
Memory Management

Chapter 5

Mooly Sagiv

1

Announcements

• Sample exams end of the week

• Hazara class & advanced topics next week

• Next week recitation solve sample exams

• Extra office hours TBD

2

Topics

• Heap allocation

• Manuel heap allocation

• Automatic memory reallocation (GC)

3

Limitations of Stack Frames

• A local variable of P cannot be stored in the

activation record of P if its duration exceeds

the duration of P

• Example: Dynamic allocation

int * f() { return (int *) malloc(sizeof(int));

}

4

Currying Functions

int (*)() f(int x)

{

int g(int y)

{

return x + y;

}

return g ;

}

int (*h)() = f(3);

int (*j)() = f(4);

int z = h(5);

int w = j(7);
5

Browser events (Javascript)

<script type="text/JavaScript">

function whichButton(event) {

if (event.button==1) {

alert("You clicked the left mouse button!") }

else {

alert("You clicked the right mouse button!")

}}

</script>

…

<body onmousedown="whichButton(event)">

…

</body>

Mouse event causes

page-defined function to

be called

Static Scope for Function

Argument

{ var x = 4;

{ function f(y) {return x*y};

{ function g(h) {

int x=7;

return h(3) + x;

};

g(f);

} } }

x 4

h

y 3

f

g

Code

for f

Code

for g
g(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?

Result of function call

Closures

• Activation records in the heap

• Function value is pair closure = env, code 

• When a function represented by a closure is

called,

– Allocate activation record for call (as always)

– Set the access link in the activation record using

the environment pointer from the closure

Function Results and Closures

c
access

Code for

counter

Code for

mk_counter

c(2) access
inc 2

mk_counter(1)

count 1

init 1
access

counter

mk_c

function mk_counter (init) {

var count = init;

function counter(inc) {count=count+inc; return count};

return counter};

var c = mk_counter(1);

c(2) + c(2);

JS

3

Duration

• The duration of a variable is the interval of

time in which its value persist

• Examples

– Automatic variables in C

[block entry, block exit]

– Frames in C

– Frames in JS

11

Program Runtime State

Code

segment

Stack

segment

Data

Segment

Machine

Registers

fixed

heap

12

Data Allocation Methods

• Explicit deallocation

• Automatic deallocation

13

Explicit Deallocation

• Pascal, C, C++

• Two basic mechanisms

– void * malloc(size_t size)

– void free(void *ptr)

• Part of the language runtime

• Expensive

• Error prone

• Different implementations

14

Memory Structure used by

malloc()/free()

15

Memory Structure used by

malloc()/free()

16

1KB/0

p= malloc(100)

100/1 896/0

q= malloc(100)

100/1 100/1 792/0

free(p)

100/0 100/1 792/0

Simple Implementation (Init)

17

first Chunk

Pointer

last Chunk

Pointer

size

freesize

malloc implementation

18

function malloc(size) returning a polymorphic

block pointer

pointer = next_free_block(size)

if pointer ≠ null return pointer

coalesce_free_chunks()

pointer = next_free_block(size)

if pointer ≠ null return pointer

return a solution to out of memory with size

Next Free Block

19

function next_free_block(size) returning a polymorphic

block pointer

pointer = first_chunk_pointer

requested_size = size + administration_size;

while pointer  last_chunk_pointer do

if pointer.size  requested_size

split(pointer, requested_size)

pointer.free = false;

return pointer + administrative_size

pointer = pointer + pointer.size

od

return null

freesize

freesize

freesize

Splitting Chunks

20

split(pointer, requsted_size)

leftover_size = pointer.size – requested_size

if leftover_size > administrative_size

pointer.size = requested_size

leftover_pointer = pointer + requested_size

leftover_pointer.free = true

leftover_pointer.size = leftover_sizs

req
u

ested
_

size

Coalescing Chunks

21

coalesce_free_chunks

pointer = first_chunk_pointer

while pointer  last_chunk_pointer do

if pointer.free

coelsce_with_followers(pointer)

pointer = pointer + pointer.size

size

size

freesize

free

free

coalesce_with_followers(pointer)

next_pointer = pointer +pointer.size

while next_pointer  last_chunk_pointer

and next_pointer.free do

pointer.size = pointer_size + next_pointer_size

next_pointer = next_pointer + next_pointer.size

Implementing Free

22

free(pointer)

