
Ranking Abstractions

Aziem Chawdhary1, Byron Cook2, Sumit Gulwani2, Mooly Sagiv3, and
Hongseok Yang1

1 Queen Mary, University of London
2 Microsoft Research
3 Tel Aviv University

Abstract. We propose an abstract interpretation algorithm for proving that a pro-
gram terminates on all inputs. The algorithm uses a novel abstract domain which
uses ranking relations to conservatively represent relations between intermediate
program states. One of the attractive aspects of the algorithm is that it abstracts
information that is usually not important for proving termination such as program
invariants and yet it distinguishes between different reasons for termination which
are not usually maintained in existing abstract domains. We have implemented a
prototype of the algorithm and shown that in practice it is fast and precise.

1 Introduction

This paper develops sound algorithms for inferring that C programs terminate on all
possible inputs. The oldest trick in the book of termination proofs for programs (e.g.,
[18]) is the ranking function proof. In this method, we find a function p that maps
program states into a well-founded ordered set, such that p(σ) > p(σ′) whenever σ′ is
a state reachable from state σ.

Despite the enormous progress in synthesizing ranking functions (e.g., [3]), mod-
ern programming language features such as nested loops lead to non-linear behaviours
which make it hard to apply existing techniques to synthesize ranking functions in a
sound and precise way directly to the C code.

Recently, [17] introduced the disjunctive well-foundedness principle in order to split
the termination argument into multiple ranking relations, corresponding to different
situations in the program. The main idea is to use a finite set of ranking functions
r1, r2, . . . , rn each of which is well-founded, and to require in addition that the relation
between any two intermediate states in the program is included in one of the relations,
i.e.,

τ+ ⊆
n⋃
i=1

ri (1)

where τ is the transition system describing the meaning of the program and τ+ is the
non-reflexive transitive closure of τ . This principle localizes termination proofs by al-
lowing the use of simpler ranking function synthesizers to handle more complicated
termination proofs.

However, [17] leaves two open problems: (a) what is the best way to find the set
of ranking functions r1, r2, . . . , rn and (b) how to effectively check the condition in

Eq. 1. Notice that this is a safety question which can be attacked by any abstract inter-
preter [10]. However it may be expensive to check the condition by the abstract inter-
preter or the interpreter may fail due to imprecision.

In this paper we solve these two problems together in a novel way. The first problem
is solved by developing abstract domains which are parameterized by sets of ranking
functions. The meaning of each of the relations (ranking functions) overapproximates
the relations between intermediate states in the program. We employ standard itera-
tive fixpoint computations to compute a set of ranking functions or determine that the
program may diverge. The ranking synthesizer is invoked with larger and larger rela-
tions obtained by composing the current approximation with every possible command.
Notice that calling the ranking synthesizer allows us to abstract away information that
is not necessary for termination, but maintains enough distinctions between different
ranking functions. When a fixpoint is reached the condition in Eq. 1 is guaranteed to
hold and thus there is no need to perform the inclusion check above. The efficiency
provided by our domain is underlined by result which we prove, that, for a particular
base abstract domain, fixpoint calculations are guaranteed to converge, at most, in two
steps. For more refined domains we lose the guarantee of two, but in our experimental
results we find that fixpoints converge in few iterations.

Related Work Program termination has been studied extensively with many impres-
sive algorithms for automatically inferring termination for functional (e.g.,[13]), logic
(e.g., [6, 4]) and imperative programs (e.g., [3, 7, 19, 1]). The result in [17] encourages
the use of existing safety analyzers in order to prove termination (e.g., SLAM [7] or
Octagon [2]). The point of departure of this work is to define a new abstract domain,
designed with termination in mind, rather than to re-use existing domains for safety.
Termination analysis requires a precise treatment of disjunction, and information about
well-foundedness, and we suggest that domains which target these properties will be
more appropriate for termination analysis than domains designed for wholly other pur-
poses. Our work follows [7, 2] by employing the disjunctive well foundedness prin-
ciple [17] in order to split the termination argument into multiple ranking relations
corresponding to different situations in the program.

By tailoring our abstract domain to termination we obtain a very efficient termina-
tion prover for imperative programs. In particular it is faster than TERMINATOR, which
relies on SLAM [7], and variance analyses based on Octagon or Polyhedra [2]. The
variance analysis we describe in this paper uses rank functions natively, in contrast to
the non-native variance analyses proposed in [2] which were constructed from existing
domains for invariance. In contrast to [2] we directly abstract ranking relations which
allow us to be more precise in the cases where the underlying abstract domain used for
invariance analysis is too coarse (e.g., non-disjunctive) and our analysis can be more ef-
ficient when the underlying domain records complicated invariants that are not needed
for proving termination. In contrast to [7], we iteratively compute ranking functions
without the use of counterexample guided refinement.

