching of L1. Lemma 6.11 implies that an upper bound on the branching of a node in a �-labeled
tree is r = 2× n× ϕ� × |C|. If a node is not labeled with a constant, we can improve the bound to be 2× n× ϕ� .
The branching does not increase as a result of merging and edge additions enabled by L1 patterns. Thus, for checking
satisfiability of L1 it is sufficient to consider only �-labeled trees with a branching bounded by r .

The use of constants in routing expressions. If the routing expressions do not contain positive occurrences of
constant symbols, then the bound k for L1 does not depend on the routing expressions:

Theorem 8.1. Assume that ϕ ∈ L1 is satisfiable, and that the routing expressions that appear in ϕ do not contain
positive occurrences of constant symbols. Then, there exists a graph S ∈ Ak where k = |ϕ� |, and S |= ϕ.

Sketch of Proof: To prove this, we modify the proof of Theorem 5.14. The main observation is that we cannot force
a path to visit a node labeled with a constant, except at the endpoints of a path. (a) when creating a pre-model,
duplicate nodes with constants, (b) witness splitting results in a pre-model with at most |ϕ� | extra edges, (c) use
homomorphism which only preserves existence of constants, not their absence, and (d) merge operation enabled by
L1 preserve homomorphism, because they do not require merging a node with a constant, because a pattern may not
contain a positive occurrence of equality between a variable and a constant (unlike L2).

Constant symbols can be eliminated from routing expressions, but the complexity of this operation is prohibitive.
The L1 formulas that come up in practice are well-structured, and we hope to achieve a reasonable performance.

8.1. L1 is NEXPTIME-hard

The proof in this section is an adapted version of the NEXPTIME-hardness proof from [29, Theorem 5]. [29,
Theorem 5] uses universal quantification over nodes, which is not available in L0. Instead, the proof in this section use
reachability constraints and patterns.

Let T be a tiling problem as in Definition 3.1, and let n be a natural number. It is an NEXPTIME-complete problem
to test on input (T , 1n) whether there is a T -tiling of a square grid of size 2n by 2n [40].

Theorem 8.2. The satisfiability of L1 formulas is NEXPTIME-hard.

Proof. Let T be a tiling problem as in Definition 3.1, and let n be a natural number. We define a formula ϕn that
exactly expresses a solution to the tiling problem. When ϕn is satisfiable, it has a minimal model of size 2	(n).

We use two constants: s, denoting the top left node of the grid, and t , denoting the bottom right node of the grid.
The desired model will consist of 22n tiles:

s = [1, 1, t0] · · · [1, 2n, t]
[2, 1, t ′] · · · [2, 2n, t ′′]
...

...

[2n, 1, t ′′′] · · · [2n, 2n, tk] = t
The binary relation n holds between each pair of consecutive tiles, including, for example, [1, 2n, t] and [2, 1, t ′].
We include the following unary relation symbols: H1, . . . , Hn, indicating the horizontal position as an n-bit number;
V1, . . . , Vn, indicating the vertical position; and T0, . . . , Tk , indicating the tile type.

The formula ϕn is the conjunction of the following assertions.
There is a path from s to t :

s〈 n→∗〉t (6)

All E edges reachable from s are deterministic and unshared:

s[ n→∗]detn ∧ unsn (7)

The node labeled with s is the first tile, has tile type t0, and the node labeled with t is the last tile and has tile
type tk:
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T0(s) ∧
n∧
i=1

(¬Hi(s) ∧ ¬Vi(s)) ∧ Tk(t) ∧
n∧
i=1

(Hi(t) ∧ Vi(t)) (8)

We have chosen for simplicity to encode the tile types in unary so we need to say that tile types are mutually exclusive
and every node has a tile:

s[ n→∗]
⎛
⎝ ∧

0≤i<j≤k
¬(Ti ∧ Tj )

⎞
⎠ ∧

⎛
⎝ ∨

0≤i≤k
Ti

⎞
⎠ (9)

The arrangement of tiles honors T ’s horizontal and vertical adjacency requirements:

let p(v) def= Nexth(v, v
′)⇒ Hor(v, v′) in s[ n→∗]p (10)

let p(v) def= Nextv(v, v
′)⇒ Vert(v, v′) in s[ n→∗]p (11)

The abbreviation Nextv,Nexth,Vert,Horz, and Next denote formulas which contain only unary relation symbols
and variables, and no equality. We rely on the fact that a neighborhood of a pattern need not be connected.

The abbreviation Nexth(x, y) means that x and y have the same vertical position and y’s horizontal position is one
more than that of x. Nextv(x, y) means that x and y have the same horizontal position and y’s vertical position is one
more than that of x.

