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Announcements

• Sample exams end of the week

• Hazara class & advanced topics next week

• Next week recitation solve sample exams

• Extra office hours TBD
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Topics

• Heap allocation

• Manuel heap allocation

• Automatic memory reallocation (GC)

3



Limitations of Stack Frames

• A local variable of P cannot be stored in the 

activation record of P if its duration exceeds 

the duration of P

• Example: Dynamic allocation

int * f()  { return (int *) malloc(sizeof(int)); 

}
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Currying Functions

int (*)() f(int x) 

{

int g(int y)   

{

return x + y;

}

return g ;

}

int (*h)() = f(3);

int (*j)()  = f(4);

int z = h(5);

int  w = j(7);
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Browser events (Javascript)

<script type="text/JavaScript">

function whichButton(event) {

if (event.button==1) {

alert("You clicked the left mouse button!") }

else {

alert("You clicked the right mouse button!") 

}}

</script>

…

<body onmousedown="whichButton(event)">

…

</body>

Mouse event causes  

page-defined function to 

be called 



Static Scope for Function 

Argument

{ var x = 4;

{ function f(y) {return x*y};

{ function g(h) {

int x=7;

return h(3) + x;

};

g(f);

} } }

x 4

h

y 3

f

g

Code 

for f

Code 

for g
g(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?



Result of function call



Closures

• Activation records in the heap

• Function value is pair closure = env, code 

• When a function represented by a closure is 

called,

– Allocate activation record for call (as always)

– Set the access link in the activation record using 

the environment pointer from the closure



Function Results and Closures

c
access

Code for 

counter

Code for 

mk_counter

c(2) access
inc 2

mk_counter(1)

count 1

init 1
access

counter

mk_c

function mk_counter (init) {

var count = init;

function counter(inc) {count=count+inc; return count};

return counter};

var c  = mk_counter(1);

c(2) + c(2);

JS
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Duration

• The duration of a variable is the interval of 

time in which its value persist

• Examples

– Automatic variables in C 

[block entry, block exit]

– Frames in C

– Frames in JS
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Program Runtime State

Code

segment

Stack

segment

Data

Segment

Machine

Registers

fixed

heap
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Data Allocation Methods

• Explicit deallocation

• Automatic deallocation
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Explicit Deallocation 

• Pascal, C, C++

• Two basic mechanisms

– void * malloc(size_t size)

– void free(void *ptr)

• Part of the language runtime

• Expensive

• Error prone

• Different implementations
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Memory Structure used by 

malloc()/free()
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Memory Structure used by 

malloc()/free()
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1KB/0

p= malloc(100)

100/1 896/0

q= malloc(100)

100/1 100/1 792/0

free(p)

100/0 100/1 792/0



Simple Implementation (Init)
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first Chunk

Pointer

last Chunk 

Pointer

size

freesize



malloc implementation
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function malloc(size) returning a polymorphic 

block pointer

pointer = next_free_block(size)

if pointer ≠ null return pointer

coalesce_free_chunks()

pointer = next_free_block(size)

if pointer ≠ null return pointer

return a solution to out of memory with size 



Next Free Block
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function next_free_block(size) returning a polymorphic 

block pointer

pointer = first_chunk_pointer

requested_size = size + administration_size;

while pointer  last_chunk_pointer do

if pointer.size  requested_size

split(pointer, requested_size)

pointer.free = false;

return pointer + administrative_size

pointer = pointer + pointer.size

od

return null

freesize

freesize

freesize



Splitting Chunks
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split(pointer, requsted_size)

leftover_size = pointer.size – requested_size

if leftover_size > administrative_size

pointer.size = requested_size

leftover_pointer = pointer + requested_size

leftover_pointer.free = true

leftover_pointer.size = leftover_sizs

req
u

ested
_

size



Coalescing Chunks
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coalesce_free_chunks

pointer = first_chunk_pointer

while pointer  last_chunk_pointer do

if pointer.free

coelsce_with_followers(pointer)

pointer = pointer + pointer.size

size

size

freesize

free

free

coalesce_with_followers(pointer)

next_pointer = pointer +pointer.size

while next_pointer  last_chunk_pointer

and next_pointer.free do

pointer.size = pointer_size + next_pointer_size

next_pointer = next_pointer + next_pointer.size



Implementing Free
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free(pointer)

chunk_pointer = pointer – administrative_size

chunk_pointer.free = true



Drawbacks of the simple 

implementation
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Fragmentation

