
Modularity for decidability
of deductive verification with

applications to distributed systems

Mooly Sagiv

Contributors
Marcelo Taube, Giuliano Losa, Kenneth McMillan, Oded Padon, Sharon Shoham

James R. Wilcox, Doug Woos

http://microsoft.github.io/ivy/

http://microsoft.github.io/ivy/

And Also

3

Anindya Benerjee Yotam Feldman Neil Immerman Aurojit Panda

Shachar Itzhaky Aleks Nanevsky Orr Tamir Robbert van Renesse

Deductive Verification of
Distributed Protocols in First-Order Logic

[CAV’13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, MS:

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
Ivy: Safety Verification by Interactive Generalization

[POPL’16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[OOPSLA’17] Oded Padon, Giuliano Losa, MS, Sharon Shoham
Paxos made EPR: Decidable Reasoning about Distributed Protocols

[PLDI’18] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, MS, Sharon
Shoham, James R. Wilcox, Doug Woos: Modularity for Decidability of Deductive Verification
with Applications to Distributed Systems

Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

What about correctness of the low level implementation?

Verification
Is there a behavior

of 𝑆 that violates 𝜑?

Counterexample Proof

Automatic verification of infinite-state systems

Property 𝜑System 𝑆

Unknown / Diverge

Rice’s Theorem

I can’t decide!

Counterexample to Induction Proof

Deductive verification

Property 𝜑System 𝑆 Inductive argument 𝐼𝑛𝑣

Deductive Verification
1) Is 𝐼𝑛𝑣 an inductive invariant for 𝑆?

2) Does Inv enatil 𝜑 ?

Unknown / Diverge

Inductive invariants

System State Space Safety
Property

𝐵𝑎𝑑

𝐼𝑛𝑖𝑡

𝑅𝑒𝑎𝑐ℎ

System 𝑆 is safe if all the reachable states satisfy the property 𝜑 = ¬𝐵𝑎𝑑

Inductive invariants

System State Space Safety
Property

𝐵𝑎𝑑𝐼𝑛𝑣

𝐼𝑛𝑖𝑡

System 𝑆 is safe iff there exists an inductive invariant 𝐼𝑛𝑣 :

𝑇𝑅

𝑇𝑅

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

𝑅𝑒𝑎𝑐ℎ

𝑇𝑅

System 𝑆 is safe if all the reachable states satisfy the property 𝜑 = ¬𝐵𝑎𝑑

Logic-based deductive verification

• Represent 𝐼𝑛𝑖𝑡, →, 𝐵𝑎𝑑, 𝐼𝑛𝑣 by logical formulas

• Formula  Set of states

• Automated solvers for logical satisfiability made huge progress

• Propositional logic (SAT) – industrial impact for hardware verification

• First-order theorem provers

• Satisfiability modulo theories (SMT) – major trend in software verification

Deductive verification by reductions to
First Order Logic

Safety Property Bad(V)

Counterexample to Induction (CTI) Proof

Protocol
Init(V), Tr(V, V’)

Front-End

1) SAT(Init(V) Inv(V))?
2) SAT(Inv(V) Tr(V, V’)  Inv(V’))?

3)SAT(Inv(X) Bad(V))?

First Order SAT Solver

Loop Invariant Inv(V)

Y N

?

Challenges in deductive verification

• Formal specification

• Modeling the system and property in a logical formalism

• Checking inductiveness

• Undecidability of satisfiability checking (unbounded state, arithmetic)

• Inference: finding inductive invariants [PLDI’16, POPL’16, JACM’17]

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
Ivy: Safety Verification by Interactive Generalization

[POPL’16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[JACM’17] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, Sharon Shoham:
Property-Directed Inference of Universal Invariants or Proving Their Absence

Proving distributed systems is hard

Verdi
Verification of Raft in Coq

50,000 lines of manual proof

IronFleet
Verification of Multi-Paxos in Dafny
12,000 lines and 3.7 person-years

Uses solver for undecidable SMT checks

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct

[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems

SAT Modulu Theory (SMT)

• Extend first order logic with theories
• Linear arithmetic X:Z. 3X + 2 = 0
• Bitvectors
• Theory of arrays
• …

• Hides complexity from the user
• Works in many cases

• Great tools: Yices, Z3, CVC, Boolector, …

• Essential in Dafny, Sage, Klee, Rossete, F*, ….

