PLDI

Modularity for decidability IE=ES

Philadelphia 2018
of deductive verification with
applications to distributed systems

A

Mooly Sagiv

SR

.-.ILIII P i

L

=T C

e
Taganl TEL AUIV
Hte UNIUERSITY

Eurcgmear Rewearch Counai

Contributors

Marcelo Taube, Giuliano Losa, Kenneth McMillan, Oded Padon, Sharon Shoham

Al

http://microsoft.github.io/ivy/
B Microsoft

TEL AUIV
Bl Research UNIUERSITY UNIUERSITY

TeL AVIV
UNIVERSITY

James R. Wilcox, Doug Woos

UNIVERSITY of
WASHINGTON

http://microsoft.github.io/ivy/

And Also

Anindya Benerjee Yotam Feldman Neil Immerman Aurojit Panda

nstitute

SREHE Berkeley
S thwa re UNIVERSITY OF CALIFORNIA
Shachar Itzhaky Aleks Nanevsky Orr Tamir Robbert van Renesse
> ’ U 3 RS “

TeL AVIV
UNIVERSITY

software

Y

Deductive Verification of
Distributed Protocols in First-Order Logic

[CAV’13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, MS:
Effectively-Propositional Reasoning about Reachability in Linked Data Structures

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
lvy: Safety Verification by Interactive Generalization

[POPL'16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[OOPSLA’17] Oded Padon, Giuliano Losa, MS, Sharon Shoham
Paxos made EPR: Decidable Reasoning about Distributed Protocols

[PLDI’18] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, MS, Sharon
Shoham, James R. Wilcox, Doug Woos: Modularity for Decidability of Deductive Verification
with Applications to Distributed Systems

Why verity distributed protocols?

 Distributed systems are everywhere
 Safety-critical systems
* Cloud infrastructure

* Blockchain

 Distributed systems are notoriously hard to get right
* Even small protocols can be tricky
* Bugs occur on rare scenarios

 Testing is costly and not sufficient

Why verity distributed protocols?

e Distributed systems are everywhere
 Safety-critical systems
* Cloud infrastructure

e Blockchain

 Distributed systems are notoriously hard to get right

' ot Using Lj © CCR'12
SIGCOMM'01 9 Lightwej ,
Chord: A Scalable Peer-to-Ptf_f 9ht Modeling 15 |,

for Internet Appl’ -
- David Liben-Nowell, David R. Kar Fﬁg oragﬁefi‘gis
lon Stoica, Robert Moris, Hari Balakrishnan. Membi 1de Pameg(grrg'sgz Jerse}fe ?Jrg?\
I the Same rch.att.com

. [05} ¢

-d 1 1 0S¢

res of Chord include 14}, StCon s
provable performanc nott one of

.. ac

1s and departut€ g

Attractive featu

correctness. and _
current node arriva

con

Ramakris

nzo
na Kotla, Lore

-t Cl
RISk g Compute

University of

‘actical Byzantine ault Ty
Ittaj Abrah

lerance

am, Guy Gueta, D,
VMw.

are Resea,rch

hlia Malkhj

with:
Lorenz Alvisi (C’omell),
ama Kot (An

l1azon),
-Philippe Martin (Verily)

Jean
We now Proceed tq dmnonstmte that the View-
‘Mechanjsy, i, Zyzzyva does not guarantee safpt

change
Y.

I
orrectness o e low level implementation?
t correctness of the | |v||p
What abou

Automatic verification of infinite-state systems

Property ¢

Rice’s Theorem

erification ,
— : | can’t decide!

l l

Counterexample Unknown / Diverge Proof

2 @

Deductive verification

@ive argume@

Deductive Verification
1) Is Inv an inductive invariant for §?
2) DoeslInv enatil ¢ ?

1 v l

Counterexample to Induction Unknown / Diverge Proof

Property ¢

et
1 it
| ltv?

Inductive invariants

System State Space Safety

Reach

Init

System S is safe if all the reachable states satisfy the property ¢ = —Bad

Inductive invariants

System State Space Safety

Inv

Reach

Init

System S is safe if all the reachable states satisfy the property ¢ = —Bad
System S is safe iff there exists an inductive invariant /717 :

Init € Inv (Initiation)

if o € Invand o — o' then o’ € Inv (Consecution)

Inv N Bad = @ (Safety)

Logic-based deductive verification

* Represent Init, =, Bad, by logical formulas
* Formula & Set of states

* Propositional logic (SAT) — industrial impact for hardware verification
* First-order theorem provers
« Satisfiability modulo theories (SMT) — major trend in software verification

Deductive verification by reductions to
First Order Logic

1) SAT(Init(V) A—Inv(V))?
2) SAT(Inv(V) ATF(V, V') A= Inv(V’))?
3)SAT(Inv(X) ABad(V))?