Our abstract domain is related to the abstraction used in size-change termination
[13]. In both cases, program fragments are abstracted in terms of measures decreased
or preserved by the fragments. The major difference is that our domain contains only
those abstract elements that mean terminating program fragments (unless the elements

2

are >), whilst size-change termination analyses can have an (non->) abstract element
that denotes a diverging program fragment. As a result, size-change termination anal-
yses have to check whether (the concretization of) an abstracted program terminates,
whereas our analysis can skip this rather expensive checking.

2 Informal description of the analysis

In this section we informally describe the new analysis using an example. Later, in
Section 3, we provide a more formal description.

Consider the program:

1 while (x>0 ∧ y>0)
{

2 if (∗) then {x=x−1; y=∗; } else { y=y−1; }
3

}
This program illustrates the limitation of known termination analyses. The Octagon-
based and Polyhedra-based termination analyses from [2] can quickly (i.e. in 0.02s)
infer that the relation ‘x ≥ 0 ∧ ‘x ≥ x holds between any state at `=2 and any previ-
ous state at `=2, where ‘x and x denote previous and current values of x respectively.
(Note that ‘x is denoting some previous value of x, and not necessarily the last value).
Unfortunately, this relation is insufficient to prove termination of the loop, as it is not
(disjunctively) well-founded—the condition sufficient for proving termination as de-
scribed in [2].

In contrast TERMINATOR can prove the example terminating, but at a great cost
(16s). TERMINATOR finds the following disjunctively well-founded relation at `=2:

(‘x ≥ 0 ∧ ‘x−1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y−1 ≥ y)

To find this relation TERMINATOR performs three rounds of refinement on the rela-
tion itself and 9 rounds of abstraction/refinement for the checking of the 3 candidate
assertions, resulting in the discovery of 21 transition predicates.

The termination analysis in this paper gives us TERMINATOR’s accuracy at the
speed of the Octagon-based termination analysis. The new analysis finds the relation

(‘x ≥ 0 ∧ ‘x−1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y−1 ≥ y ∧ ‘x=x)

in 0.02s.
Concretely, the new analysis uses a disjunctive domain of ranking relations con-

joined with the information about unchanged variables. That is: disjunctions of relations
of the form Te ∧ VX , where

VX
def=

∧
x∈X

‘x=x, Te
def= ‘e ≥ 0 ∧ ‘e−1 ≥ e,

and ‘e is the expression e with all variables x replaced by their corresponding pre-
primed versions ‘x. Let R represent the transition relation of the loop body of our pro-
gram in DNF:

R
def= C1 ∨ C2,

C1
def= ‘x > 0 ∧ ‘y > 0 ∧ x=‘x−1, C2

def= ‘x > 0 ∧ ‘y > 0 ∧ x=‘x ∧ y=‘y−1.

3

Our analysis begins by taking each disjunct in R and performing rank-function synthe-
sis on it. In this case we get

RFS(C1) = x and RFS(C2) = y.

For each disjunct, the analysis also computes a set of variables whose values do
not change. In this example, it determines that C1 can change both x and y, but C2

does not change variable x. Thus, we begin our analysis with the initial abstract state
A0

def= Tx ∨ (Ty ∧ V{x}), that is,

A0 = (‘x ≥ 0 ∧ ‘x−1 ≥ x) ∨ (‘y ≥ 0 ∧ ‘y−1 ≥ y ∧ ‘x=x).

Note that A0 overapproximates the loop body R.
The meaning of this initial abstract state (i.e. γ(A0)) is set of all finite sequences of

program states sisi+1 . . . si+n such that(
si(x)≥0 ∧ si(x)−1≥si+n(x)

)
∨
(
si(y)≥0 ∧ si(y)−1≥si+n(y) ∧ si(x)=si+n(x)

)
.

The analysis then computes the next abstract state A1 that overapproximates the
relational composition of A0 and R. It takes each disjunction from A0 and each dis-
junction from R, composes them, performs rank function synthesis, infers variables
that do not change, and constructs the union of the new ranking relations together with
A0. In this case we find:

RFS(Tx;C1) = x RFS(Tx;C2) = x
RFS((Ty ∧ V{x});C1) = x RFS((Ty ∧ V{x});C2) = y

We also find that the last composition (Ty ∧ V{x};C2) does not change x. Thus,

A1 =
(
A0 ∨ Tx ∨ Tx ∨ Tx ∨ (Ty ∧ V{x})

)
= A0.

Since A0 is a fixpoint and A0 overapproximates R, we know that ∀i > 0. Ri ⊆ A0,
that is, R+ ⊆ A0. Thus, because A0 is disjunctively well-founded, [17] tells us that R
is well-founded—meaning that the loop of our program guarantees termination.

Note that rank function synthesis is extremely efficient, meaning that our implemen-
tation of the analysis can compute the relationA0 for ` = 2 as fast as the Octagon-based
termination analyzer (i.e. in 0.02s) [2]. In contrast to the Octagon-based analyzer, how-
ever, we compute a relation that is sufficiently strong to establish termination.