• But unpredictable!
• Can fail on tiny inputs
• Tuning requires knowledge in the heuristics
• The butterfly effect

Ivy’s 1st Principle: First Order Abstraction

• Abstracts states as finite (uninterpreted) first order structures

• Unbounded relations

• No other data structures

• Abstract integers, sets, cardinalities, …

• Arbitrary loops and procedures

• Express program meaning as first order transition systems:

• r(X, Y) := Z. p(X, Z)  q(Z, Y) X, Y. r’(X, Y)  Z. p(X, Z)  q(Z, Y)

• “A step towards decidability”

− Theories
+ Quantifiers

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

• Inductive?

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

3 5

2

4

1

6

2

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

• Inductive?
• Undecidable to check inductiveness

• Unbounded nodes, messages
• Arithmetic
• Transitive closure

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

3 5

2

4

1

6

2
3 5

2

4

1

6

NO

3 5

2

4

1

6
next

next next

next

next

next

Modeling in first-order logic
State: finite first-order structure over vocabulary V :

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

Modeling in first-order logic
State: finite first-order structure over vocabulary V :

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5



1
 L

next

2
L

next
id id

3
L



id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd



1
 L

next

2
L

next
id id

3
L



id
next



1
 L

next

2
L

next
id id

3
L



id
next

pnd

…

Specify and verify the protocol for any number of nodes in the ring

Modeling in first-order logic

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property expressed as formulas:

• Init(V) – initial states, e.g., ∀ x,y .¬pending(x,y)

• Bad(V) – bad states, e.g., ∃ n1,n2. leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation expressed as formula TR(V, V’), e.g.:

• ∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

• ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)

Deductive verification by reductions to EPR

EPR Safety Property Bad(X)

Counterexample to Induction (CTI) Proof

EPR Protocol
Init(V), Tr(V, V’)

Front-End

1) SAT(Init(V) Inv(V))?
2) SAT(Inv(V) Tr(V, V’)  Inv(V’))?

3)SAT(Inv(X) Bad(V))?

EPR Solver

EPR Loop Invariant Inv(X)

Y N

I1 = n1,n2: Node. leader(n2) → id[n1]  id[n2]

I2 = n1,n2: Node. pending(id[n2],n2) → id[n1]  id[n2]

The leader has the highest ID

Only the leader can be self-pending

Leader election protocol – inductive invariant
take 1

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

EPR Solver
𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉

𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

I can decide EPR!

VC Generator

Yes/Counterexample

Inductive invariant: 𝐼𝑛𝑣 = I0  I1  I2
I0 = n1,n2: Node. leader(n1) leader(n2) → n1 = n2 Unique leader

Leader Protocol 𝐼𝑛𝑣 = I0 I1 I2

rcv(1, id(2))

I0I1 I2  I2



1
 L

next

2
L

next
id id

pnd

3
L



id
next



1
 L

next

2
L

next
id id

pnd

3
L



id
next

Check Inductiveness

CTI

EPR

Ivy: check inductiveness

Inductive invariant: 𝐼𝑛𝑣 = I0  I1  I2  I3

I0 = n1,n2: Node. leader(n1) leader(n2) → n1 = n2

I1 = n1,n2: Node. leader(n2) → id[n1]  id[n2]

I2 = n1,n2: Node. pending(id[n2],n2) → id[n1]  id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pending(id[n2], n1) → id[n3]  id[n2]

The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

EPR Solver
𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉

𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

Proof

I can decide EPR!

VC Generator

Unique leader

Skolemization

• Procedure that transforms
a first order formula  over vocabulary V=<S, C, R, F> into
a universal formula Sk() over vocabulary V’=<S, C ∪ C’, R, F∪ F’>
•  is satisfiable  Sk() is satisfiable

• Example
•X: S1. y:S2. r(X, Y) q(Y)

= SAT

X: S1. r(X, f (X)) q(f (X))

Why is SMT undecidable?
• Theories

• 2 X4 + 5  X2 –3  X + 2 = 0

• Quantifier-alternation and function symbols (cycles)
• x: N. y: N. x < y

• x: N. x < f(x)

• x: A. y: B. Q(x, y)  z: B. w: A. P(z, w)

• x: A. Q(x, h(x))  z: B. P(z, g(z))
h: A B and g: B A

N

f

A B

h

g

Also happens without theories

Infinite Structures

• x. le(x, x) Reflexive

• x, y, z. le(x, y)le(y, x)  le(x,z) Transitive

• x, y. le(x, y)le(y, x)  x=y Antisymmetric

• x,y. le(x, y)le(y,x) Total

• x. le(zero,x) Non-empty

• x. y. le(x, y)  x y Successor

For finite models validity is co-R.E.