/ First Order SAT Solver N

Counterexample to Induction (CTI) Proof

Challenges in deductive verification

* Formal specification

* Modeling the system and property in a logical formalism

* Checking inductiveness
* Undecidability of satisfiability checking (unbounded state, arithmetic)

* Inference: finding inductive invariants [PLDI’16, POPL' 16, JACM’17]

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
lvy: Safety Verification by Interactive Generalization

[POPL'16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[JACM’17] Aleksandr Karbyshev, Nikolaj Bjgrner, Shachar Itzhaky, Noam Rinetzky, Sharon Shoham:
Property-Directed Inference of Universal Invariants or Proving Their Absence

Proving distributed systems is hard

Verdi
Verification of Raft in Coq
50,000 lines of manual proof

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct
[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems

SAT Modulu Theory (SMT)

Extend first order logic with theories
* Linear arithmetic dX:Z.3X+2 =0
* Bitvectors
* Theory of arrays

* Hides complexity from the user
* Works in many cases

Great tools: Yices, Z3, CVC, Boolector, ...

Essential in Dafny, Sage, Klee, Rossete, F*,

But unpredictable!
e Can fail on tiny inputs
* Tuning requires knowledge in the heuristics
* The butterfly effect

Az
W\ 4

Us o0

sy,
/ b,

Wyou musT
UNLEARN
WHAT YOU
HAVE
LEARNED”

lvy’s 15t Principle: First Order Abstraction

* Abstracts states as finite (uninterpreted) first order structures
 Unbounded relations
* No other data structures

. e — Theories
* Abstract integers, sets, cardinalities, ...

+ Quantifiers
e Arbitrary loops and procedures

e Express program meaning as first order transition systems:
e r(X,Y):=3Z. p(X, Z) Aqg(Z, Y)=VX, Y.r'(X,Y) < 3z.p(X, Z) A q(Z, Y)
* “A step towards decidability”

Example: Leader election in a ring

next
* Unidirectional ring of nodes, unigue numeric ids next next
* Protocol:
* Each node sends its id to the next nex ext
e Upon receiving a message, a node passes it (to the next) if »

the id in the message is higher than the node’s own id
* A node that receives its own id becomes a leader

 Theorem: The protocol selects at most one leader
* Inductive?

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

Example: Leader election in a ring

next
* Unidirectional ring of nodes, unigue numeric ids next next
* Protocol:
* Each node sends its id to the next nex ext
e Upon receiving a message, a node passes it (to the next) if »

the id in the message is higher than the node’s own id
e A node that receives its own id becomes a leader

Theorem: The protocol selects at most one leader
* Inductive? NO

Undecidable to check inductiveness f lﬁ
* Unbounded nodes, messages Q ‘ ,’

NGB,
* Arithmetic
* Transitive closure

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

Modeling in first-order logic

State: finite first-order structure over vocabulary V :

* < (ID, ID) — total order on node id’s h
btw (Node, Node, Node) — the ring topology > Axiomatized in first-order logic
id: Node = ID —relate a node to its unique id
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

protocol state first-order structure
next

. <n., Ny, n;> € [(btw)

Modeling in first-order logic

State: finite first-order structure over vocabulary V :

* < (ID, ID) — total order on node id’s h
btw (Node, Node, Node) — the ring topology > Axiomatized in first-order logic
id: Node = ID —relate a node to its unique id
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

Specify and verify the protocol for any number of nodes in the ring

v.c;s.QQ...

Modeling in first-order logic

* State: finite first-order structure over vocabulary V (+ axioms)

* |nitial states and safety property expressed as formulas:
* |nit(V) —initial states, e.g., V x,y.—pending(x,y)
* Bad(V)—bad states, e.g., 3 ny,n,. leader(n,) Aleader(n,) A n;#n,

* Transition relation expressed as formula TR(V, V'), e.g.:
e dn,s. “s = next(n)’A Vx,y. pending’(x,y)< (pending(x,y) V (x=id[n]Ay=s))
e In. pending (id[n],n) A Vx. leader’(x) «<— (leader(x) V x=n)

Deductive verification by reductions to EPR

EPR Protocol EPR Loop Invariant Inv(X
Init(V), Tr(V, V") < p invari v(X) EPR Safety Property —Bad(X)
1) SAT(Init(V) A=Inv(V))?
2) SAT(Inv(V) ATr(V, V') A= Inv(V’))?
3)SAT(Inv(X) ABad(V))?