• External

– Too many small chunks

• Internal

– A use of too big chunk without splitting the 

chunk

• Freelist may be implemented as an array of 

lists
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Summary Explicit 

Allocation/Free

• Considerable overhead

• Sophisticated implementations

– Fragmentation

– Locality of references
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Garbage Collection

HEAP

ROOT SET

a

b

c

d

e

f

Stack +Registers
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Garbage Collection

HEAP

ROOT SET

a

b

c

d

e

f

Stack +Registers
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What is garbage collection

• The runtime environment reuse chunks that were 

allocated but are not subsequently used

• garbage chunks 

– not live

• It is undecidable to find the garbage chunks:

– Decidability of liveness

– Decidability of type information

• conservative collection

– every live chunk is identified

– some garbage runtime chunk are not identified

• Find the reachable chunks via pointer chains

• Often done in the allocation function
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stack heap

7

link
x

y

link

9

typedef struct list  {struct list *link; int key} *List;

typedef struct tree {int key;

struct tree *left:  

struct tree *right} *Tree;

foo() {    List x = cons(NULL, 7);

List y = cons(x, 9);

x->link = y;

}

void main() {

Tree p, r; int q;

foo();

p = maketree();   r = p->right;

q= r->key;

showtree(r);}

p

q

r
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stack heap

7

link

key
x

y

key

link

9

typedef struct list  {struct list *link; int key} *List;

typedef struct tree {int key;

struct tree *left:  

struct tree *right} *Tree;

foo() {    List x = cons(NULL, 7);

List y = cons(x, 9);

x->link = y;

}

void main() {

Tree p, r; int q;

foo();

p = maketree();   r = p->right;

q= r->key;

showtree(r);}

p

q

r
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typedef struct list  {struct list *link; int key} *List;

typedef struct tree {int key;

struct tree *left:  

struct tree *right} *Tree;

foo() {    List x = create_list(NULL, 7);

List y = create_list(x, 9);

x->link = y;

}

void main() {

Tree p, r; int q;

foo();

p = maketree();   r = p->right;

q= r->key;

showtree(r);}

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right
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Outline

• Why is it needed?

• Why is it taught?

• Reference Counts

• Mark-and-Sweep Collection

• Copying Collection

• Generational Collection

• Incremental Collection

• Interfaces to the Compiler

Tracing
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A Pathological C Program

a =  malloc(…) ;

b = a;

free (a);

c = malloc (…);

if  (b == c)  printf(“unexpected equality”);
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Garbage Collection vs. 

Explicit Memory Deallocation

• Faster program development

• Less error prone

• Can lead to faster programs
– Can improve locality of 

references

• Support very general 
programming styles, e.g. 
higher order and OO 
programming

• Standard in ML, Java, C#

• Supported in C and C++ via 
separate libraries

• May require more space

• Needs a large memory

• Can lead to long pauses

• Can change locality of 
references

• Effectiveness depends on 
programming language 
and style

• Hides documentation

• More trusted code
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Interesting Aspects of Garbage Collection

• Data structures

• Non constant time costs

• Amortized algorithms

• Constant factors matter

• Interfaces between compilers and runtime 

environments

• Interfaces between compilers and virtual 

memory management
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Reference Counts

• Maintain a counter per chunk

• The compiler generates code to update 

counter

• Constant overhead per instruction
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link

link

9

p

q

r

37

right
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left
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37
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left
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Another Example

x
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Another Example (xb=NULL)

x
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Code for p := q
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if points to the heap q increment q’s reference count

if points to the heap p 

decrement p’s reference count

if p’s reference count becomes zero then recursively free                                    



Recursive Free
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Asymptotic Complexity

• Reference counting can be implemented 

with constant overhead

• How?
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Lazy Reference Counters