chunk_pointer = pointer – administrative_size

chunk_pointer.free = true

Drawbacks of the simple

implementation

23

Fragmentation

• External

– Too many small chunks

• Internal

– A use of too big chunk without splitting the

chunk

• Freelist may be implemented as an array of

lists

24

Summary Explicit

Allocation/Free

• Considerable overhead

• Sophisticated implementations

– Fragmentation

– Locality of references

25

Garbage Collection

HEAP

ROOT SET

a

b

c

d

e

f

Stack +Registers
26

Garbage Collection

HEAP

ROOT SET

a

b

c

d

e

f

Stack +Registers
27

What is garbage collection

• The runtime environment reuse chunks that were

allocated but are not subsequently used

• garbage chunks

– not live

• It is undecidable to find the garbage chunks:

– Decidability of liveness

– Decidability of type information

• conservative collection

– every live chunk is identified

– some garbage runtime chunk are not identified

• Find the reachable chunks via pointer chains

• Often done in the allocation function
28

stack heap

7

link
x

y

link

9

typedef struct list {struct list *link; int key} *List;

typedef struct tree {int key;

struct tree *left:

struct tree *right} *Tree;

foo() { List x = cons(NULL, 7);

List y = cons(x, 9);

x->link = y;

}

void main() {

Tree p, r; int q;

foo();

p = maketree(); r = p->right;

q= r->key;

showtree(r);}

p

q

r

29

stack heap

7

link

key
x

y

key

link

9

typedef struct list {struct list *link; int key} *List;

typedef struct tree {int key;

struct tree *left:

struct tree *right} *Tree;

foo() { List x = cons(NULL, 7);

List y = cons(x, 9);

x->link = y;

}

void main() {

Tree p, r; int q;

foo();

p = maketree(); r = p->right;

q= r->key;

showtree(r);}

p

q

r

30

typedef struct list {struct list *link; int key} *List;

typedef struct tree {int key;

struct tree *left:

struct tree *right} *Tree;

foo() { List x = create_list(NULL, 7);

List y = create_list(x, 9);

x->link = y;

}

void main() {

Tree p, r; int q;

foo();

p = maketree(); r = p->right;

q= r->key;

showtree(r);}

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

31

Outline

• Why is it needed?

• Why is it taught?

• Reference Counts

• Mark-and-Sweep Collection

• Copying Collection

• Generational Collection

• Incremental Collection

• Interfaces to the Compiler

Tracing

32

A Pathological C Program

a = malloc(…) ;

b = a;

free (a);

c = malloc (…);

if (b == c) printf(“unexpected equality”);

33

Garbage Collection vs.

Explicit Memory Deallocation

• Faster program development

• Less error prone

• Can lead to faster programs
– Can improve locality of

references

• Support very general
programming styles, e.g.
higher order and OO
programming

• Standard in ML, Java, C#

• Supported in C and C++ via
separate libraries

• May require more space

• Needs a large memory

• Can lead to long pauses

• Can change locality of
references

• Effectiveness depends on
programming language
and style

• Hides documentation

• More trusted code

34

Interesting Aspects of Garbage Collection

• Data structures

• Non constant time costs

• Amortized algorithms

• Constant factors matter

• Interfaces between compilers and runtime

environments

• Interfaces between compilers and virtual

memory management

35

Reference Counts

• Maintain a counter per chunk

• The compiler generates code to update

counter

• Constant overhead per instruction

36

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

1

1

1

2

1

1

1

37

Another Example

x

38

Another Example (xb=NULL)

x

39

Code for p := q

40

if points to the heap q increment q’s reference count

if points to the heap p

decrement p’s reference count

if p’s reference count becomes zero then recursively free

Recursive Free

41

Asymptotic Complexity

• Reference counting can be implemented

with constant overhead

• How?

42

Lazy Reference Counters

• Free one element

• Free more elements when required

• Constant time overhead

• But may require more space

43

Reference Counts (Summary)

• Fixed but big constant overhead

• Fragmentation

• Cyclic Data Structures

• Compiler optimizations can help

• Can delay updating reference counters from the stack

• Implemented in libraries and file systems

– No language support

• But not currently popular

• Will it be popular for large heaps?