/ EPR Solver N

Counterexample to Induction (CTI) Proof

Leader election protocol — inductive invariant

take 1

I, = Vny,n,: Node. leader(n,) aAleader(n,) - n; = n,
Il

Inductive invariant: Inv = I, A I, A I,

= Vn;,n,: Node. leader(n,) » id[n;] < id[n,]

Unique leader

The leader has the highest ID

I, = Vng,n,: Node. pending(id[n,],n,) » id[n;] < id[n,] Only the leader can be self-pending

| can decide EPR!

Nodgjgkeyy A —Inv(V)

< (ID, ID) — total order
k

tvcBederdted eh (113 NTEROPIIOBN —Inv (V')

EPR Solver

id: Node = ID — relate‘a.node tnifdYnmaBadd)
pending(ID, Node) — pending
leader(Node) — leader(n) means n is the leader

lvy: check inductiveness

Leader Protocol @v =TI, Al /\D

Check Inductiveness

pnd < 0 =
i id id nd\ 4 ,
: d P\ Tid d
1 X 2 ' 3 rev(l, Id(2)> 1| next 2| next 3|

Leader election protocol — inductive invariant

Inductive invariant: Inv = I, A I, A I, A I,

Unique leader

I, = Vng,n,: Node. leader(n,) Aleader(n,) - n; = n,

I, = Vn;,n,: Node. leader(n,) » id[n;] < id[n,] The leader has the highest ID

I, = Vn,,n,: Node. pending(id[n,],n,) » id[n;] < id[n,] Only the leader can be self-pending

I, =Vny,n,,n;: Node. btw(n;,n,,n;) A pending(id[n,], n;) = id[ny] < id[n,]

| can decide EPR! - e Cannot bypass higher nodes

~oigTTTorno? Proof

Nodgjgkeyy A —Inv(V) =iofdol.
EPR Solver >

tvcBederdted eh (113 NTEROPIIOBN —Inv (V')
id: Node = ID — relate‘a.node tnifdYnmaBadd)

pending(ID, Node) — pending

< (ID, ID) — total order
k

leader(Node) — leader(n) means n is the leader

Skolemization

* Procedure that transforms -
a first order formula ¢ over vocabulary V=<S§, C, R, F> into
a universal formula Sk(¢p) over vocabulary V'=<S, CU C’, R, FU F’>
* (¢ is satisfiable < Sk(@) is satisfiable

* Example
e VX:S1. dy:S2. r(X, Y) Aq(Y)

= SAT

VX: S1. r(X, (X)) Aq(f (X))

Why is SMT undecidable?

 Theories
e 2 xX4+5xX2-3xX+2=0

* Quantifier-alternation and function symbols (cycles)
e Vx:N.dy:N.x<y

 Vx:N. x< f(x)

e Vx:A.dy:B.Q(x,y) A Vz:B. dw: A. P(z, w)
Also happens without theories

e Vx:A. Q(x, h(x)) A Vz: B. P(z, g(z))
h:A—>Bandg: B 2>A

Infinite Structures

e Vx. le(x, x)

e VX, Y, z. le(x, y)ale(y, x) = le(x,z)
e VX, V. le(x, y)ale(y, x) = x=y

e Vx,y. le(x, y)vie(y,x)

e Vx. le(zero,x)

e Vx. dy. le(x, y) A x 2y

For finite models validity is co-R.E.

Reflexive
Transitive
Antisymmetric
Total
Non-empty
Successor

Effectively Propositional Logic — EPR

a.k.a. Bernays-Schonfinkel-Ramsey class

* Limited fragment of first-order logic
* No function symbols
* No theories
* Restricted quantifier prefix: 3*V* ¢ .
* No V* 3%

EPR Sat

ax,y. V z.r(x, z) & r(z, y)

H L = Vz. r(c, z) & r(z, c,))

=sat(r(cll Cl) <« I’(Cl, Cz)) A
(r(c,, c,) <> r(c,, ¢,))

=t (P11 <> P1y) A (P, <5 Py,)

SAT becomes wrdecidable

e Vx. le(x, x)

e VX, Y, z. le(x, y)alely, z) = le(x, z)
e VX, V. le(x, y)Ale(y, x) = x=y

e Vx,y. le(x, y)vie(y, x)

e Vx. le(zero,x)

