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Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient
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What about correctness of the low level implementation?



Verification
Is there a behavior

of 𝑆 that violates 𝜑?

Counterexample Proof 

Automatic verification of infinite-state systems

Property 𝜑System 𝑆

Unknown / Diverge

Rice’s Theorem

I can’t decide!



Counterexample to Induction Proof 

Deductive verification

Property 𝜑System 𝑆 Inductive argument 𝐼𝑛𝑣

Deductive Verification
1) Is  𝐼𝑛𝑣 an inductive invariant for 𝑆?

2) Does Inv enatil 𝜑 ?

Unknown / Diverge



Inductive invariants

System State Space Safety 
Property

𝐵𝑎𝑑

𝐼𝑛𝑖𝑡

𝑅𝑒𝑎𝑐ℎ

System 𝑆 is safe if all the reachable states satisfy the property 𝜑 = ¬𝐵𝑎𝑑



Inductive invariants

System State Space Safety 
Property

𝐵𝑎𝑑𝐼𝑛𝑣

𝐼𝑛𝑖𝑡

System 𝑆 is safe iff there exists an inductive invariant 𝐼𝑛𝑣 :

𝑇𝑅

𝑇𝑅

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

𝑅𝑒𝑎𝑐ℎ

𝑇𝑅

System 𝑆 is safe if all the reachable states satisfy the property 𝜑 = ¬𝐵𝑎𝑑



Logic-based deductive verification

• Represent 𝐼𝑛𝑖𝑡, →, 𝐵𝑎𝑑, 𝐼𝑛𝑣 by logical formulas

• Formula  Set of states

• Automated solvers for logical satisfiability made huge progress

• Propositional logic (SAT) – industrial impact for hardware verification

• First-order theorem provers

• Satisfiability modulo theories (SMT) – major trend in software verification



Deductive verification by reductions to
First Order Logic

Safety Property Bad(V)

Counterexample to Induction (CTI) Proof 

Protocol
Init(V), Tr(V, V’)

Front-End

1) SAT(Init(V) Inv(V))?
2) SAT(Inv(V) Tr(V, V’)  Inv(V’))?

3)SAT(Inv(X) Bad(V))?

First Order SAT Solver

Loop Invariant Inv(V)

Y N

?



Challenges in deductive verification

• Formal specification 

• Modeling the system and property in a logical formalism

• Checking inductiveness

• Undecidability of satisfiability checking (unbounded state, arithmetic)

• Inference: finding inductive invariants [PLDI’16, POPL’16, JACM’17]

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
Ivy: Safety Verification by Interactive Generalization

[POPL’16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[JACM’17] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, Sharon Shoham:
Property-Directed Inference of Universal Invariants or Proving Their Absence



Proving distributed systems is hard

Verdi
Verification of Raft in Coq

50,000 lines of manual proof

IronFleet
Verification of Multi-Paxos in Dafny
12,000 lines and 3.7 person-years

Uses solver for undecidable SMT checks

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct

[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems



SAT Modulu Theory (SMT)

• Extend first order logic with theories
• Linear arithmetic   X:Z. 3X + 2  = 0
• Bitvectors
• Theory of arrays
• …

• Hides complexity from the user
• Works in many cases 

• Great tools: Yices, Z3, CVC, Boolector, …

• Essential in Dafny, Sage, Klee, Rossete, F*, ….

• But unpredictable!
• Can fail on tiny inputs
• Tuning requires knowledge in the heuristics
• The butterfly effect 



Ivy’s 1st Principle: First Order Abstraction

• Abstracts states as finite (uninterpreted) first order structures

• Unbounded relations

• No other data structures

• Abstract integers, sets, cardinalities, …

• Arbitrary loops and procedures

• Express program meaning as  first order transition systems:

• r(X, Y) := Z. p(X, Z)  q(Z, Y) X, Y. r’(X, Y)  Z. p(X, Z)  q(Z, Y)

• “A step towards decidability”

− Theories
+ Quantifiers



Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if 
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

• Inductive?
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[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes
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Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if 
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

• Inductive? 
• Undecidable to check inductiveness

• Unbounded nodes, messages
• Arithmetic
• Transitive closure

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes
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Modeling in first-order logic
State: finite first-order structure over vocabulary V :