To sum up, the essence of our method is that we symbolically execute the body of
the loop, and then perform abstraction by calling a rank synthesis engine. This in effect
abstracts all information except those that are relevant to termination.

3 Formal description

In this section we provide a rigorous description of the proposed termination analysis.

4

3.1 Programming language

We consider a simple while language in the paper. Let Vars be a finite set of program
variables x, y, z, . . . and let r represent real numbers.

e ::= x | r | e+ e | r × e
b ::= e=e | e 6=e | b ∧ b | b ∨ b | ¬b
a ::= x:=e | x:=∗ | assume(b)
c ::= a | c; c | while b c | c [] c

Note that the language has two forms of assignments, normal assignment x:=e and
nondeterministic random assignment x:=∗. The nondeterministic assignment is used
to model some features of a common programming language, for example C, that are
not covered by our language above. Also notice that the language does not include the
conditional statement. It can be encoded with assume and the nondeterministic choice
operator []: (if b c0 c1)

def=
(
(assume(b); c0) [] (assume(¬b); c1)

)
.

The semantics of our language is standard. We remind the reader of only the storage
model used in the semantics:

St
def= Vars→ Real.

This model shows that we assume real variables in this paper. However, changing the
type of variables from reals to integers or rationals will not affect the results of the
paper, except the ones for the fast termination in Lemma 1 and Theorem 2.

3.2 Abstract domain

Our analysis is parameterized by a domain for representing relations on states. The
domain is specified by the following data:

1. A setD and a monotone function γr : D → P(St×St) (where the targetP(St×St)
is ordered by the subset relation).

2. An abstract identity element did in D, that satisfies

∆St ⊆ γr(did)

where ∆St is the identity relation on St.
3. An operator RFS : D → Pfin(D)] {>}, which synthesizes ranking functions. We

assume the following two conditions for this operator:
(a) RFS computes an overapproximation:

RFS(d)6=> =⇒ γr(d) ⊆
⋃
{γr(d′) | d′ ∈ RFS(d)}.

(b) RFS(d) denotes a well-founded relation:

RFS(d) 6=> =⇒
⋃
{γr(d′) | d′ ∈ RFS(d)} is well-founded.

5

4. An abstract transfer function trans(a) for each atomic commands a (i.e., assign-
ments or assume statements). The function trans(a) has type D → Pfin(D), and
satisfies

∀d ∈ D. (γr(d); [[a]]) ⊆
⋃
{γr(d′) | d′ ∈ trans(a)(d)}

where the semicolon means the usual composition of relations and [[a]] is the stan-
dard relational meaning of the atomic command a.

5. An abstract composition operator comp : D ×D → D such that

γr(d); γr(d′) ⊆ γr(comp(d, d′)).

Intuitively, the data above means that we have a set D of relations, some of which are
well-founded. This set comes with an algorithm RFS, which overapproximates a rela-
tion by a ranking relation. It also has operators, trans and comp, that soundly model
all the atomic commands and concrete relation composition. One example of D is the
set of conjunction of linear constraints. In this case, we can use a linear rank synthe-
sis engine, which we denote LINEARRANKSYN, and define RFS as will be shown in
Section 3.4.

The abstract domain A of our analyzer is:

A def= (Pfin(D))> (i.e., P(D)] {>}).

It is ordered by the the subset order v extended with >. That is, A v A′ iff

A′ = >, or (A,A′ ∈ Pfin(D) and A ⊆ A′).

Each abstract element A in A denotes a set of finite or infinite sequences of states,
which we call traces. The element > denotes the set of all traces, including infinite
ones, and non-> elements A denote a set of finite nonempty traces whose initial and
final states are related by some d in A. Let γr(A) be

⋃
{γr(d) | d ∈ A}, the disjunction

of d’s in A, and define T to be the set of all nonempty traces:

T def= St+ ∪ St∞.

The formal meaning of A is given by a concretization function γ:

γ : A → P(T)
γ(A) def= if (A=>) then T else {τ | τ is nonempty, finite, and τ0[γr(A)]τ|τ |−1}

where |τ | is the length of the trace τ , and τn is the n-th state of the trace τ , and notation
s[r]s′ means that s, s′ are related by r. For instance, when [x : n, y : m] is a state
mapping x and y to n and m, a finite trace

[x : 1, y : 1][x : 2, y : 2][x : 5, y : 3][x : −2, y : 2]

belongs to γ({‘x−1 ≥ x, ‘y−1 ≥ y}), because x has a smaller value in the final state
than in the initial state.

Our domain A is a complete semi-lattice. The join of a family {Ai}i∈I of elements
in A is given by the union of all Ai’s, if none of Ai’s is > and the union is finite.
Otherwise, the join is >.