44

Mark-and-Sweep(Scan) Collection

• Mark the chunks reachable from the roots

(stack, static variables and machine

registers)

• Sweep the heap space by moving

unreachable chunks to the freelist (Scan)

45

The Mark Phase

for each root v

DFS(v)

function DFS(x)

if x is a pointer and chunk x is not marked

mark x

for each reference field fi of chunk x

DFS(x.fi)
46

The Sweep Phase

p := first address in heap

while p < last address in the heap

if chunk p is marked

unmark p

else let f1 be the first pointer reference field in p

p.f1 := freelist

freelist := p

p := p + size of chunk p

47

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

Mark

48

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

freelist

Sweep

49

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

freelist

50

Cost of GC

• The cost of a single garbage collection can be
linear in the size of the store
– may cause quadratic program slowdown

• Amortized cost
– collection-time/storage reclaimed

– Cost of one garbage collection
• c1 R + c2 H

– H - R Reclaimed chunks

– Cost per reclaimed chunk
• (c1 R + c2 H)/ (H - R)

– If R/H > 0.5
• increase H

– if R/H < 0.5
• cost per reclaimed word is c1 + 2c2 ~16

– There is no lower bound
51

The Mark Phase

for each root v

DFS(v)

function DFS(x)

if x is a pointer and chunk x is not marked

mark x

for each reference field fi of chunk x

DFS(x.fi)
52

Efficient implementation of Mark(DFS)

• Explicit stack

• Parent pointers

• Pointer reversal

• Other data structures

53

Adding Parent Pointer

54

Avoiding Parent Pointers

(Deutch-Schorr-Waite)

• Depth first search can be implemented without

recursion or stack

• Maintain a counter of visited children

• Observation:

– The pointer link from a parent to a child is not needed

when it is visited

– Temporary store pointer to the parent (instead of the

field)

– Restore when the visit of child is finished

55

Arriving at C

56

Visiting n-pointer field D

SET old parent pointer TO parent pointer ;

SET Parent pointer TO chunk pointer ;

SET Chunk pointer TO n-th pointer field of C;

SET n-th pointer field in C TO old parent pointer;

57

About to return from D

SET old parent pointer TO Parent pointer ;

SET Parent pointer TO n-th pointer field of C ;

SET n-th pointer field of C TO chunk pointer;

SET chunk pointer TO old parent pointer; 58

Compaction

• The sweep phase can compact adjacent

chunks

• Reduce fragmentation

59

Copying Collection

• Maintains two separate heaps
– from-space

– to-space

• pointer next to the next free chunk in from-space

• A pointer limit to the last chunk in from-space

• If next = limit copy the reachable chunks from
from-space into to-space
– set next and limit

– Switch from-space and to-space

• Requires type information

From-space To-Space

next

limit 60

Breadth-first Copying Garbage Collection

next := beginning of to-space

scan := next

for each root r

r := Forward(r)

while scan < next

for each reference field fi of chunk at scan

scan.fi := Forward(scan.fi)

scan := scan + size of chunk at scan

61

The Forwarding Procedure
function Forward(p)

if p points to from-space

then if p.f1 points to to-space

return p.f1

else for each reference field fi of p

next.fi := p.fi

p.f1 := next

next := next size of chunk p

return p.f1

else return p 62

A Simple Example

63

f40017

f800

0

13

0

f400

f800

f400

From-Space

struct DL{

int data;

struct DL* f;

struct DL *b

}

f
b

stack

Before Forward(f400)

64

f40017

f800

0

13

0

f400

f800

f400

From-Space

f
b

stack to-Space

t600 next

scan

After Forward(f400)

before Forward(f800)

65

t60017

t600

0

13

0

f400

f800

f400

From-Space

b

stack to-Space

t60017

f800

0

scan

next
f

f

After Forward(f800)

Before Forward(0)

66

t60017

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t60017

t612

0

scan

next

f

13

0

f400

t612

b
f

f

t612

After Forward(0)

Before Forward(0)

67

t60017

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t60017

t612

0 scan

next

f

13

0

f400

b

t612

After Forward(0)

Before Forward(f400)

68

t60017

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t60017

t612

0 scan

next

f

13

0

f400

fb

t612

After Forward(f400)

69

t60017

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t60017

t612

0

scan

next

f

13

0

t600

f
b

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

70

7
link

link

9

p

q

r

37

right

12

left

right

left

20

left

right

right

37

59

left

left

right

right

15

left

scan

next

71

7

link

link

9

p

q

r

37

right

12

left

right

left

20

left

right

right

59

left

left

right

right

15

left

right

37

left

scan

next

72

7

link

link

9

p

q

r

37

right

left

right

left

20

left

right

right

37

59

left

left

right

right

15

left

right

37

left

scan

next

12

left

right

73

7

link

link

9

p

q

r

37

right

12

left

right

left

20

left

right

right

37

59

left

left

right

right

15

left

right

37

left

scan

next

12

left

right

74

Amortized Cost of Copy Collection

c3R / (H/2 - R)