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1
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Specify and verify the protocol for any number of nodes in the ring



Modeling in first-order logic

• State: finite first-order structure over vocabulary V (+ axioms)

• Initial states and safety property expressed as formulas:

• Init(V) – initial states, e.g.,  ∀ x,y .¬pending(x,y)

• Bad(V) – bad states, e.g.,    ∃ n1,n2. leader(n1) ∧ leader n2 ∧ n1≠n2

• Transition relation expressed as formula TR(V, V’), e.g.:

• ∃n,s. “s = next(n)”∧ ∀x,y. pending’(x,y)↔ (pending(x,y) ∨ (x=id[n]∧y=s))

• ∃n. pending (id[n],n) ∧ ∀x. leader’(x) ⟷ (leader(x) ∨ x=n)



Deductive verification by reductions to EPR

EPR Safety Property Bad(X)

Counterexample to Induction (CTI) Proof 

EPR Protocol
Init(V), Tr(V, V’)

Front-End

1) SAT(Init(V) Inv(V))?
2) SAT(Inv(V) Tr(V, V’)  Inv(V’))?

3)SAT(Inv(X) Bad(V))?

EPR Solver

EPR Loop Invariant Inv(X)

Y N



I1 = n1,n2: Node. leader(n2) → id[n1]  id[n2]

I2 = n1,n2: Node. pending(id[n2],n2) → id[n1]  id[n2]

The leader has the highest ID

Only the leader can be self-pending

Leader election protocol – inductive invariant 
take 1

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

EPR Solver
𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉

𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

I can decide EPR!

VC Generator

Yes/Counterexample

Inductive invariant: 𝐼𝑛𝑣 = I0  I1  I2
I0 = n1,n2: Node. leader(n1) leader(n2) → n1 = n2 Unique leader



Leader Protocol 𝐼𝑛𝑣 = I0 I1 I2

rcv(1, id(2))

I0I1 I2  I2



1
 L

next

2
L

next
id id

pnd

3
L



id
next



1
 L

next

2
L

next
id id

pnd

3
L



id
next

Check Inductiveness

CTI

EPR

Ivy: check inductiveness 



Inductive invariant: 𝐼𝑛𝑣 = I0  I1  I2  I3

I0 = n1,n2: Node. leader(n1) leader(n2) → n1 = n2

I1 = n1,n2: Node. leader(n2) → id[n1]  id[n2]

I2 = n1,n2: Node. pending(id[n2],n2) → id[n1]  id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pending(id[n2], n1) → id[n3]  id[n2]

The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

EPR Solver
𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉

𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

Proof

I can decide EPR!

VC Generator

Unique leader



Skolemization

• Procedure that transforms 
a first order formula  over vocabulary V=<S, C, R, F> into 
a universal formula Sk() over vocabulary V’=<S, C ∪ C’, R, F∪ F’>
•  is satisfiable  Sk() is satisfiable

• Example
•X: S1. y:S2. r(X, Y) q(Y) 

= SAT

X: S1. r(X, f (X)) q(f (X)) 



Why is SMT undecidable?
• Theories

• 2 X4 + 5  X2 –3  X + 2 = 0

• Quantifier-alternation and function symbols (cycles)
• x: N. y: N. x < y

• x: N. x <  f(x)

• x: A. y: B. Q(x, y)  z: B. w: A. P(z, w)

• x: A. Q(x, h(x))  z: B. P(z, g(z))  
h: A B and g: B A

N

f

A B

h

g

Also happens without theories



Infinite Structures

• x. le(x, x)                                                            Reflexive

• x, y, z. le(x, y)le(y, x)  le(x,z)                     Transitive

• x, y. le(x, y)le(y, x)  x=y                              Antisymmetric

• x,y. le(x, y)le(y,x)                                            Total

• x. le(zero,x)                                                       Non-empty

• x. y. le(x, y)  x y                                           Successor

For finite models validity is co-R.E.



Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic

• No function symbols

• No theories

• Restricted quantifier prefix: ** φQ.F.