Reflexive

Transitive
Antisymmetric
Total
Non-empty

° .) 7_Y

Successor

Effectively Propositional Logic — EPR

a.k.a. Bernays-Schonfinkel-Ramsey class

* Limited fragment of first-order logic w/o theories
* No function symbols
* Restricted quantifier prefix: 3*V* ¢ ¢
* No V* 3%

* Small model property

e A formula is satisfiable iff it is holds on models
of size (number of constant symbols +
existential variables)

Decidable Fragments in Ivy

* EPR

* EPR++ allow acyclic function and quantifier alternations
* E.g., f:A->B, so cannot have g:B->A
* Maintains small model property of EPR
* Finite complete instantiations

 QFLIA — Quantifier Free Linear Integer Arithmetic <

* FAU — Finite Almost Uninterpreted [CAV’07] é%é@_
* Allow limited arithmetic + acyclic quantifier alternations 3
* Maintains finite complete instantiations

[CAV’07] Ge & de Moura: Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories

EPR++ based verification

Predictiblity
e Decidable inductiveness check

* Finite counterexamples
* Can be minimized

* Easy to display graphically
* Arbitrary first order updates
* No more butterfly effect

Challenges

* Expressiveness of first order
logic
e Paths
e Sets & Cardinalities
e Quantifier alternation cycles

* Not closed under conjunction
and negation

* Gap to low level implementation

First-order axiomatization of ring paths

I, =v¥n,,n,,n;: Node. btw(n;,n,,n;) A pending(id[n,], n;) = id[n;] < id[nzfext

e Cannot express in first-order from “next” relation!
e Key enabler: use btw and not next

relation btw (Node, Node, Node)
axiom Vx, vy, z: Node. btw(x, vy, z) =btwl(y, z, x) circular

next next

nex

Cannot bypass higher nodes

axiom Vx, vy, z, w: Node. btw(w, x, y) A btw(w, vy, z) = btw(w, x, z) transitive
axiom Vx, y, w: Node. btw(w, x, y) = —btw(w, y, x) anti-symmetric
axiom Vx, y, w: Node. #(w, x, y) = btw(w, x, y) V btw(w, vy, x) total

macro “next(a)=b” = Vx: Node. x=a v x=b v btw(a,b,x) edges

[Itzhaky SIGPLAN Dissertation Award 2016]

Key idea: representing deterministic paths

N

Alternative 2: maintain <

* s defined by transitive reduction of <

* Unique due to out degree 1

e Definable in first order logic
"s(x) V' Ex<yAVz.x<z->y<z
X<y" =EZx<yAxFYy

< =~ btw

E

Alternative 1: maintain s

« < defined by transitive closure of s
* not definable in first-order logic

%@—O Not first order expressible

First order expre55|ble

Sound and complete* axiomatization of deterministic paths

SONE % TSRS o

Forest, Tree, Graph with out degree 1,
Line Ring Acyclic partial function General partial function
btw(x,y, z)

For every class C of finite graphs abov
— universal @
— 1 universal qu

Every graph of class C satisfies the axioms of C
Edges agree with successor formula

— universally quantified

Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete™ axiomatization of deterministic paths

oo O
{:} EPR - finite model property
+ Completeness Thm. for finite structures

Line Ring Ad

< (%) btw(x,y, z) Sound and complete automatic
deductive verification

For every class C of finite graphs above

* Axioms for path relation — universally ¢

Successor formula — 1 universal quantifier

Update formulas for node / edge addition and removal — universally quantified

Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Parameterized toy leader election

* N processes choose a leader

* Process may request vote by broadcast

* Processes vote for a requester
* Process with majority of votes is leader

leader O
re

Prove: at most one leader

vote O
leader O

First-order expressiveness issues

* To prove the toy protocol, we need an inductive invariant
* Problem: cardinality reasoning

if |votes(p)| > |aTll| then send leader(p)

cardinality + arithmetic + uninterpreted + quantifiers = second order & undecidable!

* Solution: axiomatize cardinalities in first-order logic

Vs, t.majority(s) A majority(t) — Ip. member(p, s) A member(p, t)

An ADT for pid sets

datatype set(pid) = {
relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)
specification {
procedure empty ensures Vp. —member(p, s)
procedure add ensures Vp. member(p,r) < (member(p,s) Vp = e)
property [maj] Vs, t. majority(s) Amajority(t) — Ip. member(p,s) A member(p,t)
}
}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj

Paxos

* Single decree Paxos — consensus
lets nodes make a common decision despite node crashes and packet loss

e Paxos family of protocols — state machine replication
variants for different tradeoffs, e.g., Fast Paxos is optimized for low
contention, Vertical Paxos is reconfigurable, etc.

e Pervasive approach to fault-tolerant distributed computing
* Google Chubby
* Amazon AWS
* VMware NSX
* Many more...

