Semantic and
Context Analysis

Yotam Feldman
Guy Gueta
Mooly Sagiv

Motivation

Silly Java Program

Interface not declared

class MyClass implements MylInterface {
string mylnteger;
void doSomething() {
Int[] X = new string; Type mismatch
X[5] = mylInteger *y ; vy is undefined
; Can’t multiply Strings
void doSomething() { Can’t redefine functions

¥

Int fibonacci(int n) {

return doSomething() + fibonacci(n - 1);
1 Can’t add void

¥

Semantic Analysis

Abstract))
Semantic Intermediate
Syntax Tree))) —>
: (AST) [analysis } [code generation} code

]

Semantic Analysis

Syntactically valid programs may be erroneous

@a; int a;

undeclared
variable
as l-value

Assigning

wrong type int a,

int a;
Variable
a = 1; re-declaration

COMMUNICATIONS '
NICAT Analysis

Robin Milner

The Elegant Pragmatist
ré 1 @ .‘{' Managing Scientific Data
A% Privacy by Design

3

An Interview with

L vt A Theory of Type Polymorphism in Programming

Beyond the Smart Grid

Straightening Out
Heavy Tails

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland
Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm #~ which enforces the

states that 1f 4 accepts a program then it is well typed We also discuss extending these
results to richer languages; a type-checking algorithm based on # is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system.

Goals of Semantic Analysis

Check “correct” use of programming constructs

Ensure that the program can be compiled correctly
* Should be able to generate code for every program that passes the semantic analysis
* The result should be a “correct” compilation

Runtime checks are still necessary!
* array access, null pointer, division by zero, ...
* The semantic analysis guarantees that checks will be placed correctly by the compiler
* (Bugs are of course still possible!)

But also a “contract” with the programmer

"Semantic Rules" in Java

e A variable must be declared before used
* A variable should not be declared multiple times
e A variable should be initialized before used

* Non-void method should contain return statement along all
execution paths

* this keyword cannot be used in static method

* Typing and subtyping rules

Beyond Semantic Analysis

* Infer runtime properties of the program

* Whenever the execution reaches point p, the variable x cannot be
used

* The value of the variable x is always positive at point p
* The pointer p cannot have a null value at point p

* Next week

Syntactic vs. Semantic Analysis

. Abstract .
Lexical .
—b s =) Parsing =) SUGEaEE | mm) Seman’Flc
analysis (AST) analysis
e Construction of AST is based on context-free analysis

* Semantic analysis is context-sensitive

int a;
a = “hello”;

Outline

* What is Semantic (Context) Analysis
* Why is it needed?

* What is a type

* Type Checking vs. Type Inference

* A formal definition

» Scopes and type checking for imperative languages (Chapter 6)

Context Analysis

* Requirements related to the “context” in which a construct occurs

» Context sensitive requirements - cannot be specified using a context
free grammar
(Context handling)

* Requires complicated and unnatural context free grammars
* Guides subsequent phases

Basic Compiler Phases

source prog1ram (string)

Front-End

Symbol
Table

/I lexical analysis ‘

N

Tokens

\l syntax azlalysis ‘

1 Abstract syntax trde

‘ context analysis ‘

v

Back-End

\ Fin. Assembly

Degenerate Context Condition

*|InC

* break statements can only occur inside switch or loop statements

Partial Grammar for C

Stm — EXxp;

Stm — If (Exp) Stm StList — StList Stm

Stm — If (Exp) Stm else Stm StList —s ¢

Stm — while (Exp) do Stm
Stm — break;

Stm— {StL.ist }

Refined Grammar for C

Stm—EXp;

Stm — if (Exp) Stm
Stm — If (Exp) Stm else Stm

Stm— while (Exp) do LStm
Stm— {StL.ist }

LStm — EXp;
LStm — if (Exp) LStm

LStm— if (Exp) LStm else LStm
LStm — while (Exp) do LStm
LStm — {LStList }

LStm — break;

StList — StList Stm

StList — ¢

LStList — LStList LStm

LStList — ¢

A Possible Abstract Syntax for C

Stmt-> Exp (Exp)
Stmt Stmt (SeqStmt)
Exp Stmt Stmt (1fStmt)
Exp Stmt (WhileStmt)
(BreakSt)

A Possible Abstract Syntax for C

package Absyn;

abstract public class Absyn { public int pos ;}

class Exp extends Absyn { };

class Stmt extends Absyn {} ;

class SeqStmt extends Stmt { public Stmt fstSt; public Stmt secondSt;
SegStmt(Stmt s1, Stmt s2) { fstSt = s1; secondSts2 ; }