• No * *



EPR Sat

x, y.  z. r(x, z)  r(z, y)

=sat z .  r(c1, z)  r(z, c2) 

=sat(r(c1, c1)  r(c1, c2)) 
(r(c1, c2)  r(c2, c2))

=sat (P11  P12)  (P12  P22)

Skolem

Herbrand



SAT becomes undecidable

• x. le(x, x)                                                   Reflexive

• x, y, z. le(x, y)le(y, z)  le(x, z)           Transitive

• x, y. le(x, y)le(y, x)  x=y                     Antisymmetric

• x,y. le(x, y)le(y, x)                                   Total

• x. le(zero,x)                                              Non-empty

• x. y. le(x, y)  x y                                  Successor 



Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic w/o theories

• No function symbols

• Restricted quantifier prefix: ** φQ.F.

• No * *

• Small model property

• A formula is satisfiable iff it is holds on models 

of size (number of constant symbols + 

existential variables)



Decidable Fragments in Ivy

• EPR

• EPR++ allow acyclic function and quantifier alternations

• E.g., f:A->B, so cannot have g:B->A

• Maintains small model property of EPR

• Finite complete instantiations

• QFLIA – Quantifier Free Linear Integer Arithmetic

• FAU – Finite Almost Uninterpreted [CAV’07]

• Allow limited arithmetic + acyclic quantifier alternations

• Maintains finite complete instantiations

[CAV’07] Ge & de Moura: Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories



EPR++ based verification

Predictiblity

• Decidable inductiveness check 

• Finite counterexamples
• Can be minimized

• Easy to display graphically

• Arbitrary first order updates

• No more butterfly effect 

Challenges

• Expressiveness of first order 
logic
• Paths

• Sets & Cardinalities

• Quantifier alternation cycles

• Not closed under conjunction 
and negation

• Gap to low level implementation



First-order axiomatization of ring paths

• Cannot express in first-order from “next” relation!

• Key enabler: use btw and not next

relation btw (Node, Node, Node)

axiom x, y, z: Node. btw(x, y, z) →btw(y, z, x)  circular

axiom x, y, z, w: Node. btw(w, x, y) ∧ btw(w, y, z) → btw(w, x, z) transitive

axiom x, y, w: Node. btw(w, x, y) → btw(w, y, x) anti-symmetric

axiom x, y, w: Node. (w, x, y) → btw(w, x, y) ∨ btw(w, y, x) total

macro “next(a)=b”  x: Node. x=a  x=b  btw(a,b,x) edges

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pending(id[n2], n1) → id[n3]  id[n2]

Cannot bypass higher nodes



Key idea: representing deterministic paths

Alternative 1: maintain 𝑠
• ≤ defined by transitive closure of 𝑠
• not definable in first-order logic

Alternative 2: maintain ≤
• 𝑠 defined by transitive reduction of ≤
• Unique due to out degree 1
• Definable in first order logic

"s(x)=y" ≡ 𝑥 < 𝑦 ∧ ∀𝑧. 𝑥 < 𝑧 → 𝑦 ≤ 𝑧
"x<y" ≡ 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦

Not first order expressible

First order expressible

≤  btw𝑠

≤≡ 𝑠∗

𝑠

𝑠

𝑠𝑠

𝑠 ≤

[Itzhaky SIGPLAN Dissertation Award 2016]



For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula – 1 universal quantifier

• Update formulas for node / edge addition and removal – universally quantified

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of deterministic paths 

Line
≤ (𝑥, 𝑦)

Ring
𝑏𝑡𝑤(𝑥, 𝑦, 𝑧)

Forest, Tree,
Acyclic partial function

≤ (𝑥, 𝑦)

Graph with out degree 1, 
General partial function

𝑝(𝑥, 𝑦, 𝑧)

≤



For every class C of finite graphs above:

• Axioms for path relation – universally quantified

• Successor formula – 1 universal quantifier

• Update formulas for node / edge addition and removal – universally quantified

• Soundness Theorem Every graph of class C satisfies the axioms of C
Edges agree with successor formula

• Completeness Theorem Every finite structure satisfying the axioms of C is
isomorphic (paths and edges) to a graph of class C

Sound and complete* axiomatization of deterministic paths 

Line
≤ (𝑥, 𝑦)