Inductive invariant of Paxos

invariant decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

invariant proposal(R,V1) & proposal(R,V2) -> V1 = V2

invariant vote(N,R,V) -> proposal(R,V)

invariant forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)
invariant one_b max vote(N,R2,none,Vl1) & ~le(R2,R1) -> ~vote(N,R1,V2)

invariant one_b _max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

invariant one_b max_ vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,V0)

invariant ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left rnd(N,R1) & ~vote(N,R1,V1)

invariant one b(N,R2) & ~le(R2,R1) -> left rnd(N,R1)

Paxos made EPR: Proof size and verification time

Protocol Model Verification
[LOC] time [sec]

Paxos

Multi-Paxos 98 12 2.6
Vertical Paxos™ 123 18 2.2
Fast Paxos™ 117 17 6.2
Flexible Paxos 88 11 2.2
Stoppable Paxos™ 132 16 5.4

*first mechanized verification
Abstraction and transformation to EPR reusable across all variants!

Appendix: The Proof of Correctness

Wo now prove that Stoppable Paxos satisfies its safoty

St op pabl S P aAXO0S

¢ w # v : NotChoosable(i, e, w)

For a state predicate P, the formula

(i, b
b, w € StopCind : NotChoosable(3, ¢, w
s an invariant, meaning that it i true for every reachal Wfter(i,bv) =
temporal formula soerts that at some point in the execution, P
n that point onward.
We define a predicate P to be stable iff it satisfies the follow

md)=>¥j>i, e<b w hoosable (j, ¢, w
if P is true in any reachable state s, then P is true in any state res

from » by any action of the

Jgorithm. We let stable P be the assertic
o prodicate P is stable. It is

e e Gl Dahlia Malkhi Leslie Lamport Lidong Zhou

safity proof s the following proof that Pre
ste s when proving stab

(b, v SafeAt(i, b, v)

o are informal, but careful. The two comp

cated, mult

ibv : Proplne(i,b,v))
written with a hierarchical numbering scheme in which

Proplnn(s, b, v) s truo in tho initial state because Do
” W

x proof (9], Although i

5. this kind of proof is easy to chock and belps to

April 28, 2008

We now prove that €

ncy and Stopping are invariants of Stoy
Paxos. First, wo dofine

NotChoosable(i. b, v)
Q:VYaeQ: (balla

j < i, w € StopCmd

i 1 (]

i

- have been chosen as the j™ command for some j < i. Although the basic -

idea of the algorithm is not complicated, getting the details right was not =
easy. o

((v € StopCmd i

an possibly make

mula F1(3,) holds becaus it
2a(1, b, v, §) action

PRoor: Assume mb this implies

alk,b.Q): and (41 and case wsumption (3)3 imply nition of sval2a, we then have w # vai2a(j.b, Q). The (4)2 case as- o
B P w e St Thersforv, NoReconfigBefore(, mbai2a(k, b, Q)) implien sumption (which implios mvai2a(j,5,Q) # —oc) and (1)3 then imply his contradicts
thon (114, tho defniti sccoptor NotCh) NotChoosablelj, ¢,) Chosenti. b
b o 1)5. SafeAt(s, b, o) {1)7. NoneChoosableAfter(i, b, v) 2. Cask: b=¢
wa s PRoor: Wo asume v and prove tewf. By PROOF: We assume v € StopCmd, j > i, ¢ < b, and w any command and we prove o; Lemma 1. Dome2als,c,w), which by
Ty Wi Lomma 1.7, it Y ovsable(s. . v he proof into two NotCh By Lemma 1.7, it suffices to prove NotChoosable(J, c,). Lomuma 1.2 imples b
Wo split the proof into two cases.
1 1 (9)1. Case: sval2ali, b, Q) =T Theorem 2 ¢
Proor: (1 1) implies NotChoavable(s, c. ¥ PROOF: Asumption ()13 implies FA(3,5,Q,v), =0 the assumption o asumo Chas
wi2as,5,Q) and > Case: DT v € StopCmd implies EAb(i, b, @, v). The case assumption, the assumption aiti & contradictio
2a(7.b, Q). s e ik e i il 3 >, and E4b(3,5, Q. v) imply sval2a(j, b, @) = T. The assumption ¢ <
1 vy ook topo ‘and step (1)4 then imply NotChoosable(s. . u). B
e PRoOF: Asumption (1)1.4 and Lemma 3 imply N hoco (212, Case: sal2a(i, b.Q) # T] "1 by th i i
o s L8 (wich im- ") @)1, sual2a(i. b, Q) = val2 v o and o i NoChowsabits £), The
Ed ot badercns A g 1 kaplias 34,6, Quv). Cooe assemption (22 Proo. Asumption (113 implies E3(i,6,Q.0), which implies s e Ne abiely e
A 1,6,). Cave saumption (2)2