• Free one element

• Free more elements when required

• Constant time overhead

• But may require more space
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Reference Counts (Summary)

• Fixed but big constant overhead

• Fragmentation

• Cyclic Data Structures

• Compiler optimizations can help

• Can delay updating reference counters from the stack

• Implemented in libraries and file systems

– No language support

• But not currently popular

• Will it be popular for large heaps?
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Mark-and-Sweep(Scan) Collection

• Mark the chunks reachable from the roots 

(stack, static variables and machine 

registers)

• Sweep the heap space by moving 

unreachable chunks to the freelist (Scan)
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The Mark Phase

for each root v

DFS(v)

function DFS(x)

if x is a pointer and chunk x is not marked

mark x

for each reference field fi of chunk x

DFS(x.fi)
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The Sweep Phase

p := first address in heap

while p < last address in the heap

if chunk p is marked

unmark p

else let f1 be the first pointer reference field in p

p.f1 := freelist

freelist := p

p := p + size of chunk p

47
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Cost of GC

• The cost of a single garbage collection can be 
linear in the size of the store
– may cause quadratic program slowdown

• Amortized cost
– collection-time/storage reclaimed

– Cost of one garbage collection
• c1 R + c2 H

– H - R Reclaimed chunks

– Cost per reclaimed chunk
• (c1 R + c2 H)/ (H - R)

– If R/H > 0.5
• increase H

– if R/H < 0.5 
• cost per reclaimed word is c1 + 2c2 ~16

– There is no lower bound
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The Mark Phase

for each root v

DFS(v)

function DFS(x)

if x is a pointer and chunk x is not marked

mark x

for each reference field fi of chunk x

DFS(x.fi)
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Efficient implementation of Mark(DFS)

• Explicit stack

• Parent pointers

• Pointer reversal

• Other data structures
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Adding Parent Pointer
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Avoiding Parent Pointers

(Deutch-Schorr-Waite)

• Depth first search can be implemented without 

recursion or stack

• Maintain a counter of visited children

• Observation:

– The pointer link from a parent to a child is not needed 

when it is visited

– Temporary store pointer to the parent (instead of the 

field)

– Restore when the visit of child is finished
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Arriving at C
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Visiting n-pointer field D

SET old parent pointer TO parent pointer ;

SET Parent pointer TO chunk pointer ; 

SET Chunk pointer TO n-th pointer field of C;

SET n-th pointer field in C TO  old parent pointer; 
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About to return from D

SET old parent pointer TO Parent pointer ;

SET Parent pointer TO n-th pointer field of C ; 

SET n-th pointer field of C TO chunk pointer;

SET chunk pointer TO  old parent pointer; 58



Compaction

• The sweep phase can compact adjacent 

chunks

• Reduce fragmentation
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Copying Collection

• Maintains two separate heaps
– from-space 

– to-space

• pointer next to the next free chunk in from-space

• A pointer limit to the last chunk in from-space

• If next = limit copy the reachable chunks from 
from-space into to-space
– set next and limit

– Switch from-space and to-space

• Requires type information

From-space To-Space

next

limit 60



Breadth-first Copying Garbage Collection

next := beginning of to-space

scan := next

for each root r

r := Forward(r)

while scan < next

for each reference field fi of chunk at scan

scan.fi := Forward(scan.fi)

scan := scan + size of chunk at scan
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The Forwarding Procedure
function  Forward(p)

if p points to from-space

then if p.f1 points to to-space

return p.f1

else for each reference field fi of p

next.fi := p.fi

p.f1 := next

next := next size of chunk p

return p.f1

else return p 62



A Simple Example 
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f40017

f800

0

13

0

f400

f800

f400

From-Space

struct DL{

int data;

struct DL* f;

struct DL *b

}

f
b

stack



Before Forward(f400)
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After Forward(f400) 

before Forward(f800)
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After Forward(f800) 

Before Forward(0)
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f
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After Forward(0)

Before Forward(0)
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t612

After Forward(0)

Before Forward(f400)
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t612

After Forward(f400)
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Amortized Cost of Copy Collection

c3R / (H/2 - R)
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Locality of references

