
Assembler/Linker/Loader

Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc20.html

Chapter 4.3

J. Levine: Linkers & Loaders

http://linker.iecc.com/
1



Outline

• Where does it fit into the compiler

• Functionality

• “Backward” description

• Assembler design issues

• Linker design issues

2



Assembler

• Generate executable code from assembly

• Yet another compiler

• One-to one translation

• Resolve external references

• Relocate code

• How does it fit together?

• Is it really part of the compiler?

3



Program Runtime State

Code

segment

Stack

segment

Data

Segment

Machine

Registers
4



Program Run

Code

segment

Stack

segment

Data

Segment

Machine

Registers

Operating System

Loader

.EXE

Code

segment

Data

Segment

Initial stack 

size

Start address

Debug
5



Program Run

Code

segment

Stack

segment

Data

Segment

Machine

Registers

.EXE

Code

segment

Data

Segment

Initial stack 

size

Start address

6



Loader (Summary)

• Part of the operating system

• Does not depend on the programming 

language

• Privileged mode

• Initializes the runtime state

• Invisible activation record

7



Linker

Code 

Segment

Data

Segment

Code 

Segment

Data

Segment

0

0

100
0

101

Relocation 

Bits

External Symbol Table

8



Linker

• Merge several executables

• Resolve external references

• Relocate addresses

• User mode

• Provided by the operating system

• But can be specific for the compiler

– More secure code

– Better error diagnosis

9



Relocation information

• How to change internal addresses

• Positions in the code which contains 

addresses (data/code)

• Two implementations

– Bitmap

– Linked-lists

10



External References

• The code may include references to external 

names (identifiers)

– Library calls

– External data

• Stored in external symbol table

11



Example

12



Recap

• Assembler generates binary code 

– Unresolved addresses

– Relocatable addresses

• Linker generates executable code

• Loader generates runtime states (images)

13



Assembler Design Issues 

• Converts symbolic machine code to binary

• One to one conversion
addl %edx, %ecx  000 0001 11 010 001 = 01 D1 (Hex)

• Some assemblers support overloading

– Different opcodes based on types

• Format conversions

• Handling internal addresses

14



Handling Internal Addresses

15



Resolving Internal Addresses

• Two scans of the code

– Construct a table label  address

– Replace labels with values

• Backpatching

– One scan of the code

– Simultaneously construct the table and resolve 

symbolic addresses

– Maintains list of unresolved labels

– Useful beyond assemblers

16



Backpatching

17



Handling External Addresses

• Record symbol table in external table

• Produce binary version together with the 
code and relocation bits

• Output of the assembly

– Code segment

– Data segment

– Relocation bits

– External table

18



Example of External Symbol Table

19



Example

20



Summary

• Code generation yields code which is still far from 
executable

– Delegate to existing assembler

• Assembler translates symbolic instructions into 
binary and creates relocation bits

• Linker creates executable from several files 
produced by the assembly

• Loader creates an image from executable

• Missing: Dynamic loading

21