sval2a(i, b, Q) = v. The case assumption and the definition of svalda then el imma'S il ol the sl vlakradiciacn

implies val2a(3, b, Q)
3)2. Done2a(i, mbal2ali, b, Q). v)

PROOF: (3)1, assumption (1)1.4, and the definition of val2a imply
vote,Ja][mbal2a(i. b, Q)] — v for some acceptor a in Q, which by Lernma 1.3
PROOF: The case assumption implies mbal20(5. 5. Q) < c. %0 assumption wd wo peove implies Doneda(i, mbal2a(i,b, Q) v
y NoiChoosable(j e, e . By the assumption ¢ < b, it sufices to consider the following two cases.
Since < b, wo noed consider cnly the 33, Casi: ¢ < mbal2a(s, b, Q)
010 tho following thrve cases D, Case b= Pro Stp and asumpion (D11 imply A.2 The Proof of Progress.
s o 1 " ’ None Chaosablefter(, mbal2al(i. b, @), v). By the caso assumption and the
Proor: Asumption (1)1.3 fmplies Done2a Since | heorem 3 ¥ b, Q : Progress(b, @
oF: By aumpcion (1)1.4, the cam ion asd Loeuma 3 ssply o Bhahnd, Tk Syl tha Chbd oot of NesChinsmabiotis b o assumptions v € SlopCmd and j > 1, this implies NotChoosable(s, c, w) T S VH:1 Paiese Y]) .
\oasable], ¢, w i tho existeotially quantified variables), which by Case: mbal2a(i, b, Q) < ¢ < b o ‘ dryreogringd Taled i yomidhoer iy
5.Q) {Chosa 4)1. mbal2a(4, b, Q) < mbal2a(s, b, Q) .) e
Proor: The asumption v e StopCmd and (B imply e k)
; S =) swal2a Case sscumption (212 and the defini. n. . . ,
il n— , i oo, si-cated, tion of swi2a then imply mbal2a(k,b,Q@) < mbat2a(i,b, @) for all Puoor: PI(h.Q) imples that the tall b e
i i 1)4 and cas sssmption (212 imply NotChoosble(s. . v). (W02 NotCloosabieli,c,) ¢ e Became il o e 1 vl :
ol PRoOOF: (1)1 and case assumption (3)4 imply mial2al c<b e S v W) Waw 3 mowt ey vt
212, wo havo the follawing (w0 sub-cases By assumption (1)1, Lemma 3 imples NofChoosable(, c.). O V1a momeay sl extcute. Pharetila, 1) Ty PV Q); We. Phese
: emage it sersls is eventua od by tho londer
T 4, the case assumption, and Lesuma 3 imply Theorem 1 0 Consistency 1 Done2a(i, b, ¥) = OClisents, b, 1w
Y ness, ¢ Proo¥: By definition of Consistency, it suffices to assume Chosen(i,b,v) and means that a Phase b, w) sction has
Q Chosen(s, ¢,) and to prove v — w. Without loss of gomerality, we can assume o s e e
13 implies £6(i,5, Q) The (3 b< c. We then have two cases. P2(b, Q) impl al misage
pdeioreg ol 2, il e wnd i, b, Q) 1 Case: b<e impies bal[a] that evory @ in Q eventually
Y Sasly: Mooy thjons k.0, 0) $ Proos: We assume v # w and obtsin a conradiction. Lemma 1.1 Phase =, Bincy, eveaialy, Ghesan(y, b &
. m—— - and Chosen(i,c,w) imply Done2a(i,c,w) By Lemma 4, this implies becomes true

2

(1}7. NoneChoosableAfter(i, b, v)
ProoF: We assume v £ StopCmd, j = i, ¢ < b, and w any command and we prove
NotChoosable(j, c,w)'. By Lemma 1.7, it suffices to prove NotChoosable(j, ¢, w).
We split the proof into two cases.
(1. Casg: sval2ali, b, Q) =
ProoF: Assumption (1)1.3 implies F4(i, b, Q.v), so0o the assumption