Nexth(x, y) ≡
(

n∧
i=1

Vi(x)↔ Vi(y)

)
∧ PlusOneh(x, y)

Nextv(x, y) ≡
(

n∧
i=1

Hi(x)↔ Hi(y)

)
∧ PlusOnev(x, y)

The abbreviations PlusOneh(x, y) and PlusOnev(x, y) are nearly identical. Thus, we restrict our attention to
PlusOneh(x, y), which means that the horizontal position of y is one greater than the horizontal position of x. (Our
convention is that the bit positions are numbered 1 to n, with 1 being the high-order bit, and n the low-order bit.)
PlusOneh(x, y) can be written as follows:

PlusOneh(x, y) ≡
n∨
i=1

[ ∧
j>i

(Hj (x) ∧ ¬Hj(y)) ∧ (¬Hi(x) ∧Hi(y))

∧ ∧
j<i

(Hj (x)↔ Hj(y))
]

The length of the formula PlusOneh(x, y) is O(n2).
The abbreviation Hor(x, y) (resp. Vert(x, y)) is a disjunction over the tile types asserting that the tiles in positions

x and y are horizontally (resp. vertically), compatible. For example,

Hor(x, y) ≡
∨

R(ti ,tj )

(Ti(x) ∧ Tj (y)) (12)

The abbreviation Next(x, y)means Nexth(x, y) or x has horizontal position 2n, y has horizontal position 1, and y’s
vertical position is one more than that of x:

Next(x, y) ≡ Nexth(x, y)∨((
n∧
i=1

Hi(x)

)
∧
(
n−1∧
i=1
¬Hi(y)

)
∧Hn(y) ∧ PlusOnev(x, y)

)
�

Finally, if there is an edge from x to y, then there Next(x, y) holds:

let p(v) def= (v n→v′ ⇒ Next(v, v′)
)

in s[ n→∗]p (13)

Remark. The length of the formula ϕn described above isO(n2). The only difficulty in keeping ϕn to total sizeO(n) is
in writing the formulas PlusOneh(x, y) and PlusOnev(x, y). We can decrease the size by keeping track of the position
i using 2n addition unary relation symbols, similarly to the proof of [29, Lemma 14].
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9. Limitations and further extensions

Despite the fact that L2 is useful, there are interesting program properties that cannot be expressed directly. For
example, transitivity of a binary relation, that can be used, e.g., to express partial orders, is naturally expressible in L0,
but not in L2. There are of course interesting properties that are beyond L0, such as the property that a general graph
is a tree in which every leaf has a pointer to the root of a tree.

In the future, we plan to generalize L2 while maintaining decidability, perhaps beyond L0 (i.e., to capture properties
that are not expressible in L0). We are encouraged by the fact that the proof of decidability in Section 5 holds “as
is” for many useful extensions. For example, more complex patterns can be used, as long as they do not violate the
Ak-model property.

9.1. The logic L3

In the L0 logic, reachability constraints describe paths that start from nodes labeled by some constant. The require-
ment that a path start with a constant is not necessary for decidability. We define L3 that generalizes L0 with paths that
start from any node that satisfies a quantifier-free positive formula θ :

θ [R]p def= ∀w0, . . . , wm, v0, . . . , vn.R(w0, v0) ∧ θ(w0, . . . , wm)⇒ p(v0, . . . , vn)

A simple and very useful fragment of L3 is L4 in which θ is fixed to be true. We use [R]p to denote true[R]p.
For example, we can specify that all f -edges in the graph are deterministic, and not only those reachable from some
constant: [ε]detf .

The fragment L3 provides several ways to express the same property; this flexibility can be useful when writing
specifications manually. For example, the formula (x ∨ y)[R]p in L3 is equivalent to x[R]p ∨ y[R]p in L1, and
to [x + y.R]p in L4. The formula (x ∧ y)[R]p in L3 is equivalent to (x = y)⇒ x[R]p in L1 and to [x.y.R]p
in L4.

We can translate every L0 formula to L4 using constants in routing expressions: x[R]p ∈ L0 is translated into
[x.R]p. We can show that L3 has a finite model property. The logic LRP that results from L3 by restricting it to L2
patterns is decidable.

For example, recall the mark procedure from Section 4. We can modify it to scan the heap from a set of roots,
instead of a single root. To write specifications for the modified version of mark, we can model the set of root objects
using a unary relation root , instead of the constant symbol with the same name, which is used in Section 4. The rest
of the specification remains unchanged. The resulting formulas are in LRP.

