Abstract Syntax
Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc20.html

Abstract Syntax
Intermediate program representation

Defines a tree - Preserves program
hierarchy

Generated by the parser

Declared using an (ambiguous) context free
grammar (relatively flat)
— Not meant for parsing

Keywords and punctuation symbols are not
stored (Not relevant once the tree exists)

Topics

* Inductive Definitions
» Context Free Languages
« Example: Expressions

Inductive Definitions

« Many programming langue features are
defined by induction

Induction In
Programming Languages

» The syntax of programing languages is inductively
defined

— A number is expression
— If e, and e, are expressionsto so ise; + e,

 Types are inductively defined

— Intisatype

— Ift, t, ..., t are types then o _
struct { t, Iy, t, Iy; ..., Y I;} IS a type where iy, Iy, ..., I, are
Identifiers

e Recursive functions

— fac(n) =if n=1then 1 else n * fac(n-1)
fac,=1, fac,=n*fac, ,

Mathematical Induction

* P(n) Is a property of natural number n

* To show that P(n) holds for every n, it suffices
to show that:
— P(0) Is true
— If P(m) Is true then P(m+1) is true for every
number m
* In logic
— (P(0) AVM eN. P(m)= P(m+1)) =
vn eN. P(n)

P(0) P(m)P(m+1)
0 m m+1

Course of values Induction

* P(n) Is a property of natural number n

* To show that P(n) holds for every n, it suffices
to show that for all m if for all k <m, P(k)
holds then P(m)

* Inlogic

—Vvm eN. (Vk<m. P(k))= P(m)) =
vn eN. P(n)

P(0) P(1) P(k) P(m)
0 1 k m

Context Free Languages

Inductively define a set of words
Terminals

Non-Terminals
— Start Non-terminal

Rules
— Non-Terminal = Var, Var, ... Var,

Expression Definition (take 1)

exp =2 id

exp = num

exp —> exp Binop exp // binary expression
exp =>Unop exp // unary expression
Binop 2 +

Binop = -

Binop 2> *

Unop = -

Questions

« How to show that “x +5*y” Isan
expression

« How to show that “v v” Is not an expression
for any v?

10

“X+5*y” el(exp)

exp

Xee

C+
@ Binop
Coum >
5

VvV ¢ L(exp)

Ambiguous
Context Free Grammars

e Two syntax trees

ol

wo leftmost/rightmost derivations]

13

Ambiguity In Expressions

Non-Ambiguous
Expression Grammar

exp = term
exp = exp + term » factor - -factor
exp = exp - term - factor 2 id

factor 2 num
factor = (exp)

term - factor
term - term * factor

15

Non-Ambiguous
Expression Grammar (BNF)

o exp -2 term | exp + term | exp - term

 term -> factor | term - term * factor

 factor = -factor | i1d | num | (exp)

16

Abstract Syntax Tree

Intermediate program representation
Not meant for parsing

Hides irrelevant details

Defined by an ambiguous grammar

17

Abstract Syntax for Arithmetic Expressions

Exp —id (IdEXp)

Exp —>num (NumEXp)
Exp —Exp Binop Exp (BInOpEXp)
Exp —Unop Exp (UnOpEXxp)

Binop — + (Plus)
Binop — - (Minus)
Binop — * (Times)
Binop — / (Div)

Unop — - (UnMin)

18

package Absyn;
abstract public class Absyn { public int pos ;}
Exp extends Absyn {} ;
class IdExp extends Exp { String rep ;
IdExp(r) {rep=r;}
¥
class NumExp extends Exp { int number ;
NumExp(int n) { number =n ;}
¥
class OpExp {
public final static int PLUS=1; public final static int Minus=2;
public final static int Times=3; public final static int Div=4;
¥
final static int OpExp.PLUS, OpExp.Minus, OpExp.Times, OpExp.Div;
class BinExp extends Exp {
Exp left, right; OpEXxpop;
BinExp(Exp |, OpExp o, Bin Exp r) {
left=1; op=o0;right=r;
¥

19

Summary

 Abstract syntax provides a clear interface
with other compiler phases

— Supports general programming languages
— Can be stored for large programs

 Automatically generated during parsing

 But the design of an abstract syntax for a
given PL may take some time

20