¥

class IfStmt extends Stmt { public Exp exp; public Stmt thenSt; public Stmt elseSt;
IfStmt(Exp e, Stmt s1, Stmt s2) { exp =e; thenSt =s1; elseSts2; }

¥

class WhileStmt extends Stmt {public Exp exp; public Stmt body;
WhileSt(Exp e; Stmt s) { exp =e ; body =s; }

class BreakSt extends Stmt {};

A Context Check
(on the abstract syntax tree)

static void checkBreak(Stmt st)
{
If (st instanceof SeqSt) {
SeqSt segst = (SeqSt) st;
checkBreak(seqst.fstSt); checkBreak(segst.secondSt);

}
else iIf (st instanceof 1fSt) {

ISt ifst = (I1fSt) st;
checkBreak(ifst.thenSt); checkBreak(ifst elseSt);
}
else if (st instanceof WhileSt) ; // skip
else if (st instanceof BreakeSt) {
System.error.printin(“Break must be enclosed within a loop”.

st.pos); }

Example Context Condition: Scope Rules

* VVariables must be defined within scope
* Dynamic vs. Static Scope rules
e Cannot be coded using a context free grammar

Dynamic vs. Static Scope Rules

procedure p;
var X: integer
procedure q;

begin{ q}
;

end{q};
procedure r;
var X: integer

begin{r}

q,
end; {r }

begin { p }

r,
end{p}

Summary Dynamic Rules

* Most languages enforce static rules
* C, Java, C++, Haskel, ML, Javascript, ...

* Exceptions
* lisp, emacs

* Dynamic rules lead to ineffective compilation

* Hard to understand
* Hinders modularity

Example Context Condition

n”i

* Types in assignment must be “compatible

Partial Grammar for Assignment

Stm— id Assign Exp

Exp — IntConst

Exp — RealConst
Exp— Exp + EXp
Exp— Exp -EXp

Exp— (EXp)

EC EC R
int int +, - int

int real +, - real
real int +, - real
real real +, - real
int int
real real

real int

24

Refined Grammar for Assignments
Stm— Realld Assign RealExp Stm—IntExpAssign IntExp
Stm—Realld Assign IntExp

RealExp — RealConst IntExp — IntConst
ReallntExp — Realld

RealExp— RealExp + RealExp IntExp — Intld

RealExp— RealExp + IntExp IntExp— INtExp + IntExp

RealExp— IntExp + RealExp
RealExp— RealExp -RealExp INtEXp— INtEXP -IntExp
RealExp— RealExp -RealExp IntExp—> (INtExp)
RealExp— RealExp -IntExp
RealExp— IntExp -RealExp

RealExp— (RealExp)

Corner Cases

* What about power operator

What is a type?

* A type is a collection of computable values that share some structural
property.

Examples Non-examples
int Even integers
string Positive integers
int - bool {£:int > int | x>3 =>
int x bool f(x) > x *(x+1)}

Distinction between sets of values that are types and sets
that are not types is language dependent

Advantages of Types

* Program organization and documentation

» Separate types for separate concepts
* Represent concepts from problem domain

* Document intended use of declared identifiers
* Types can be checked, unlike program comments

* [dentify and prevent errors
e Compile-time or run-time checking can prevent meaningless computations
such as 3 + true — “Bill”
* Support optimization
* Example: short integers require fewer bits
* Access components of structures by known offset

What is a type error?

* Whatever the compiler/interpreter says it is?

* Something to do with bad bit sequences?
* Floating point representation has specific form
* An integer may not be a valid float

* Something about programmer intent and use?

* A type error occurs when a value is used in a way that is inconsistent with its
definition
* Example: declare as character, use as integer

Type errors are language dependent

* Array out of bounds access
e C/C++: run-time errors with undefined semantics
* Java: dynamic type errors (exceptions)

* Null pointer dereference
e C/C++: run-time errors with undefined semantics
* Java: dynamic type errors (exceptions)
* Rust: Compiler guarantees correctness

Compile-time vs Run-time Checking

e JavaScript and Lisp use run-time type checking

« f(x) Make sure f is a function before calling f

js» var = 3;
is> f(2);

tygein:B: TypeError: f is not a function
5

* Java uses compile-time type checking
e f(x) Must havef: A—> Band x: A

* Basic tradeoff
» Both kinds of checking prevent type errors
* Run-time checking slows down execution

* Compile-time checking restricts program flexibility
* JavaScript array: elements can have different types

* Which gives better programmer diagnostics?