9.2. The logic UL1

We can extend L1 with (a possibly restricted use of) quantifiers, going beyond the proposition logic L0. This
extension provides a more general way to write specifications.

We extend L1 with universal quantification over constants, as follows. For a vocabulary τ , a formula in UL1 over
τ is a positive boolean combination of formulas of the form ∀c1, . . . , cn.ϕ

′, where ϕ′ is in L1 over the vocabulary
τ ′ = τ ∪ {c1, . . . , cn}. The semantics of the universal quantifiers is defined as usual. The problem of validity of
UL1-formulas is decidable by reduction to validity in L1.

Lemma 9.1. Let ϕ ∈ UL1 be of the form ∀c1, . . . , cn.ϕ
′. The formula ϕ is valid if and only if ϕ′ is valid.

Note that UL1 is not closed under negation (whereas L1 is closed under negation).
It is possible to add quantification over sets and relations, while preserving decidability, as long as there are no

quantifier alternations. Quantification of binary relations can be useful for writing modular specifications, and analysis
that does not violate abstraction layers. For example, if a procedure’s formal parameter x is a pointer to an abstract data-
type, we can specify that the field of objects that implement the abstract data-type are not modified by the procedure,
without exposing the implementation: ∀�.∀f, f ′.x[ �→

∗]samef,f ′ .
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10. Related work

There are several works on logic-based frameworks for reasoning about graph/heap structures. We mention here
the ones which are, as far as we know, the closest to ours.

The logic L0 can be seen as a fragment of the first-order logic over graph structures with transitive closure (TC
logic [28]). It is well known that TC is undecidable, and that this fact holds even when transitive closure is added to
simple fragments of FO such as the decidable fragment L2 of formulas with two variables [38,23,21].

It can be seen that our logics L0 and L1 are both uncomparable with L2 + TC. Indeed, in L0 no alternation between
universal and existential quantification is allowed. On the other hand, L1 allows us to express patterns (e.g., heap
sharing) that require more than two variables (see Table 1, Section 4).

In [4], decidable logic Lr (which can also be seen as a fragment of TC) is introduced. The logics L0 and L1
generalize Lr , which is in fact the fragment of these logics where only two fixed patterns are allowed: equality to a
program variable and heap sharing.

In [29,3,34,5] other decidable logics are defined, but their expressive power is rather limited w.r.t. L1 since
they allow at most one binary relation symbol (modelling linked data-structures with 1-selector). For instance, the
logic of [29] does not allow us to express the reversal of a list. Concerning the class of 1-selector linked data-
structures, [9] provides a decision procedure for a logic with reachability constraints and arithmetical constraints
on lengths of segments in the structure. It is not clear how the proposed techniques can be generalized to larger
classes of graphs. Other decidable logics [10,33] are restricted in the sharing patterns and the reachability they can
describe.

Other works in the literature consider extensions of the first-order logic with fixpoint operators. Such an extension is
again undecidable in general but the introduction of the notion of (loosely) guarded quantification allows one to obtain
decidable fragments such as μGF (or μLGF ) (Guarded Fragment with least and greater fixpoint operators) [22,20].
Similarly to our logics, the logic μGF (and also μLGF ) has the tree model property: every satisfiable formula has a
model of bounded tree width. However, guarded fixpoint logics are incomparable with L0 and L1. For instance, the
L1 pattern detf that requires determinism of f -field, is not a (loosely) guarded formula.

The PALE system [37] uses an extension of the weak monadic second order logic on trees as a specification language.
The considered linked data structures are those that can be defined as graph types [32]. Basically, they are graphs that
can be defined as trees augmented by a set of edges defined using routing expressions (regular expressions) defining
paths in the (undirected structure of the) tree. L1 allows us to reason naturally about arbitrary graphs without limitation
to tree-like structures. By restricting the syntax, we guarantee that satisfiability queries posed over arbitrary graphs can
be answered precisely by considering only tree-like graphs. This approach allows us to automate the reasoning about
limited but interesting properties of arbitrary graphs.

Moreover, as we show in Section 4, our logical framework allows us to express postconditions and loop invariants
that relate the input and the output state. For instance, even in the case of singly-linked lists, our framework allows us
to express properties that cannot be expressed in the PALE framework: in the list reversal example of Section 4, we
show that the output list is precisely the reversed input list, by expressing the relationships between fields before and
after the procedure, whereas in the PALE approach, a postcondition can only express that the output is a list that is a
permutation of the input list. In particular, a postcondition that relates fields before and after the procedure involves
two binary relations with arbitrary interpretation. This can be easily done in L0 which supports an arbitrary number
of binary relations. This is not supported by PALE, which allows two binary relations with a specific interpretation as
tree edges. In the PALE approach, a postcondition can only express that the output is a list that is a permutation of the
input list.