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic

• No function symbols

• No theories

• Restricted quantifier prefix: ** φQ.F.

• No * *

EPR Sat

x, y.  z. r(x, z)  r(z, y)

=sat z . r(c1, z)  r(z, c2)

=sat(r(c1, c1)  r(c1, c2)) 
(r(c1, c2)  r(c2, c2))

=sat (P11  P12)  (P12  P22)

Skolem

Herbrand

SAT becomes undecidable

• x. le(x, x) Reflexive

• x, y, z. le(x, y)le(y, z)  le(x, z) Transitive

• x, y. le(x, y)le(y, x)  x=y Antisymmetric

• x,y. le(x, y)le(y, x) Total

• x. le(zero,x) Non-empty

• x. y. le(x, y)  x y Successor

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic w/o theories

• No function symbols

• Restricted quantifier prefix: ** φQ.F.

• No * *

• Small model property

• A formula is satisfiable iff it is holds on models

of size (number of constant symbols +

existential variables)

Decidable Fragments in Ivy

• EPR

• EPR++ allow acyclic function and quantifier alternations

• E.g., f:A->B, so cannot have g:B->A

• Maintains small model property of EPR

• Finite complete instantiations

• QFLIA – Quantifier Free Linear Integer Arithmetic

• FAU – Finite Almost Uninterpreted [CAV’07]

• Allow limited arithmetic + acyclic quantifier alternations

• Maintains finite complete instantiations

[CAV’07] Ge & de Moura: Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories

EPR++ based verification

Predictiblity

• Decidable inductiveness check

• Finite counterexamples
• Can be minimized

• Easy to display graphically

• Arbitrary first order updates

• No more butterfly effect

Challenges

• Expressiveness of first order
logic
• Paths

• Sets & Cardinalities

• Quantifier alternation cycles

• Not closed under conjunction
and negation

• Gap to low level implementation

First-order axiomatization of ring paths

• Cannot express in first-order from “next” relation!

• Key enabler: use btw and not next

relation btw (Node, Node, Node)

axiom x, y, z: Node. btw(x, y, z) →btw(y, z, x) circular

axiom x, y, z, w: Node. btw(w, x, y) ∧ btw(w, y, z) → btw(w, x, z) transitive

axiom x, y, w: Node. btw(w, x, y) → btw(w, y, x) anti-symmetric

axiom x, y, w: Node. (w, x, y) → btw(w, x, y) ∨ btw(w, y, x) total

macro “next(a)=b”  x: Node. x=a  x=b  btw(a,b,x) edges

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pending(id[n2], n1) → id[n3]  id[n2]

Cannot bypass higher nodes

Key idea: representing deterministic paths

Alternative 1: maintain 𝑠
• ≤ defined by transitive closure of 𝑠
• not definable in first-order logic

Alternative 2: maintain ≤
• 𝑠 defined by transitive reduction of ≤
• Unique due to out degree 1
• Definable in first order logic

"s(x)=y" ≡ 𝑥 < 𝑦 ∧ ∀𝑧. 𝑥 < 𝑧 → 𝑦 ≤ 𝑧
"x<y" ≡ 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦

Not first order expressible

First order expressible

≤  btw𝑠

≤≡ 𝑠∗

𝑠

𝑠

𝑠𝑠

𝑠 ≤

[Itzhaky SIGPLAN Dissertation Award 2016]

For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula – 1 universal quantifier

• Update formulas for node / edge addition and removal – universally quantified

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of deterministic paths

Line
≤ (𝑥, 𝑦)

Ring
𝑏𝑡𝑤(𝑥, 𝑦, 𝑧)