Ring
𝑏𝑡𝑤(𝑥, 𝑦, 𝑧)

Forest, Tree,
Acyclic partial function

≤ (𝑥, 𝑦)

Graph with out degree 1, 
General partial function

𝑝(𝑥, 𝑦, 𝑧)

EPR  finite model property
+ Completeness Thm. for finite structures
--------------------------------------------------------

Sound and complete automatic
deductive verification



Parameterized toy leader election
• N processes choose a leader

0

1

2

• Process may request vote by broadcast 

req

req

req

req

• Processes vote for a requester

vote 0
vote 0

• Process with majority of votes is leader

leader 0

leader 0

Prove: at most one leader



First-order expressiveness issues

• To prove the toy protocol, we need an inductive invariant

• Problem: cardinality reasoning

if   votes 𝑝 >
all
2

then send leader(𝑝) 

cardinality + arithmetic + uninterpreted + quantifiers = second order & undecidable!

• Solution: axiomatize cardinalities in first-order logic

∀𝑠, 𝑡.𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑠 ∧ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑡 → ∃𝑝. member 𝑝, 𝑠 ∧ member(𝑝, 𝑡)



An ADT for pid sets
datatype set(pid) = {

relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)

specification {
procedure empty ensures ∀𝑝.¬member(𝑝, s)
procedure add ensures ∀𝑝.member 𝑝, 𝑟 ↔ (member 𝑝, s ∨ 𝑝 = 𝑒)

property [maj] ∀𝑠, 𝑡.𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑠 ∧ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑡 → ∃𝑝. member 𝑝, 𝑠 ∧ member(𝑝, 𝑡)
}

}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj



Paxos

• Single decree Paxos – consensus
lets nodes make a common decision despite node crashes and packet loss

• Paxos family of protocols – state machine replication
variants for different tradeoffs, e.g., Fast Paxos is optimized for low 
contention, Vertical Paxos is reconfigurable, etc. 

• Pervasive approach to fault-tolerant distributed computing

• Google Chubby

• Amazon AWS

• VMware NSX

• Many more…



Inductive invariant of Paxos
# safety property

invariant decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

# proposals are unique per round

invariant proposal(R,V1) & proposal(R,V2) -> V1 = V2

# only vote for proposed values

invariant vote(N,R,V) -> proposal(R,V)

# decisions come from quorums of votes:

invariant forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

# properties of one_b_max_vote

invariant one_b_max_vote(N,R2,none,V1) & ~le(R2,R1) -> ~vote(N,R1,V2)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

invariant one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,VO)

# property of choosable and proposal

invariant ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left_rnd(N,R1) & ~vote(N,R1,V1)

# property of one_b, left_rnd

invariant one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1)



Protocol
Model
[LOC]

Invariants
Verification
time [sec]

Paxos 85 11 2.2

Multi-Paxos 98 12 2.6

Vertical Paxos* 123 18 2.2

Fast Paxos* 117 17 6.2

Flexible Paxos 88 11 2.2

Stoppable Paxos* 132 16 5.4

Paxos made EPR: Proof size and verification time

*first mechanized verification
Abstraction and transformation to EPR reusable across all variants!





Protocol
Model
[LOC]

Invariants
Verification
time [sec]

Stoppable Paxos* 132 16 5.4



Impact First Order Abstraction

First-Order Logic approach now used at Ethereum Dev UG
From ~1500 LOC to ~150 LOC (Isabelle/HOL proof)



Closing the gap

• Reasoning about abstract protocols (designs)

• User provides axioms expressed in first order logic

• Not checked by the system

• Missing axioms can lead to false alarms

• Reasoning about implementations

• Abstract total order  concreter domain, e.g., integers

• Abstract sets with majorities  some data structure, e.g., arrays

• How can we verify that the user defined “axioms” are satisfied by the low-level 
implementation?