Expressiveness

* In JavaScript, we can write a function like

function f£(x) { return x < 10 ? x : x(), }

Some uses will produce type error, some will not

e Static typing always conservative

if (complicated-boolean-expression)
then £ (5);
else £(15);

Type Safety

* Type safe programming languages protect its own abstractions
* Type safe programs cannot go wrong

* No run-time errors

* But exceptions are fine

* The semantics of the program cannot get stuck

» Type safety is proven at language design time

Relative Type-Safety of Languages

* Not safe: Assembly, C and C++
 Casts, unions, pointer arithmetic, ...

* Almost safe: Algol family, Pascal, Ada

* Dangling pointers
* Allocate a pointer p to an integer, deallocate the memory referenced by p, then later use
the value pointed to by p
* Hard to make languages with explicit deallocation of memory fully type-safe

 Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript
* Dynamically typed: Lisp, Smalltalk, JavaScript
« Statically typed: OCaml, Haskell, Java, Rust

If code accesses data, it is handled with the type associated with the
creation and previous manipulation of that data

Unsafe Features of C

* Pointer arithmetic

* Casts

* Unions

* Dangling references

Pointer Arithmetic

Int foo(){
Int a, b;
Int *p = &a;
scanf("%d", &b);
*(ptb) =5;

¥

Unions

Int foo() {
union {
Int I,
Int* p;
}u;
u.l =8;
printf("%d", *(u.p));
return O;

¥

Dangling References

a = malloc(...) ;

b=a;

free (a);

c = malloc (...);

if (b==c) printf(“unexpected equality”);

38

Type Checking vs. Type Inference

e Standard type checking:

int £(int x) { return x+1; };
. 1nt g(int y) { return f£f(y+1)*2; };
* Use declared types to check agreement

* Type inference:

-t £(inE x) { return x+1; };
"'igk g(igg y) { return f£(y+1)*2; };

ML and Scala are designed to make type inference feasible

The Type Inference Problem

* Input: A program without types

e Qutput: A program with type for every expression
* Every expression is annotated with its most general type

Type Checking
(Imperative languages)

* |dentify the type of every expression
* Usually one or two passes over the syntax tree

* Handle scope rules

Types

* What is a type
 Varies from language to language

* Consensus
* A set of values
* A set of operations
* Classes
* One instantiation of the modern notion of types

Why do we need type systems?

e Consider assembly code
e add Sr1, Sr2, Sr3

* What are the types of Sr1, Sr2, Sr3?

Types and Operations

 Certain operations are legal for values of each type
* It does not make sense to add a function pointer and an integer in C
* It does make sense to add two integers
* But both have the same assembly language implementation!

Type Systems

* A language’s type system specifies which operations are valid for
which types

* The goal of type checking is to ensure that operations are used with
the correct types

* Enforces intended interpretation of values because nothing else will!

* The goal of type inference is to infer a unique type for every “valid
expression”

45

Type Checking Overview

* Three kinds of languages

e Statically typed: (Almost) all checking of types is done as
part of compilation
* Context Analysis
* C, Java, ML
* Dynamically typed: Almost all checking of types is done as
part of program execution
e Code generation
e Scheme, Python
* Untyped
* No type checking (Machine Code)

Type Wars

* Competing views on static vs. dynamic typing

* Static typing proponents say:

* Static checking catches many programming errors
* Prove properties of your code

* Avoids the overhead of runtime type checks

* Dynamic typing proponents say
* Static type systems are restrictive
* Rapid prototyping difficult with type systems

* Complicates the programming language and the compiler
* Compiler optimizations can hide costs

Type Wars (cont.)

*In practice, most code is written in statically typed
languages with escape mechanisms
* Unsafe casts in C Java
*unioninC
* Unsafe libraries in Rust

* It is debatable whether this compromise represents
the best or worst of both worlds

Soundness of type systems

* For every expression e,

 for every value v of e at runtime
* v eval(type(e))

* The type may actually describe more values
* The rules can reject logically correct programs
* Becomes more complicated with subtyping (inheritance)

A formal definition of
type systems

Types and Programming Languages

http://www.cis.upenn.edu/~bcpierce

Type judgments

ce: T
* e is a well-typed expression of type T

* Examples
*2:int
2 *(3+4):int
* true : bool
* “Hello” : string

51

Type judgments

*Ere:T
* In the context E, e is a well-typed expression of T

* Examples:
* b:bool, x:int + b:bool
e x:int1+x<4:bool
e foo:int->string, x:int + foo(x) : string

52

Typing rules

Premise

Conclusion

Conclusion

[Name]

[Name]

53

Typing rules for expressions

Ere :int Ere,:int

E+ete,:int

[+]