Forest, Tree,
Acyclic partial function

≤ (𝑥, 𝑦)

Graph with out degree 1,
General partial function

𝑝(𝑥, 𝑦, 𝑧)

≤

For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula – 1 universal quantifier

• Update formulas for node / edge addition and removal – universally quantified

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of deterministic paths

Line
≤ (𝑥, 𝑦)

Ring
𝑏𝑡𝑤(𝑥, 𝑦, 𝑧)

Forest, Tree,
Acyclic partial function

≤ (𝑥, 𝑦)

Graph with out degree 1,
General partial function

𝑝(𝑥, 𝑦, 𝑧)

EPR  finite model property
+ Completeness Thm. for finite structures
--

Sound and complete automatic
deductive verification

Parameterized toy leader election
• N processes choose a leader

0

1

2

• Process may request vote by broadcast

req

req

req

req

• Processes vote for a requester

vote 0
vote 0

• Process with majority of votes is leader

leader 0

leader 0

Prove: at most one leader

First-order expressiveness issues

• To prove the toy protocol, we need an inductive invariant

• Problem: cardinality reasoning

if votes 𝑝 >
all
2

then send leader(𝑝)

cardinality + arithmetic + uninterpreted + quantifiers = second order & undecidable!

• Solution: axiomatize cardinalities in first-order logic

∀𝑠, 𝑡.𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑠 ∧ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑡 → ∃𝑝. member 𝑝, 𝑠 ∧ member(𝑝, 𝑡)

An ADT for pid sets
datatype set(pid) = {

relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)

specification {
procedure empty ensures ∀𝑝.¬member(𝑝, s)
procedure add ensures ∀𝑝.member 𝑝, 𝑟 ↔ (member 𝑝, s ∨ 𝑝 = 𝑒)

property [maj] ∀𝑠, 𝑡.𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑠 ∧ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑡 → ∃𝑝. member 𝑝, 𝑠 ∧ member(𝑝, 𝑡)
}

}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj

Paxos

• Single decree Paxos – consensus
lets nodes make a common decision despite node crashes and packet loss

• Paxos family of protocols – state machine replication
variants for different tradeoffs, e.g., Fast Paxos is optimized for low
contention, Vertical Paxos is reconfigurable, etc.

• Pervasive approach to fault-tolerant distributed computing

• Google Chubby

• Amazon AWS

• VMware NSX

• Many more…

Inductive invariant of Paxos
safety property

invariant decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

proposals are unique per round

invariant proposal(R,V1) & proposal(R,V2) -> V1 = V2

only vote for proposed values

invariant vote(N,R,V) -> proposal(R,V)

decisions come from quorums of votes:

invariant forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

properties of one_b_max_vote

invariant one_b_max_vote(N,R2,none,V1) & ~le(R2,R1) -> ~vote(N,R1,V2)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,VO)

property of choosable and proposal

invariant ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left_rnd(N,R1) & ~vote(N,R1,V1)

property of one_b, left_rnd

invariant one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1)

Protocol
Model
[LOC]

Invariants
Verification
time [sec]

Paxos 85 11 2.2

Multi-Paxos 98 12 2.6

Vertical Paxos* 123 18 2.2

Fast Paxos* 117 17 6.2

Flexible Paxos 88 11 2.2

Stoppable Paxos* 132 16 5.4

Paxos made EPR: Proof size and verification time

*first mechanized verification
Abstraction and transformation to EPR reusable across all variants!

Protocol
Model
[LOC]

Invariants
Verification
time [sec]

Stoppable Paxos* 132 16 5.4

Impact First Order Abstraction

First-Order Logic approach now used at Ethereum Dev UG
From ~1500 LOC to ~150 LOC (Isabelle/HOL proof)

Closing the gap

• Reasoning about abstract protocols (designs)

• User provides axioms expressed in first order logic

• Not checked by the system

• Missing axioms can lead to false alarms

• Reasoning about implementations

• Abstract total order  concreter domain, e.g., integers

• Abstract sets with majorities  some data structure, e.g., arrays

• How can we verify that the user defined “axioms” are satisfied by the low-level
implementation?