• Copy collection does not create fragmentation

• Cheney's algorithm may lead to subfields that point 
to far away chunks 

– poor virtual memory and cache performance

• DFS normally yields better locality but is harder to 
implement

• DFS may also be bad for locality for chunks with 
more than one pointer fields

• A compromise is a hybrid breadth first search with 
two levels down (Semi-depth first forwarding)

• Results can be improved using dynamic 
information
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The New Forwarding Procedure

function Forward(p)

if p points to from-space

then if p.f1 points to to-space

return p.f1

else Chase(p); return p.f1

else return p

function Chase(p)

repeat

q := next

next := next +size of chunk p

r := null

for each reference field fi of p

q.fi := p.fi

if q.fi points to from-space and                                   

q.fi.f1 does not point to to-space

then r := q.fi

p.f1 := q

p := r

until p = null 77



Summary Copy Garbage Collection

Pros

• Compact

• Can improve memory 

locality

• Cost proportional to 

reachable heap

– Especially good when large 

amounts of garbage exist 

when gc is called

Cons

• Requires type information

• May affect memory locality
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Generational Garbage Collection

• Newly created objects contain higher 
percentage of garbage

• Partition the heap into generations G1 and G2

• First garbage collect the G1 heap 

– chunks which are reachable 

• After two or three collections chunks are 
promoted to G2

• Once a while garbage collect G2

• Can be generalized to more than two heaps

• But how can we garbage collect in G1?
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Scanning roots from older generations

• remembered list

– The compiler generates code after each destructive 
update  b.fi := a
to put b into a vector of updated objects scanned by the 
garbage collector

• remembered set

– remembered-list + “set-bit”

• Card marking

– Divide the memory into 2k cards

• Page marking

– k = page size

– virtual memory system catches updates to old-
generations using the dirty-bit
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Incremental Collection

• Even the most efficient garbage collection can 
interrupt the program for quite a while

• Under certain conditions the collector can run 
concurrently with the program (mutator)

• Need to guarantee that mutator leaves the chunks in 
consistent state, e.g., may need to restart collection

• Two solutions

– compile-time

• Generate extra instructions at store/load

– virtual-memory 

• Mark certain pages as read(write)-only

• a write into (read from) this page by the program restart 
mutator
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Tricolor marking

• Generalized GC 

• Three kinds of chunks

– White

• Not visited (not marked or not copied)

– Grey 

• Marked or copied but children have not been 

examined

– Black

• Marked and their children are marked
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Basic Tricolor marking

while there are any grey objects

select a grey chunk p

for each reference field fi of 

chunk p

if chunk p.fi is white

color chunk p.fi grey 

color chunk p black

Invariants

•No black points to white

•Every grey is on the collector's 

(stack or queue) data structure
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Establishing the invariants

• Dijkstra, Lamport, et al
– Mutator stores a white pointer a into a black pointer b

• color a grey (compile-time)

• Steele 
– Mutator stores a white pointer a into a black pointer b

• color b grey (compile-time)

• Boehm, Demers, Shenker
– All black pages are marked read-only

– A store into black page  mark all the objects in this page grey (virtual 
memory system)

• Baker
– Whenever the mutator fetches a pointer b to a grey or white object

• color b grey (compile-time)

• Appel, Ellis, Li
– Whenever the mutator fetches a pointer b from a page containing a non 

black object 
• color every object on this page black and children grey (virtual memory system)
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Interfaces to the Compiler

• The semantic analysis identifies chunk fields which 

are pointers and their size

• Generate runtime descriptors at the beginning of 

the chunks

– Can employ different allocation/deallocation functions

• Pass the descriptors to the allocation function

• The compiler also passes pointer-map

– the set of live pointer locals, temporaries, and registers

• Recorded at ?-time for every procedure 
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Summary

• Garbage collection is an effective technique

• Leads to more secure programs

• Tolerable cost

• But is not used in certain applications

– Realtime

• Generational garbage collection works fast

– Emulates stack

• But high synchronization costs

• Compiler can allocate data on stack sometimes

– Escape analysis

• May be improved
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