• Solution: Modularity – wrap implementations in ADT’s

• Each module may use a different decidable theory



Ivy 2rd Principle: Scope Verification Conditions

• The user is responsible for breaking quantifier alternation cycles

• Also in designs

• Leverage modularity (natural for distributed protocols)

• Prove abstract protocol and use it as a lemma to prove concrete 
implementation

• Sometimes functions are abstracted as relations

• Allow more behaviors

• Extract executable from the concrete implementation

• Axioms of the design must be fulfilled by the implementation

• Theories are adds-on



Modularity
Original system Original inductive argument

Original property



Separate Verification of each module

Incorrect
Finds bug

Correct
Finds proof 

subsystem Partial 
argument Property

Verification tool



An ADT for pid sets
datatype set(pid) = {

relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)

specification {
procedure empty ensures ∀𝑝.¬member(𝑝, s)
procedure add ensures ∀𝑝.member 𝑝, 𝑟 ↔ (member 𝑝, s ∨ 𝑝 = 𝑒)

property [maj] ∀𝑠, 𝑡.𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑠 ∧ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑡 → ∃𝑝. member 𝑝, 𝑠 ∧ member(𝑝, 𝑡)
}

}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj



Implementation of the set ADT
• Standard approach

• Implement operations sets using array representation
member(p, s) i. repr(s)[i] = p

• Define cardinality of sets as a recursive function ||: set int
• majority(s) |s| + |s| > |all|

• Prove lemma by induction on |all|

∀𝑠, 𝑡. 𝑠 + 𝑡 > all → ∃𝑝.𝑚𝑒𝑚𝑏𝑒𝑟 𝑝, 𝑠 ∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑝, 𝑡)

• The lemma implies property maj
• All the verification conditions are in EPR+++limited 

arithmetic (FAU)



• Protocol state 

voters: pid set

• Property maj

s, t: set. ∃p: pid.  majority(s) majority(t)
member(p, s)member(p, t)

• Solution: Harness modularity

• Create an abstract protocol model that doesn’t use voters

• Prove an invariant using maj, then use this as a lemma to prove the concrete 
protocol implementation

Quantifier alternation cycles

setpid

Quantifier 
Alternation Cycle



Abstract protocol model

procedure vote(v : pid, n : pid) = {
require ∀ 𝑚.¬vote𝑑(v,𝑚);
voted(v,n) := true;

}

procedure make_leader(n : pid, s : set) = {
require majority(s);
require ∀𝑚.member 𝑚, s → voted(𝑚, n);
isleader(n) := true;
quorum := s;

}

• one leader: ∀𝑛,𝑚. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ∧ 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑚 → 𝑛 = 𝑚
• voted is a partial function: ∀p,𝑛,𝑚. voted(p,n) ∧ voted(p,m)→𝑛=𝑚
• leader has a quorum: ∀𝑛,𝑚. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ∧ 𝑚𝑒𝑚𝑏𝑒𝑟 𝑚, 𝑞𝑢𝑜𝑟𝑢𝑚 → 𝑣𝑜𝑡𝑒𝑑(𝑚, 𝑛)

Invariant:

Provable in  EPR++

relation voted(pid, pid)
relation isleader(pid)
var quorum: set



Implementation
• Uses real network vote messages

• Decorated with ghost calls to abstract model

• Uses abstract mode invariant in proof

relation already_voted(pid)
handle req(p:pid, n:pid) {

if ¬already_voted p {
already_voted p := true;
send vote(p,n);
ghost abs.vote(p,n);

}
}

call to abstract model must satisfy precondition

In place of property maj, we use the one leader invariant of the abstract model
∀𝑝, 𝑛. 𝑎𝑏𝑠. 𝑣𝑜𝑡𝑒𝑑 𝑝, 𝑛 → 𝑎𝑙𝑟𝑒𝑎𝑑𝑦_𝑣𝑜𝑡𝑒𝑑 𝑝
∀𝑝, 𝑛. 𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑣𝑜𝑡𝑒 𝑝, 𝑛 ↔ 𝑎𝑏𝑠. 𝑣𝑜𝑡𝑒𝑑 𝑝, 𝑛
∀𝑛. 𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ↔ 𝑎𝑏𝑠. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛
…



Proof using Ivy/Z3

• For each module, we provide suitable inductive invariants

• Reduces the verification to EPR++ verification conditions 
• the sub verification problems