Verification
time [sec]

|mp1|e*=. mﬂa{: ib Q} = .
{3)2. Donelaii, mbal2al(i, b, Q). v)
Proor: (3)1, assumption {1}1.4, and the definition of wval2a mply
vote;|a||mbal2a(i, b, Q)] = v for some acceptor a in &), which by Lemma 1.3
implies Done2a(i, mbal2a(i, b, Q), v).
By the assumption ¢ < b, it suffices to consider the following two cases.
{3)3. CasE: ¢ < mbal2a(i, b, Q)
PRrOOF: Step (32 and assumption {1)1.1 imply
NoneChoosable After(i, mbal2a(i, b, @), v). By the case assumption and the
assumptions v € StopCmd and j = i, this implies NotChoosable(j, ¢, w).
{3)4. CasgE: mbal2a(i, b, Q)< c< b
(4}1. mbal2a(j, b, Q) < mbal2a(i, b, Q)
ProOF: The assumption o€ StopCmd and {3}1 imply
spal2a(i. b, Q) € StopCmd. Case assumption {2}2 and the defini-
tion of sval2a then imply mbal2a(k,b, Q) < mbal2aii, b, Q) for all
ko= il
(4}2. NotChoosable(j, c, w)
ProOF: {4}]1 and case assumption {3}4 imply mbal2a(j. b, Q) < ¢ < b.
By assumption (1}1.4, Lemma 3 implies NotChoosable(j, e, w).

Impact First Order Abstraction

First-Order Logic approach now used at Ethereum Dev UG

From ~1500 LOC to ~150 LOC (Isabelle/HOL proof)

‘ pirapira commented on Sep 28, 2017

This is beautiful, thank you! I'll update README to direct people to your script.

2>

= thereurnm

@ ¢ pirapira merged commit 1aaeae7 into pirapira:master on Sep 28,2017

Closing the gap

e Reasoning about abstract protocols (designs)
e User provides axioms expressed in first order logic
* Not checked by the system
* Missing axioms can lead to false alarms

* Reasoning about implementations
» Abstract total order = concreter domain, e.g., integers
» Abstract sets with majorities = some data structure, e.g., arrays
 How can we verify that the user defined “axioms” are satisfied by the low-level
implementation?
 Solution: Modularity — wrap implementations in ADT’s
* Each module may use a different decidable theory

vy 2" Principle: Scope Verification Conditions

* The user is responsible for breaking quantifier alternation cycles
e Also in designs

* Leverage modularity (natural for distributed protocols)

* Prove abstract protocol and use it as a lemma to prove concrete
implementation

e Sometimes functions are abstracted as relations
* Allow more behaviors
* Extract executable from the concrete implementation

e Axioms of the design must be fulfilled by the implementation
* Theories are adds-on

Modularity

Original system Original inductive argument

Original property

Separate Verification of each module

Correct

Findgroof

An ADT for pid sets

datatype set(pid) = {
relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)
specification {
procedure empty ensures Vp. —member(p, s)
procedure add ensures Vp. member(p,r) < (member(p,s) Vp = e)
property [maj] Vs, t. majority(s) Amajority(t) — Ip. member(p,s) A member(p,t)
}
}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj

Implementation of the set ADT

e Standard approach

* Implement operations sets using array representation
member(p, s)= di. repr(s)[i] = p
» Define cardinality of sets as a recursive function | |: set 2int
* majority(s)=|s| + |s| > |all|
* Prove lemma by induction on |all|

Vs, t.|s| + |t| > |all]| = Ip.member(p,s) A member(p,t)

* The lemma implies property maj

e All the verification conditions are in EPR+++|imited
arithmetic (FAU)

Quantifier alternation cycles

* Protocol state

voters: pid =2 set
* Property maj

Vs, t: set. Ap: pid. majority(s) Amajority(t)=
member(p, s)Amember(p, t) Quantifier

Alternation Cycle

* Solution: Harness modularity
* Create an abstract protocol model that doesn’t use voters

* Prove an invariant using maj, then use this as a lemma to prove the concrete
protocol implementation

Abstract protocol model

relation voted(pid, pid)
relation isleader(pid)
var quorum: set

procedure vote(v : pid, n : pid) = { procedure makg_lgader(n : pid, s : set) ={
require V m. —voted (v, m); require majority(s);
voted(v,n) := true: require Vm. member(m,s) — voted(m, n);
) isleader(n) := true;
quorum :=s;
}
Invariant:
* one leader: vn, m.isleader(n) Aisleader(m) » n =m
e voted is a partial function: Vp,n,m. voted(p,n) A voted(p,m)—->n=m
* |eader has a quorum: vn, m.isleader(n) A member(m, quorum) — voted(m,n)