6

3.3 Generic analysis

Our generic analyzer is an abstract interpretation, defined in a denotational style.
For functions f : D → A and g : D ×D → D, let f†, g† be their liftings on A:

f† : A → A g† : A×A → A
f†(A) def= if (A=>) then > else

⊔
d∈A f(d)

g†(A,B) def= if (A=>∨B=>) then > else
⊔
d∈A,d′∈B{g(d, d′)}.

Using these liftings, we define the generic analyzer as follows: 4

[[c]]# : A → A
[[a]]#A def= (trans(a))†A

[[c0; c1]]#A
def= ([[c1]]# ◦ [[c0]]#)A

[[c0 [] c1]]#A
def= [[c0]]#A t [[c1]]#A

[[while b c]]#A def= let F def= λA′.[[assume(b); c]]#({did} tA′) and As
def= {did} tA

in [[assume(¬b)]]#
(
comp†(As, fix (RFS† ◦ F))

)
Intuitively, the argument A represents a set of finite or infinite traces that happen before
the command c. The analyzer computes an overapproximation of all traces that are
obtained by continuing the execution of c from the end of traces in A.

Our definition assumes an operator fix. The fix operator takes a function of the form
RFS† ◦ F : A → A, and returns an abstract element A in the image of RFS† such that

A = > ∨
(
A 6= > ∧ (RFS† ◦ F)(A) 6= > ∧ γr((RFS† ◦ F)(A)) ⊆ γr(A)

)
.

One can use the standard fixpoint iteration to define fix,5 because the above condition
holds for all post fixpoints A of (RFS† ◦ F) (that are in the image of RFS†). However,
this is not mandatory. In fact, a more optimized fix operator is used in the analysis of
Section 3.4, which in some cases does not even compute a post fixpoint.

The most interesting case of the analysis is the loop. The best way to understand
this case is to assume that fix is the standard fixpoint operator and to see a sequence
generated during the iterative fixpoint computation:

A0 = {},
A1 = A0 t (RFS† ◦ F){did}

= (RFS† ◦ F){did}
A2 = A1 t (RFS† ◦ F)

(
{did} t (RFS† ◦ F){did}

)
= (RFS† ◦ F){did} t (RFS† ◦ F)2{did},

A3 = A2 t (RFS† ◦ F)
(
{did} t (RFS† ◦ F){did} t (RFS† ◦ F)2{did}

)
= (RFS† ◦ F){did} t (RFS† ◦ F)2{did} t (RFS† ◦ F)3{did},

. . .

4 In the definition, we view RFS, trans(a) as functions of type D → (Pfin(D))>.
5 In this case, fix (RFS† ◦ F) is defined by the limit of the sequence {An} where A0 = {} and
An+1 = An t (RFS† ◦ F)(An).

7

Here we used the fact that RFS† ◦ F preserves t. Note that in each step, we apply the
lifted rank-synthesis algorithm RFS† to the analysis result of the loop body F (An).
This application of RFS throws away all the information from F (An), except the one
necessary for proving termination. Another thing to note is that the inputA is not used in
this fixpoint computation at all. As the expansion ofA3 shows, the fixpoint computation
effectively starts with (RFS† ◦ F){did}, which means the results of running the loop
body once on all states. The input A, together with {did}, is pre-composed later to the
computed fixpoint. This change of the starting point is crucial for the soundness of our
analysis, because it ensures that the analyzer overapproximates the relation between
any states (not just initial states) at a loop and the following states at the same loop (so
that we can apply a known termination proof rule based on disjunctively well-founded
relations [17]).

Given a program c, the analyzer works as follows:

ANALYSIS(c) def= let A = [[c]]#({did})
in if (A 6=>) then (return “Terminates”) else (return “Unknown”).

Theorem 1. If ANALYSIS(c) returns “Terminates”, then c terminates on all states.

The proof of this theorem is given in the full version of the paper [5]. There we also clar-
ify what we mean by “terminates on all states”, by defining a concrete trace semantics
of commands based on Cousot’s work [9].

3.4 Linear Rank Abstraction

The linear rank abstraction is an instance of our generic analysis, by the domain of
linear constraints and a linear ranking synthesis algorithm LINEARRANKSYN

Let r represent real numbers. Consider constraintsC defined by the grammar below:

E ::= x | ‘x | x′ | r | E + E | r × E
P ::= E = E | E 6= E | E < E | E > E | E ≤ E | E ≥ E
C ::= P | true | C ∧ C

This grammar ensures that all the constraints are the conjunction of linear constraints.
Note that a constraint can have three kinds of variables; a normal variable x denoting the
current value of program variable x; a pre-primed variable ‘x storing the initial value
of x; post-primed variables y′ that usually denotes values which were once stored in
program variables during computation. We assume that there are finitely many normal
variables (Vars) and finitely many pre-primed variables (‘Vars), and that there is a one-
to-one correspondence between these two kinds of variables. For post-primed variables,
however, we assume an infinite set.