• Solution: Modularity – wrap implementations in ADT’s

• Each module may use a different decidable theory

Ivy 2rd Principle: Scope Verification Conditions

• The user is responsible for breaking quantifier alternation cycles

• Also in designs

• Leverage modularity (natural for distributed protocols)

• Prove abstract protocol and use it as a lemma to prove concrete
implementation

• Sometimes functions are abstracted as relations

• Allow more behaviors

• Extract executable from the concrete implementation

• Axioms of the design must be fulfilled by the implementation

• Theories are adds-on

Modularity
Original system Original inductive argument

Original property

Separate Verification of each module

Incorrect
Finds bug

Correct
Finds proof

subsystem Partial
argument Property

Verification tool

An ADT for pid sets
datatype set(pid) = {

relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)

specification {
procedure empty ensures ∀𝑝.¬member(𝑝, s)
procedure add ensures ∀𝑝.member 𝑝, 𝑟 ↔ (member 𝑝, s ∨ 𝑝 = 𝑒)

property [maj] ∀𝑠, 𝑡.𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑠 ∧ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑡 → ∃𝑝. member 𝑝, 𝑠 ∧ member(𝑝, 𝑡)
}

}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj

Implementation of the set ADT
• Standard approach

• Implement operations sets using array representation
member(p, s) i. repr(s)[i] = p

• Define cardinality of sets as a recursive function ||: set int
• majority(s) |s| + |s| > |all|

• Prove lemma by induction on |all|

∀𝑠, 𝑡. 𝑠 + 𝑡 > all → ∃𝑝.𝑚𝑒𝑚𝑏𝑒𝑟 𝑝, 𝑠 ∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑝, 𝑡)

• The lemma implies property maj
• All the verification conditions are in EPR+++limited

arithmetic (FAU)

• Protocol state

voters: pid set

• Property maj

s, t: set. ∃p: pid. majority(s) majority(t)
member(p, s)member(p, t)

• Solution: Harness modularity

• Create an abstract protocol model that doesn’t use voters

• Prove an invariant using maj, then use this as a lemma to prove the concrete
protocol implementation

Quantifier alternation cycles

setpid

Quantifier
Alternation Cycle

Abstract protocol model

procedure vote(v : pid, n : pid) = {
require ∀ 𝑚.¬vote𝑑(v,𝑚);
voted(v,n) := true;

}

procedure make_leader(n : pid, s : set) = {
require majority(s);
require ∀𝑚.member 𝑚, s → voted(𝑚, n);
isleader(n) := true;
quorum := s;

}

• one leader: ∀𝑛,𝑚. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ∧ 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑚 → 𝑛 = 𝑚
• voted is a partial function: ∀p,𝑛,𝑚. voted(p,n) ∧ voted(p,m)→𝑛=𝑚
• leader has a quorum: ∀𝑛,𝑚. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ∧ 𝑚𝑒𝑚𝑏𝑒𝑟 𝑚, 𝑞𝑢𝑜𝑟𝑢𝑚 → 𝑣𝑜𝑡𝑒𝑑(𝑚, 𝑛)

Invariant:

Provable in EPR++

relation voted(pid, pid)
relation isleader(pid)
var quorum: set

Implementation
• Uses real network vote messages

• Decorated with ghost calls to abstract model

• Uses abstract mode invariant in proof

relation already_voted(pid)
handle req(p:pid, n:pid) {

if ¬already_voted p {
already_voted p := true;
send vote(p,n);
ghost abs.vote(p,n);

}
}

call to abstract model must satisfy precondition

In place of property maj, we use the one leader invariant of the abstract model
∀𝑝, 𝑛. 𝑎𝑏𝑠. 𝑣𝑜𝑡𝑒𝑑 𝑝, 𝑛 → 𝑎𝑙𝑟𝑒𝑎𝑑𝑦_𝑣𝑜𝑡𝑒𝑑 𝑝
∀𝑝, 𝑛. 𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑣𝑜𝑡𝑒 𝑝, 𝑛 ↔ 𝑎𝑏𝑠. 𝑣𝑜𝑡𝑒𝑑 𝑝, 𝑛
∀𝑛. 𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ↔ 𝑎𝑏𝑠. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛
…

Proof using Ivy/Z3

• For each module, we provide suitable inductive invariants

• Reduces the verification to EPR++ verification conditions
• the sub verification problems