Provable in EPR++

Implementation

* Uses real network vote messages
* Decorated with ghost calls to abstract model
* Uses abstract mode invariant in proof

relation already_voted(pid)
handle req(p:pid, n:pid) {
if malready_voted(p) {
already_voted(p) := true;

send vote(p,n);
ghost abs.vote(p,n); call to abstract model must satisfy precondition

}
}

In place of property maj, we use the one leader invariant of the abstract model
Vp,n.abs.voted(p,n) — already_voted(p)
Vp, n.network.vote(p,n) < abs.voted(p,n)
vn.leader(n) < abs.isleader(n)

Proof using Ivy/Z3

* For each module, we provide suitable inductive invariants
* Reduces the verification to EPR++ verification conditions
* the sub verification problems

* Each module’s VC’s in decidable fragment
e Support from Z3

* If not, Ivy gives us an explanation, for example a function cycle
e 73 can quickly and reliably prove all the VC’s

Proof Length

manual
proof

Coq/Verdi 50,000
RAFT
vy 560 200 0.36
Dafny/IronFleet 3000 12,000 4
MULTIPAXQOS

lvy 330 266 0.8

Verification Effort

V f

Coqg/Verdi 3.7 years
RAFT 3 months
lvy (from ground Few min
up)
Dafny/IronFleet Several years 6hr in cloud
MULTIPAXOS ! mon.tl.‘l few minutes on
lvy (pre-verified

model) laptop

Why do people hate First Order Logic?
Rants

Hard to understand and error prone

Too weak: Cannot express
Parity
Numeric
Quorums
Finiteness
Paths in a graph

Hard for automation
Satisfiability is undecidable
NP-complete for fixed size

Finite model property
Display models graphically

First order interface
Total orders
Paths in deterministic graphs
Majorities

Theories as adds-on

First order imperative updates

Restrict to EPR++/FAU
Satisfiability is NEXPTIME complete/%,
Support from Yices, Z3, lprover, Vampire

61

Languages and Inductiveness

Language Executable Expressiveness Inductiveness

C, Java, Python...
SMV
TLA+

Coq, Isabelle/HOL

Dafny

vy

[X]

[X]

N KN K

Turing-Complete
Finite-state

Turing-Complete

“Turing-Complete”

Turing-Complete

Turing-Complete

Undecidable
Temporal Properties
Manual

Manual with tactics

Undecidable with
lemmas

Decidable(EPR++/FAU)

Expressiveness

State of the art in formal verification

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10

IronFleet: ~4 IVy

Decidable deduction
Finite counterexamples
proof/code: ~0.2

Ultimately limited by undecidability

Decidable Models
Model Checking
Static Analysis

Automation

Backup Slides

Inductive Invariant checking vs. inference

Safety Prop.
Language L

Invariant Checking Invariant Inference
Is Inv an inductive invariant Is there Inv € L inductive
for (Init, TR, Bad)? invariant for (Init, TR, Bad)?

I
v v v v

Counterexample Unknown Proof No Unknown Inv + Proof

’ 2 SE ’ -
) —)
5 -
37 5
o

(11

Relaxed error traces
@,

0 E ¢’ implies o satisfies more universal sentences than ¢’ U|
e cEo,YeEV', 'EY = okFY CA

* Relaxed error trace: c,, ©,,...,0y S.t.
G, E Init oy E Bad c;,6.,; EFTR or 6., E G,

If there is a universal inductive invariant Inv € V*, then a relaxed error trace cannot exist
=>» A relaxed error trace implies no universal inductive invariant exists

* Notation: o E o’ iff o is isomorphic to a substructure of ¢’

TR

Key ldea: reduction to safety

Finite State

OO 6000 00
00 ™7 0600

Liveness < No Lasso

Key ldea: reduction to safety

Finite State Infinite State

000000
) 0000 00
OO 6000 00
20000 00
® 0 0000 0 O
> 000 00

00 >0 0600

Liveness < No Lasso Liveness & No Lasso
Problem: Spurious Lasso

Key ldea: reduction to safety

Finite State Infinite State Dynamic Abstraction [POPL 18]

000000
) 00000 0
0000 00
20000 00
® ® 0-0<0.0 0 O
) 000 00

00 >0 0600

Liveness < No Lasso Liveness & No Lasso
Problem: Spurious Lasso