Each constraint means a relation on St. For each state s, let ‘s be a function from
‘Vars to Real such that for every pre-primed variable ‘x, ‘s(‘x) is s(x) for the corre-
sponding normal variable x. The meaning function γr of constraints C is defined as
follows:

γr(C) def= {(s0, s1) | (‘s0, s1 |= ∃X ′.C)}

8

whereX ′ is the set of post-primed variables inC and |= is the usual satisfaction relation
in first-order logic. Note that all post-primed variables in the constraint C are implicitly
existentially-quantified.

The linear rank abstraction uses the set of constraints C as the parameter set D of
the generic analysis. The identity element did is the identity relation

did
def=

∧
x∈Vars

‘x=x.

Assume that we are given an enumeration x0, . . . , xn of all program variables in
Vars. Call an expression E normalized, when (1) E does not contain any pre or post
primed variables and (2) it is of the form ai0 × xi0 + . . . aik × xik + a with ai0 = 1
or −1 and i0 < i1 . . . < ik. Note that in a normalized expression E, the coefficient
of the first variable in E according to the given enumeration is 1 or −1. Conceptually,
LINEARRANKSYN implements a function of the type:6

D → ({(E, r) | E is normalized and r is a positive real})] {>}.

The output > indicates that the algorithm fails to discover a ranking function, because
(the implementation of) the algorithm is incomplete or the input constraint defines
a non-well-founded relation between pre-primed variables and normal variables. The
other output (E, r) means that the algorithm succeeds to find a ranking function which
overapproximates the given constraint. Concretely, for a normalized expression E and
a positive real r, let

TE,r
def= (‘E ≥ 0 ∧ ‘E−r ≥ E),

where expression ‘E is E with all normal variables x replaced by corresponding pre-
primed variables ‘x. The output (E, r) of LINEARRANKSYN(C) means that

(∃X ′.C) =⇒ TE,r

where X ′ is the set of all post-primed variables in C.
Assume that we have chosen a fixed positive real dec for the analysis, which is very

small (in particular smaller than 1). Using LINEARRANKSYN and dec, we define the
operator RFS as follows:

RFS(C) def=

 {} if C ` false
{TE,dec} else if LINEARRANKSYN(C)=(E, r) and r ≥ dec
> otherwise

where ` is a sound (but not necessarily complete) theorem prover. Note that the result
of RFS is always of the form TE,dec, so the second subscript of T is not necessary. From
now on, we write TE for TE,dec.

6 Usually the implementation of linear rank synthesis returns a tuple (E, r, b) where E is an
expression without any pre or post primed variable whose value is decreasing, r is a decrement,
and b is a lower bound of E. Our analysis picks the absolute value a of the coefficient of the
first variable xi in E, transforms E/a to a normal form E′, and regards (E′− b/a, r/a) as an
output from LINEARRANKSYN.

9

The abstract transfer functions for atomic commands are defined following Floyd’s
strongest postcondition semantics:

[[x:=∗]]#C def= {C[x′/x]} (x′ is fresh)
[[x:=e]]#C def= {C[x′/x] ∧ x=(e[x′/x])} (x′ is fresh)

[[assume(b)]]#C def= if (C ∧ b ` false) then {}
else {C0, . . . , Cn | C0 ∨ . . . ∨ Cn = norm(C ∧ b)}.

Here norm is the standard transformation that takes a formula in the propositional logic
and transforms the formula to disjunctive normal form.

Next, we define the abstract composition comp. Let fresh be an operator on con-
straints C that renames all post-primed variables fresh. Let ‘Vars be the set of pre-
primed variables. The abstract composition is defined as follows

comp(C0, C1)
def= let

(
C2 = fresh(C1)

)
in
(
C0[Y ′/Vars] ∧ C2[Y ′/‘Vars]

)
.

The variable set Y ′ in the definition denotes a set of fresh post-primed variables, that
has as many elements as Vars. The two substitutions there replace a normal variable x
and the corresponding pre-primed variable ‘x by the same post-primed variable x′.

Finally, we specify a fix operator. For each function (RFS†◦F) on sets of constraints
C, let {Gn}n be the standard fixpoint iteration sequence: G0 = {} and Gn+1 = Gn t
(RFS† ◦ F)(Gn). Given G, our fix operator returns the first Gn such that

Gn=> ∨
(
Gn 6=> ∧ Gn+1 6=> ∧ ∀C ∈ Gn+1.∃C ′ ∈ Gn. C ` C ′

)
.

This definition assumes that someGn satisfies the above property. If such aGn does not
exist, the fix operator is not defined, so the analysis can diverge during the fixpoint com-
putation. In Theorem 2, we will discharge this assumption and prove the termination of
the linear rank abstraction.

Example 1. Consider the program c below:

while (x > 0 ∧ y > 0) (x:=x−1 [] y:=y−1).