In [30], we tried to employ a decision procedure for MSO on trees to reason about reachability. However, this places
a heavy burden on the specifier to prove that the data-structures in the program can be simulated using trees. The
current paper eliminated this burden by defining syntactic restrictions on the formulas and showing a general reduction
theorem.

Other approaches in the literature use undecidable formalisms such as [25], which provides a natural and expressive
language, but does not allow for automatic property checking.

Separation logic has been introduced recently as a formalism for reasoning about heap structures [43]. The general
logic is undecidable [13] but there are few works showing decidable fragments [13,5]. One of the fragments is
propositional separation logic where quantification is forbidden [13,12] and therefore seems to be incomparable with
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our logic. The fragment defined in [5] allows one to reason only about singly-linked lists with explicit sharing. In
fact, the fragment considered in [5] can be translated to L1, and therefore, entailment problems as stated in [5] can be
reduced to validity of implications in L1.

The logic L0 integrates features of such prominent formalisms as the modal logics, the classical first-order logic, and
the regular expressions. The hybrid logics [1] also combine features of modal and classical logics. The most relevant
is the hybrid μ-calculus [47] which extends the μ-calculus with the following features: (i) nominals, that correspond
to constants in L1, (ii) universal program, that corresponds to the fragment L4, and (iii) the ability to reasoning about
the past, that corresponds to the use of backward edges in routing expressions. The hybrid μ-calculus is incomparable
in its expressive power to L1: on one hand, it supports a more general reachability via the least and greatest fixpoint
operators; on the other hand, the equality is restricted to nominals. For example, it cannot express that a graph is
a tree. Unlike L0, the hybrid μ-calculus does not have a finite model property. Every satisfiable formula in hybrid
μ-calculus has a tree-like model. The complexity of hybrid μ-calculus is EXPTIME-complete, but currently, there is
no decision procedure available. Reportedly, a tableaux-based decision procedure for the alternation-free fragment of
hybrid μ-calculus is being developed.

L0 shares some common features with description logics [17], which is traditionally used for knowledge represen-
tation, databases, semantic web, with the notable exception of [19], which shows the description logics can be used
for reasoning about data-structures. The basic notions of Description Logics are concepts, that correspond to unary
relations in L0, and roles, that correspond to binary relations in L1. In addition, expressive Description Logics support
(iii) nominals, that correspond to constants in L0; quantified role restrictions, that can encode determinism; and inverse
roles, that correspond to backward edges in routing expressions. The combination of quantified role restrictions and
inverse roles provides a way to express sharing. The need for transitivity and fixpoints arises in many contexts [14],
including, service description logics [6]. It has been shown that a description logic which combines with nominals,
inverse roles, determinism, and least fixpoints is undecidable [7]. In light of the negative results, it is interesting
to investigate the usefulness of L1 for specifying web services. There are a variety of efficient reasoning tools for
description logics, both tableaux-based and resolution-based, which provide some support for expressive features,
such as nominals and inverse roles, e.g., FaCT, Racer. To the best of our knowledge, none of the existing tools supports
transitive closure of roles or fixpoints.

11. Conclusions

Defining decidable fragments of first order logic with transitive closure that are useful for program verification is a
difficult task (e.g., [29]). In this paper, we demonstrated that this is possible by combining three principles: (i) allowing
arbitrary boolean combinations of the reachability constraints, which are closed formulas without quantifier alternations,
(ii) defining reachability using regular expressions denoting pointer access paths (not) reaching a certain pattern, and
(iii) syntactically limiting the way patterns are formed. Extensions of the patterns that allow larger distances between
nodes in the pattern either break our proof of decidability or are directly undecidable.

The decidability result presented in this paper improves the state-of-the-art significantly. In contrast to [29,3,34,5],
LRP allows several binary relations. This provides a natural way to (i) specify invariants for data-structures with
multiple fields (e.g., trees, doubly-linked lists), (ii) specify post-condition for procedures that mutate pointer fields
of data-structures, by expressing the relationships between fields before and after the procedure (e.g., list reversal,
which is beyond the scope of PALE), (iii) express verification conditions using a copy of the vocabulary for each
program location. Operating on general graphs allows us to verify that the data-structure invariant is reestablished after
a sequence of low-level mutations that temporarily violate the invariant data-structure.

We are encouraged by the expressiveness of this simple logic and plan to explore its usage for program verification
and abstract interpretation.
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