75

Locality of references

• Copy collection does not create fragmentation

• Cheney's algorithm may lead to subfields that point
to far away chunks

– poor virtual memory and cache performance

• DFS normally yields better locality but is harder to
implement

• DFS may also be bad for locality for chunks with
more than one pointer fields

• A compromise is a hybrid breadth first search with
two levels down (Semi-depth first forwarding)

• Results can be improved using dynamic
information

76

The New Forwarding Procedure

function Forward(p)

if p points to from-space

then if p.f1 points to to-space

return p.f1

else Chase(p); return p.f1

else return p

function Chase(p)

repeat

q := next

next := next +size of chunk p

r := null

for each reference field fi of p

q.fi := p.fi

if q.fi points to from-space and

q.fi.f1 does not point to to-space

then r := q.fi

p.f1 := q

p := r

until p = null 77

Summary Copy Garbage Collection

Pros

• Compact

• Can improve memory

locality

• Cost proportional to

reachable heap

– Especially good when large

amounts of garbage exist

when gc is called

Cons

• Requires type information

• May affect memory locality

78

Generational Garbage Collection

• Newly created objects contain higher
percentage of garbage

• Partition the heap into generations G1 and G2

• First garbage collect the G1 heap

– chunks which are reachable

• After two or three collections chunks are
promoted to G2

• Once a while garbage collect G2

• Can be generalized to more than two heaps

• But how can we garbage collect in G1?
79

Scanning roots from older generations

• remembered list

– The compiler generates code after each destructive
update b.fi := a
to put b into a vector of updated objects scanned by the
garbage collector

• remembered set

– remembered-list + “set-bit”

• Card marking

– Divide the memory into 2k cards

• Page marking

– k = page size

– virtual memory system catches updates to old-
generations using the dirty-bit

80

Incremental Collection

• Even the most efficient garbage collection can
interrupt the program for quite a while

• Under certain conditions the collector can run
concurrently with the program (mutator)

• Need to guarantee that mutator leaves the chunks in
consistent state, e.g., may need to restart collection

• Two solutions

– compile-time

• Generate extra instructions at store/load

– virtual-memory

• Mark certain pages as read(write)-only

• a write into (read from) this page by the program restart
mutator

81

Tricolor marking

• Generalized GC

• Three kinds of chunks

– White

• Not visited (not marked or not copied)

– Grey

• Marked or copied but children have not been

examined

– Black

• Marked and their children are marked

82

Basic Tricolor marking

while there are any grey objects

select a grey chunk p

for each reference field fi of

chunk p

if chunk p.fi is white

color chunk p.fi grey

color chunk p black

Invariants

•No black points to white

•Every grey is on the collector's

(stack or queue) data structure

83

Establishing the invariants

• Dijkstra, Lamport, et al
– Mutator stores a white pointer a into a black pointer b

• color a grey (compile-time)

• Steele
– Mutator stores a white pointer a into a black pointer b

• color b grey (compile-time)

• Boehm, Demers, Shenker
– All black pages are marked read-only

– A store into black page mark all the objects in this page grey (virtual
memory system)

• Baker
– Whenever the mutator fetches a pointer b to a grey or white object

• color b grey (compile-time)

• Appel, Ellis, Li
– Whenever the mutator fetches a pointer b from a page containing a non

black object
• color every object on this page black and children grey (virtual memory system)

84

Interfaces to the Compiler

• The semantic analysis identifies chunk fields which

are pointers and their size

• Generate runtime descriptors at the beginning of

the chunks

– Can employ different allocation/deallocation functions

• Pass the descriptors to the allocation function

• The compiler also passes pointer-map

– the set of live pointer locals, temporaries, and registers

• Recorded at ?-time for every procedure

85

Summary

• Garbage collection is an effective technique

• Leads to more secure programs

• Tolerable cost

• But is not used in certain applications

– Realtime

• Generational garbage collection works fast

– Emulates stack

• But high synchronization costs

• Compiler can allocate data on stack sometimes

– Escape analysis

• May be improved

86