Given c, the analysis starts the fixpoint computation from the empty set A0 = {}.
The first iteration of the fixpoint computation is done in two steps. First, it applies the
abstract transfer function of the loop body to {did} ∪A0 = {did}:

[[assume(x>0∧y>0); (x:=x−1 [] y:=y−1)]]#({did})
= [[x:=x−1 [] y:=y−1]]#{did ∧x>0∧ y>0}
= [[x:=x−1]]#{did ∧x>0∧ y>0} ∪ [[y:=y−1]]#{did ∧x>0∧ y>0}
= [[x:=x−1]]#{‘x=x∧‘y=y ∧x>0∧ y>0} ∪ [[y:=y−1]]#{‘x=x∧‘y=y ∧x>0∧ y>0}
= {‘x=x′ ∧‘y=y ∧x′>0∧ y>0∧x=x′−1, ‘x=x∧‘y=y′ ∧x>0∧ y′>0∧ y=y′−1}.

Next, the analysis calls LINEARRANKSYN twice with each of the two elements in the
result set above. These function calls return x and y, from which the analysis constructs

10

two ranking relations below:

Tx
def= (‘x≥ 0 ∧ ‘x−dec ≥ x) and Ty

def= (‘y≥ 0 ∧ ‘y−dec ≥ y).

The result A1 of the first iteration is {Tx, Ty}.
The second fixpoint iteration computes:

A1 t (RFS†◦[[assume(x>0 ∧ y>0); (x:=x−1 [] y:=y−1)]]#)A1.

We show that the abstract element on the right hand side of the join, denoted A′2, is
againA1, so that the fixpoint computation converges here. To computeA′2, the analyzer
first transforms A1 according to the abstract meaning of the loop body. This results in a
set with four elements:

{Tx[x′/x] ∧ x′>0 ∧ y>0 ∧ x=x′−1, Tx[y′/y] ∧ x>0 ∧ y′>0 ∧ y=y′−1,
Ty[x′/x] ∧ x′>0 ∧ y>0 ∧ x=x′−1, Ty[y′/y] ∧ x>0 ∧ y′>0 ∧ y=y′−1 }.

The first two elements come from transforming Tx according to the left and right
branches of the loop body. The other two elements are obtained similarly from Ty .
Next, the analysis calls LINEARRANKSYN with all the four elements above. These
four calls return x, x, y and y, which represent well-founded relations Tx, Tx, Ty, Ty .
Thus, A′2 is the same as Tx and Ty , and the fixpoint computation stops here.

After the fixpoint computation, the analysis composes the identity relation {did}
with the result of the fixpoint computation:

comp†({did}, {Tx, Ty}) = {‘x=x′0 ∧ ‘y=y′0 ∧Tx[x′0/‘x], ‘x=x′0 ∧ ‘y=y′0 ∧Ty[y′0/‘y]}
= {Tx, Ty}.

Finally, we apply [[assume(¬(x> 0∧ y > 0))]]# to the set above, which gives a set with
four constraints:

{ Tx ∧x≤ 0, Tx ∧ y≤ 0, Ty ∧x≤ 0, Ty ∧ y≤ 0 }.

Since the result is not>, the analysis concludes that the given program c terminates. �

In the example above, the fixpoint computation converges after two iterations. In the
first iteration, which computesA1, it finds ranking functions, and in the next iteration, it
confirms that the ranking functions are preserved by the loop. In fact, we can prove that
the fixpoint computation of the analysis always follows the same pattern, and finishes
in two iterations. Suppose that LINEARRANKSYN is well-behaved, such that

1. RFS always computes an optimal ranking function, in the sense that

(RFS(C) = {TE} ∧ γr(C) ⊆ γr(TE+b)) =⇒ b ≥ 0,

2. RFS depends only on the (relational) meaning of its argument.

Lemma 1. For all commands c and normalized expressions E, if there is a constraint
C ∈ [[c]]#{TE} such that RFS(C) = {TF } and γr(C) 6= ∅, then F is of the form E − b
for some nonnegative b.

11

Proof. The proof appears in the full version of this paper [5]. �

Theorem 2 (Fast Convergence). Suppose that the theorem prover ` is complete. Then,
for all commands c, the fixpoint iteration of

G = λA. (RFS† ◦ [[c]]#)({did} tA)

terminates at most in two steps. Specifically, G2({}) is >, or the result of fixG is {} or
G({}).