54

Expression rules

V: booleE V: inteE

E~v: bool Erv:int

E ~ true : bool E false : bool

E + int-literal : int E + string-literal : string
E-el:int Ere2:int

0p€{+l 77 // */ 0/0}

Er-elope?:int

Erel:int E+-e2:int
rope{ <=I<l >I >=}

E+el rope2: bool

55

More expression rules

E + el : bool E + e2 : bool
lope{&&, ||}
E+el lope2: bool
Erel:int E+ el : bool
Er-el:int Er1el: bool
Erel: T[] Erel:T[] Ere2:int
E+ el.length : int Erel[e2]: T

ErnewT(): T

Erel:int

E - new T[el] : T[]

56

Subtyping

e Inheritance induces subtyping relation <

- S<T = values(S) < values(T)

= “A value of type S may be used wherever a value
of type T Is expected”

57

Subtyping

e For all types:

A<A
e For reference types:

Aextends B{...} A<B B=sC

A<B A=<C

null <A

58

N o O~ wWw DdoE

Examples

int <int ?

null <A ?

null < string ?
string < null ?
null < boolean ?
null < boolean|] ?
All < B[] ?

59

Expression rules with subtyping

Erel: Tl Ere2:T2
T1<T20r T2<T1
op e {==,!=}

E+elope2: bool

60

Rules for method invocations

Erey:Tiyx..xT,— T
Ere: T, T,<T foralli=1..n

Ereye,...,e): T

(m:staticT; x..xT,—T)eC
Ere: T, T,<T foralli=1..n

Ercm(ey, ... ,e): T

61

Statement rules

e Statements have type void

e Judgments of the form
Er-S

« In environment E, S is well-typed

E ~ e:bool E+-S Er~e:bool E+-S Ere:bool E-S: E-So

E+ while (€)S E-if (e)S E+ if (e) Si1else Sz

E - break E - continue
62

Return statements

e ret:T, represents return type of current method

EreT ret:TeE T<LT ret:void € E

E - return e; E - return;

63

Type-checking algorithm

1. Construct types

1. Add basic types to a “type table”

2. Traverse AST looking for user-defined types
(classes,methods,arrays) and store Iin table

3. Bind all symbols to types

64

Type-checking algorithm

2. Traverse AST bottom-up (using visitor)

1. For each AST node find corresponding rule
(there Is only one for each kind of node)

2. Check if rule holds

1. Yes: assign type to node according to consequent
2. NoO: report error

65

Algorithm example

Ry

E ~ el : bool E - e2 : bool

E+el && e2 : bool

E el : bool

- bool E ~ lel : bool

Erel:int Ere2:int

Er~el >e2: bool

:int :int - bool E - false : bool

E ~ /int-literal : int

45 > 32 && 'false

66

Type Safety Formally

e A program is typeable If there exists a
derivation of the types using the inference
rules

e A programming language Is type safe with
respect to a type system if every typable
program cannot go wrong

« No undefined behavior

= An interpreter will not get stuck
« A compiler will generate code w/o undefined
behavior

Eiffel, 1989

Cook, W.R. (1989) - A Proposal for Making Eiffel Type-Safe, in
Proceedings of ECOOP'89. S. Cook (ed.), pp. 57-70. Cambridge University
Press.

Betrand Meyer, on unsoundness of Eiffel:
“Eiffel users universally report that they almost never
run into such problems in real software development.”

Ten years later: Java

Java is not type-safe

iy maraewel
ATET Research, 180 Fark Aveniie, Flovham Favrk NI 07932

Proving Java Type Soundness

Don Syme”
emalil: drs1004@cl.cam.ac.uk

June 17, 1997

Javaggn: is Type-Safe — Definitely

Tobias Nipkow and David von Oheimb*
Fakultit fiir Informatik, Technische Universitat Miinchen
http://www4.informatik. tu-muenchen.de/" {nipkow|oheimb}

Java is Type Safe — Probably

Sophia Drossopoulou and Susan Eisenbach

Departmemt of Computing
Imperial College of Science, Technology and Medicine
cmail: 8d and se #¥doc.ic.ac.ak

Twenty years later: Java + Generics

Yossi Gil, Tomer Levy:
Formal Language Recognition with the Java Type Checker.
ECOOP 2016: 10:1-10:27

Radu Grigore:
Java generics are turing complete.
POPL 2017: 73-85

Nada Amin, Ross Tate:

Java and scala's type systems are unsound: the existential
crisis of null pointers.