• Each module’s VC’s in decidable fragment 
• Support from Z3

• If not, Ivy gives us an explanation, for example a function cycle

• Z3 can quickly and reliably prove all the VC’s



Proof Length

Protocol System/Project LOC
# manual 

proof
Ratio

RAFT

Coq/Verdi 530 50,000 94

Ivy 560 200 0.36

MULTIPAXOS

Dafny/IronFleet 3000 12,000 4

Ivy 330 266 0.8



Verification Effort

Protocol System/Project Human Effort
Verification 

Time

RAFT

Coq/Verdi 3.7 years -

Ivy
3 months

(from ground 
up)

Few min

MULTIPAXOS

Dafny/IronFleet Several years 6hr in cloud

Ivy
1 month

(pre-verified 
model)

few minutes on 
laptop



Why do people hate First Order Logic?

61

Rants Ivy

Hard to understand and error prone Finite model property
Display models graphically

Too weak: Cannot express 
Parity
Numeric
Quorums 
Finiteness
Paths in a graph

First order interface
Total orders
Paths in deterministic graphs
Majorities

Theories as adds-on
First order imperative updates

Hard for automation
Satisfiability is undecidable
NP-complete for fixed size

Restrict to EPR++/FAU
Satisfiability is NEXPTIME complete/2

Support from Yices, Z3, Iprover, Vampire



Languages and Inductiveness 

Language Executable Expressiveness Inductiveness

C, Java, Python…  Turing-Complete Undecidable

SMV  Finite-state Temporal Properties

TLA+  Turing-Complete Manual

Coq, Isabelle/HOL  “Turing-Complete” Manual with tactics

Dafny  Turing-Complete
Undecidable with 
lemmas

Ivy  Turing-Complete Decidable(EPR++/FAU)



State of the art in formal verification
Ex

p
re

ss
iv

en
e

ss

Automation

Proof Assistants

Ultimately limited by human

proof/code: 

Verdi: ~10

IronFleet: ~4

Decidable Models
Model Checking
Static Analysis

Ultimately limited by undecidability

Ivy
Decidable deduction

Finite counterexamples

proof/code: ~0.2



Backup Slides



Inductive Invariant checking vs. inference

Safety Prop.
¬𝐵𝑎𝑑

Invariant Checking
Is 𝐼𝑛𝑣 an inductive invariant

for 𝐼𝑛𝑖𝑡, 𝑇𝑅, 𝐵𝑎𝑑 ?

Counterexample Proof

System S
𝐼𝑛𝑖𝑡, 𝑇𝑅

Inductive
Invariant 𝐼𝑛𝑣

Unknown

Safety Prop.
¬𝐵𝑎𝑑

Invariant Inference
Is there 𝐼𝑛𝑣 ∈ 𝐿 inductive

invariant for 𝐼𝑛𝑖𝑡, 𝑇𝑅, 𝐵𝑎𝑑 ?

No 𝐼𝑛𝑣 + Proof

System S
𝐼𝑛𝑖𝑡, 𝑇𝑅

Language 𝐿

Unknown



Relaxed error traces

• Notation:  ⊑ ’ iff  is isomorphic to a substructure of ’

•  ⊑ ’ implies  satisfies more universal sentences than ’

•  ⊑ ’, ψ∈∀∗, ’⊨ψ ⇒ ⊨ψ

• Relaxed error trace: 1, 2,…,N s.t.
1 ⊨ Init N ⊨ Bad i ,i+1 ⊨ TR  or  i+1 ⊑ i

If there is a universal inductive invariant Inv ∈ ∀∗, then a relaxed error trace cannot exist
 A relaxed error trace implies no universal inductive invariant exists

Bad

Init
…1 2

3

4

N

TR TR

TR

TR

⊑ ⊑ ⊑

⊑



Key Idea: reduction to safety

Liveness ⇔ No Lasso

Finite State



Key Idea: reduction to safety

Liveness ⇔ No Lasso Liveness ⇐ No Lasso
Problem: Spurious Lasso

Infinite StateFinite State



Infinite State

Key Idea: reduction to safety

Dynamic Abstraction [POPL’18]

Liveness ⇔ No Lasso Liveness ⇐ No Lasso
Problem: Spurious Lasso

Finite State

Defined using
First-Order Logic