Proof. Suppose that G2({}) is not >. This implies that both G({}) and G2({}) are
finite sets of TE’s for normalized expressions E, because G(= RFS† ◦ [[c]]#) preserves
>. If G({}) is empty, {} is the fixpoint of G, thus becoming the result of fixG, as
claimed in the theorem. To prove the other nonempty case, suppose that G({}) is a
nonempty finite collection A = {TE1 , . . . , TEn

}. We need to show that for each TF
in G(A), there exists TEi

∈ A such that TF ` TEi
, which is equivalent to γr(TF) ⊆

γr(TEi
) due to the completeness assumption about the prover. Pick TF in G(A). Since

G(= RFS† ◦ [[c]]#) preserves the join operator, there exists TEi in A such that TF ∈
G({TEi}). This means that RFS(C) = {TF } for some constraint C in [[c]]#(TEi). Note
that since RFS filters out all the provably inconsistent constraints and the prover is
assumed complete, γr(C) is not empty. Thus, by Lemma 1, there is a nonnegative b
such that F = E − b. This gives the required γr(TF) ⊆ γr(TE). �

Note that the theorem suggests that we could have used a different fix operator that does
not call the prover at all and just returns G2({}). We do not take this alternative in the
paper, since it is too specific for the RFS operator in this section; if RFS also keeps track
of equality information, this two-step convergence result no longer holds.

Refinement with simple equalities The linear rank abstraction cannot prove the ter-
mination of the program in Section 2. When the linear rank abstraction is run for the
program, it finds the ranking functions x and y for the true and false branches of the
program, but loses the information that the else branch does not change the value of x,
which is crucial for the termination proof. As a result, the linear rank abstraction returns
>, and reports, incorrectly, the possibility of nontermination.

One way to solve this problem and improve the precision of the linear rank ab-
straction is to use a more precise RFS operator that additionally keeps simple forms
of equalities. Concretely, this refinement keeps all the definitions of the linear rank ab-
straction, except that it replaces the rank synthesizer RFS of the linear rank abstraction
by RFS′ below:

RFS′(C) def= if (RFS(C)=>) then > else
{
TE ∧ (∧(C ` ‘x=x)‘x=x) | TE ∈ RFS(C)

}
.

When this refined analysis is given the program in Section 2, it follows the informal
description in that section and proves the termination of the program.

12

4 Experimental evaluation

In order to evaluate the utility of our approach we have implemented the analysis in this
paper, and then compared it to several known termination tools. The tools used in the
experiments are as follows:

LR) LINEARRANKTERM is the new variance analysis that implements the linear rank
abstraction with simple equalities in Section 3.4. This tool is implemented using
CIL [15] allowing the analysis of programs written in C. However, no notion of
shape is used in these implementations, restricting the input to only arithmetic pro-
grams. The tool uses RANKFINDER [16] as its linear rank synthesis engine and uses
the Simplify prover [11] to filter out inconsistent states and check the implication
between abstract states.

O) OCTATERM is the variance analysis [2] induced by the octagon analysis OCTANAL
[14].

P) POLYTERM is the variance analysis [2] similarly induced from the polyhedra anal-
ysis POLY based on the New Polka Polyhedra library [12].

T) TERMINATOR [8].

These tools, except for TERMINATOR, were all run on a 2GHz AMD64 processor us-
ing Linux 2.6.16. TERMINATOR was executed on a 3GHz Pentium 4 using Windows
XP SP2. Using different machines is unfortunate but somewhat unavoidable due to
constraints on software library dependencies, etc. Note, however, that TERMINATOR
running on the faster machine was still slower overall, so the qualitative results are
meaningful. In any case, the running times are somewhat incomparable since on failed
proofs TERMINATOR produces a counterexample path, but LINEARRANKTERM, OC-
TATERM and POLYTERM give a suspect pair of states

Fig. 1 contains the results from the experiments performed with these analyses.7 For
example, Fig. 1(a) shows the outcome of the provers on example programs included in
the OCTANAL distribution. Example 3 is an abstracted version of heapsort, and Example
4 of bubblesort.

Fig. 1(b) contains the results of experiments on fragments of Windows device drivers.
These examples are small because we currently must hand-translate them before apply-
ing all of the tools but TERMINATOR.

Fig. 1(c) contains the results from experiments with the 4 tools on examples from
the POLYRANK distribution.8 The examples can be characterized as small but famously
difficult (e.g. McCarthy’s 91 function). Note that LINEARRANKTERM performs poorly
on these examples because of the limitations of RANKFINDER. Many of these examples
involve phase changes or tricky arithmetic in the algorithm.

From these experiments we can see that LINEARRANKTERM is very fast and pre-
cise. The prototype we have developed indicates that a termination analyzer using ab-
stractions based on ranking functions shows a lot of promise.

7 The programs used in our experiments except the ones for drivers are available in
http://www.dcs.qmul.ac.uk/∼aziem/esop. Unfortunately, we could not put the driver examples
in the web page, because that might cause a problem related to intellectual property.

8 Note also that there is no benchmark number 5 in the original distribution. We have used the
same numbering scheme as in the distribution so as to avoid confusion.

13

1 2 3 4 5 6
LR 0.01 X 0.01 X 0.08 X 0.09 X 0.02 X 0.06 X
O 0.11 X 0.08 X 6.03 X 1.02 X 0.16 X 0.76 X
P 1.40 X 1.30 X 10.90 X 2.12 X 1.80 X 1.89 X
T 6.31 X 4.93 X T/O - T/O - 33.24 X 3.98 X

(a) Results from experiments with termination tools on arithmetic examples from the Octagon Li-
brary distribution.

