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Outline

• Where does it fit into the compiler

• Functionality

• “Backward” description

• Assembler design issues

• Linker design issues
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Assembler

• Generate executable code from assembly

• Yet another compiler

• One-to one translation

• Resolve external references

• Relocate code

• How does it fit together?

• Is it really part of the compiler?
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Loader (Summary)

• Part of the operating system

• Does not depend on the programming 

language

• Privileged mode

• Initializes the runtime state

• Invisible activation record
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Linker
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Linker

• Merge several executables

• Resolve external references

• Relocate addresses

• User mode

• Provided by the operating system

• But can be specific for the compiler

– More secure code

– Better error diagnosis
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Relocation information

• How to change internal addresses

• Positions in the code which contains 

addresses (data/code)

• Two implementations

– Bitmap

– Linked-lists
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External References

• The code may include references to external 

names (identifiers)

– Library calls

– External data

• Stored in external symbol table
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Example
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Recap

• Assembler generates binary code 

– Unresolved addresses

– Relocatable addresses

• Linker generates executable code

• Loader generates runtime states (images)
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Assembler Design Issues 

• Converts symbolic machine code to binary

• One to one conversion
addl %edx, %ecx  000 0001 11 010 001 = 01 D1 (Hex)

• Some assemblers support overloading

– Different opcodes based on types

• Format conversions

• Handling internal addresses

14



Handling Internal Addresses
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Resolving Internal Addresses

• Two scans of the code

– Construct a table label  address

– Replace labels with values

• Backpatching

– One scan of the code

– Simultaneously construct the table and resolve 

symbolic addresses

– Maintains list of unresolved labels

– Useful beyond assemblers
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Backpatching
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Handling External Addresses

• Record symbol table in external table

• Produce binary version together with the 
code and relocation bits

• Output of the assembly

– Code segment

– Data segment

– Relocation bits

– External table
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Example of External Symbol Table
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Example
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Summary

• Code generation yields code which is still far from 
executable

– Delegate to existing assembler

• Assembler translates symbolic instructions into 
binary and creates relocation bits

• Linker creates executable from several files 
produced by the assembly

• Loader creates an image from executable

• Missing: Dynamic loading
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