OOPSLA 2016: 838-848

Type Checking Implementation

Type Checking Implementation

 Multiple AST traversals
* Permit use before definition
* Creates a symbol table and class table

Issues in Context Analysis Implementation

e Name Resolution
* Type Checking

— Type Equivalence
— Type Coercions

— Casts

— Polymorphism

— Type Constructors

Name Resolution (Identification)

* Connect applied occurrences of an identifier/operator to its defining
occurrence

month: Integer RANGE [1..12];

Name Resolution (Identification)

* Connect applied occurrences of an identifier/operator to its defining
occurrence

* Forward declarations
* Separate name spaces

struct one_int {
* Scope rules Inti;

}i;
1.1 =3;

75

A Simple Implementation

* A separate table per scope/name space

* Record properties of identifiers

 Create entries for defining occurrences
 Search for entries for applied occurrences
* Create table per scope enter

 Remove table per scope enter

* Expensive search

void roate(double angle) {

Example

}

void paint(int left, int right) {

Shade matt, signal;

{

}

Counter right; wrong ;

}

e
o
wrong }3 right
level =. Y g
| —
4 | :|->|‘|PI:|—|} || +
signal

m%tt

= g =

HTEH3°

pa| ro?te
 HTE{T
printf S|gnal

 CHTBATT=

scope stack

A Hash-Table Based Implementation

* A unified hashing table for all occurrences
» Separate entries for every identifier
* Ordered lists for different scopes

* Separate table maps scopes to the entries in the hash
* Used for ending scopes

Example

void roate(double angle) {

¥
void paint(int left, int right) {

Shade matt, signal;

{

Counter right; wrong ;

id.info
hash table name ——, paint
|_»| macro 7 =)
= decl —->| 1| P | _l"é
name ——p signal
—|_—»| Macro 7) -
dect >|3[P |pfo]r]| =
name —t—yp right
macro

decl =

P THP T35

Example(cont.)

void roate(double angle) {

¥
void paint(int left, int right) {

Shade matt, signal;

{

Counter right; wrong ;

id.info(“wrong”) id.info(“right”)
level

[Inu

4 | |
id.info(*'signal™) id.info("ma

1 1
=

3|—|75L
> [~
=
o [F-

scope stack

Overloading

* Some programming languages allow to resolve identifiers based on
the context
 3+5isdifferentthan3.1+5.1

* Overloading user defined functions
PUT(s: STRING) PUT(i: INTEGER)

* Type checking and name resolution interact
* May need several passes

Type Equivalence

* Name equivalence
* TYPE t1 = ARRAY[Integer] of Integer;
* TYPE t2 = ARRAY[Integer] of Integer;
* TYPE t3 = ARRAY[Integer] of Integer;
* TYPE t4 = 13;

* Structural equivalence
* TYPE t5= RECORD {c: Integer ; p: Pointer to t5;}
* TYPE t6= RECORD {c: Integer ; p: Pointer to t6 ;}

* TYPE t7 = RECORD {c: Integer ; p : Pointer to
RECORD {c: Integer ; p: Pointer to t5;}}

Casts and Coercions

* The compiler may need to insert implicit conversions between types
float x = 5;

* The programmer may need to insert explicit conversions between
types

Kind Checking

Defined L-values in assignments

expected

lvalue | rvalue

lvalue | - deref

punoy

rvalue |error |-

Type Constructors

* Record types
* Union Types
* Arrays

Arrays and Subtyping Can break type safety

Array of strings < Array of Any ?

Array[String] x = new Array|[String](1);
Array[Any] y= X;

y.set(0, new FooBar());

/] just stored a FooBar in a String array!

Routine Types

e Usually not considered as data
* The data can be a pointer to the generated code

Generics

* Enable reuse of code
* Types as “Variables”
* Generalize overloading

Generic Example

I/ generic method printArray
public static <E> void printArray(E[] inputArray) {
// Display array elements
for(E element : inputArray) {
System.out.printf("%s ", element);

¥
System.out.printin();

¥

Generic Example (use)

public static void main(String args[]) {
// Create arrays of Integer, Double and Character
Integer[] intArray ={ 1, 2,3,4,5 };
Character[] charArray = { 'H', 'E', 'L", 'L', 'O" };

System.out.printin("Array integerArray contains:");
printArray(intArray); // pass an Integer array

System.out.printin(*\nArray characterArray contains:");
printArray(charArray); // pass a Character array

¥
¥

Dynamic Checks

* Certain consistencies need to be checked at runtime in general
* But can be statically checked in many cases

* Examples
e Overflow
* Bad pointers
* Array out of bounds
e Safe downcasts

summary

* Semantics checks ensure good properties of
program

* Defined by the programming languages

* Tradeoffs
* Security
* Ease of use
e Efficiency of generated code
* Expressive power
* Reusability

* Implemented via multiple passes on the AST