• Each module’s VC’s in decidable fragment
• Support from Z3

• If not, Ivy gives us an explanation, for example a function cycle

• Z3 can quickly and reliably prove all the VC’s

Proof Length

Protocol System/Project LOC
manual

proof
Ratio

RAFT

Coq/Verdi 530 50,000 94

Ivy 560 200 0.36

MULTIPAXOS

Dafny/IronFleet 3000 12,000 4

Ivy 330 266 0.8

Verification Effort

Protocol System/Project Human Effort
Verification

Time

RAFT

Coq/Verdi 3.7 years -

Ivy
3 months

(from ground
up)

Few min

MULTIPAXOS

Dafny/IronFleet Several years 6hr in cloud

Ivy
1 month

(pre-verified
model)

few minutes on
laptop

Why do people hate First Order Logic?

61

Rants Ivy

Hard to understand and error prone Finite model property
Display models graphically

Too weak: Cannot express
Parity
Numeric
Quorums
Finiteness
Paths in a graph

First order interface
Total orders
Paths in deterministic graphs
Majorities

Theories as adds-on
First order imperative updates

Hard for automation
Satisfiability is undecidable
NP-complete for fixed size

Restrict to EPR++/FAU
Satisfiability is NEXPTIME complete/2

Support from Yices, Z3, Iprover, Vampire

Languages and Inductiveness

Language Executable Expressiveness Inductiveness

C, Java, Python…  Turing-Complete Undecidable

SMV  Finite-state Temporal Properties

TLA+  Turing-Complete Manual

Coq, Isabelle/HOL  “Turing-Complete” Manual with tactics

Dafny  Turing-Complete
Undecidable with
lemmas

Ivy  Turing-Complete Decidable(EPR++/FAU)

State of the art in formal verification
Ex

p
re

ss
iv

en
e

ss

Automation

Proof Assistants

Ultimately limited by human

proof/code:

Verdi: ~10

IronFleet: ~4

Decidable Models
Model Checking
Static Analysis

Ultimately limited by undecidability

Ivy
Decidable deduction

Finite counterexamples

proof/code: ~0.2

Backup Slides

Inductive Invariant checking vs. inference

Safety Prop.
¬𝐵𝑎𝑑

Invariant Checking
Is 𝐼𝑛𝑣 an inductive invariant

for 𝐼𝑛𝑖𝑡, 𝑇𝑅, 𝐵𝑎𝑑 ?

Counterexample Proof

System S
𝐼𝑛𝑖𝑡, 𝑇𝑅

Inductive
Invariant 𝐼𝑛𝑣

Unknown

Safety Prop.
¬𝐵𝑎𝑑

Invariant Inference
Is there 𝐼𝑛𝑣 ∈ 𝐿 inductive

invariant for 𝐼𝑛𝑖𝑡, 𝑇𝑅, 𝐵𝑎𝑑 ?

No 𝐼𝑛𝑣 + Proof

System S
𝐼𝑛𝑖𝑡, 𝑇𝑅

Language 𝐿

Unknown

Relaxed error traces

• Notation:  ⊑ ’ iff  is isomorphic to a substructure of ’

•  ⊑ ’ implies  satisfies more universal sentences than ’

•  ⊑ ’, ψ∈∀∗, ’⊨ψ ⇒ ⊨ψ

• Relaxed error trace: 1, 2,…,N s.t.
1 ⊨ Init N ⊨ Bad i ,i+1 ⊨ TR or i+1 ⊑ i

If there is a universal inductive invariant Inv ∈ ∀∗, then a relaxed error trace cannot exist
 A relaxed error trace implies no universal inductive invariant exists

Bad

Init
…1 2

3

4

N

TR TR

TR

TR

⊑ ⊑ ⊑

⊑

Key Idea: reduction to safety

Liveness ⇔ No Lasso

Finite State

Key Idea: reduction to safety

Liveness ⇔ No Lasso Liveness ⇐ No Lasso
Problem: Spurious Lasso

Infinite StateFinite State

Infinite State

Key Idea: reduction to safety

Dynamic Abstraction [POPL’18]

Liveness ⇔ No Lasso Liveness ⇐ No Lasso
Problem: Spurious Lasso

Finite State

Defined using
First-Order Logic