1 2 3 4 5 6 7 8 9 10
LR 0.23 X 0.20� 0.00� 0.04 X 0.00 X 0.03 X 0.07 X 0.03 X 0.01� 0.03 X
O 1.42 X 1.67� 0.47� 0.18 X 0.06 X 0.53 X 0.50 X 0.32 X 0.14� 0.17 X
P 4.66 X 6.35� 1.48� 1.10 X 1.30 X 1.60 X 2.65 X 1.89 X 2.42� 1.27 X
T 10.22 X 31.51� 20.65� 4.05 X 12.63 X 67.11 X 298.45 X 444.78 X T/O - 55.28 X

(b) Results from experiments with termination tools on small arithmetic examples taken from Win-
dows device drivers. Note that the examples are small as they must currently be hand-translated
for the three tools.

1 2 3 4 6 7 8 9 10 11 12
LR 0.19 X 0.02 X 0.01 † 0.02 † 0.02 † 0.01 † 0.04 † 0.01 † 0.03 † 0.02 † 0.01 †
O 0.30 † 0.05 † 0.11 † 0.50 † 0.10 † 0.17 † 0.16 † 0.12 † 0.35 † 0.86 † 0.12 †
P 1.42 X 0.82 X 1.06 † 2.29 † 2.61 † 1.28 † 0.24 † 1.36 X 1.69 † 1.56 † 1.05 †
T 435.23 X 61.15 X T/O - T/O - 75.33 X T/O - T/O - T/O - T/O - T/O - 10.31 †

(c) Results from experiments with termination tools on arithmetic examples from the POLYRANK

distribution.

Fig. 1. Experiments with 4 termination provers/analyses. LR is used to represent LINEARRANK-
TERM, O is used to represent OCTATERM, an Octagon-based variance analysis. P is POLYTERM,
a Polyhedra-based variance analysis. The T represents TERMINATOR [8]. Times are measured in
seconds. The timeout threshold was set to 500s. X=“a proof was found”. †=“false counterexam-
ple returned”. T/O = “timeout”.�=“termination bug found”. Note that pointers and aliasing from
the device driver examples were removed by a careful hand translation when passed to the tools
O, P and LR. Note that a time of 0.00 means that the analysis was too fast to be measured by the
timing utilities used.

14

Acknowledgements. We would like to thank Peter O’Hearn for encouragements and
insightful comments on our work, Andrey Rybalchenko for explaining the subtleties
of linear ranking functions and RANKFINDER, and Amir Ben-Amram and Neil Jones
for helping us to understand the size-change termination. We also acknowledge de-
tailed comments on the paper from Amir and anonymous referees, which help us to
improve the presentation of the paper. Chawdhary was supported by a Microsoft PhD
studentship, and Yang was supported by EPSRC.

References

1. I. Balaban, A. Pnueli, and L. Zuck. Ranking abstraction as companion to predicate abstrac-
tion. In FORTE’05, 2005.

2. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn. Variance analyses from
invariance analyses. In POPL’07, 2007.

3. A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial programs. In VMCAI’05,
2005.

4. M. Bruynooghe, M. Codish, J. Gallagher, S. Genaim, and W. Vanhoof. Termination analysis
through combination of type based norms. ACM Trans. Progam. Lang. Syst., 29(2), 2007.

5. A. Chawdhary, B. Cook, S. Gulwani, M. Sagiv, and H. Yang. Ranking abstractions.
Manuscript, 2008. Available at http://www.dcs.qmul.ac.uk/∼aziem/paper/esop08-full.pdf.

6. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic programs.
The Journal of Logic Programming, 41(1), 1999.

7. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In
PLDI’06, 2006.

8. B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV’06, 2006.
9. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract

interpretation. Theoretical Comput. Sci., 277(1–2):47–103, 2002.
10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL’79,

1979.
11. D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program checking, 2003.
12. B. Jeannet. NewPolka polyhedra library. http://pop-art.inrialpes.fr/people/bjeannet/

newpolka/index.html.
13. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program

termination. In POPL’01, 2001.
14. A. Miné. The Octagon abstract domain. Higher-Order and Symbolic Comput., 19:31–100,

2006.
15. G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:intermediate language and tools for

analysis and transformation of C programs. In CC’02, 2002.
16. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking

functions. In VMCAI’04, 2004.
17. A. Podelski and A. Rybalchenko. Transition invariants. In LICS’04, 2004.
18. A. M. Turing. Checking a large routine. In Report of a Conference on High Speed Automatic

Calculating Machines, pages 67–69, 1948. Reprinted in: The early British computer con-
ferences, vol. 14 of Charles Babbage Institute Reprint Series for the History of Computing,
MIT Press, 1989.

19. E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties specified
via evolution logic. Logic Journal of IGPL, Sept. 2006.

15

