Intermediate
Representations

Mooly Sagiv

http://ellcc.org/demo/index.cgi
llvm.org
https://www.cis.upenn.edu/~stevez/ CS341

http://ellcc.org/demo/index.cgi
https://www.cis.upenn.edu/~stevez/ CS341

owe—Jiecure———fectoion L asgmen

20/10
27/10

3/11

10/11
17/11
26/11

1/12

8/12
15/12
22/12
29/12
5/1

12/1

Overview & AST

Assembler & Frames

Simplified translation& DP

IR+LLVM
LLVM Code Generation

Object Oriented Code
Generation

Semantic Analysis

Static Analysis
Lexical Analysis
Top-Down Parsing
Bottom-Up Parsing
X86 Code Generation

Advanced Topics

MiniJava

Visitor patterns

Symbol Tables
LLVM
LLVM Code Generation

LLVM Object Oriented
Code Generation

Semantic Analysis and
Type Checking

Static Analysis
Lexical Analysis
Top-Down Parsing
Bottom-Up Parsing

X86 Code Generation &
AR

Rehearsal

Variable&method renaming
(19/11)

Code generation (10/12)

Semantic Analysis (30/12)

Lexing & Parsing (14/1)

Outline

* Recap AST = X86
* |Rs
* LLVM by example

* Compiling LLVM into X86

* Register allocation
* |nstruction selection

Questions

* What is the maximal number of registers required in the code
generated from a given AST?

* What kind of trees generate that?

* What is the difference between the code generated for caller/callee
saved register?

wo Phase Solution
Dynamic Programming
Sethi & Ullman (R

* Bottom-up (labeling)

 Compute for every subtree
* The minimal number of registers needed

* Weight
* Top-Down
» Generate the code using labeling by preferring “heavier” subtrees (larger

labeling)
* Can integrate spilling

“Good” tree

? registers

“Bad” tree

n registers

n-1 registers /\ n-1 registers
/+\ /+\

N-2 registers n-2 registers n-2 registers n-2 registers

The need for global register allocation

int foo() {
intx=1;
X=X+1;
X=X+1;

printf(“%d”, x);
}

foo():

push rbp

mov rbp, rsp

sub rsp, 16

mov DWORD PTR [rbp-4], 1
add DWORD PTR [rbp-4], 1
add DWORD PTR [rbp-4], 1
mov eax, DWORD PTR [rbp-4]
mov esi, eax

mov edi, OFFSET FLAT:.LC1
mov eax, 0

call printf

nop

leave

ret

foo():

push
mov
sub
mov
add
add
mov
mov
mov
call
nop
leave
ret

rbp
rbp, rsp
rsp, 16
eax, 1
eax, 1
eax, 1
esi, eax
edi, OFFSET FLAT:.LC1
eax, 0
printf

Caller-Save and Callee-Save Registers

* callee-save-registers (MIPS 16-23, X86 r12-15, rbp, rsp)

* Saved by the callee when modified
* Values are automatically preserved across calls

e caller-save-registers
e Saved by the caller when needed
e Values are not automatically preserved

e Usually the architecture defines caller-save and callee-save
registers
e Separate compilation

* Interoperability between code produced by different
compilers/languages

* But compilers can decide when to use calller/callee registers

X86lite Registers: 16 64-bit registers

rax general purpose accumulator N
rbx base register, pointer to data N
rcx counter register for strings & loops N
rdx data register for 1/0O N
rsi pointer register, string source register N
rdi pointer register, string destination register N
rbp base pointer, points to the stack frame Y
rsp stack pointer, points to the top of the stack Y
ro8-ril General purpose registers N
r12-15 General purpose registers Y

Maintained Invariants: Callee Saved Registers

e Save (usually in the stack) before first use
* Restore before the call is ended
* Architecture support

Maintained Invariants: Caller Saved Registers

 Save (usually in the stack) before call if value is needed
* Restore after call

* Architecture support requires more effort

The need for global register allocation

int foo() {
intx=1;
X=X+1;
bar();
X=X+1;
printf(“%d”, x);
}

foo():

push rbp
mov rbp, rsp
sub rsp, 16
mov eax, 1
add eax, 1

add eax, 1

mov esi, eax

mov edi, OFFSET FLAT:.LC1
mov eax, 0

call printf

nop

leave

ret

foo():

push rbp
mov rbp, rsp
sub rsp, 16
mov eax, 1
add eax, 1
push eax

call bar()

pop eax

add eax, 1
mov esi, eax
mov edi, OFFSET FLAT:.LC1
mov eax, 0
call printf
nop

leave

ret

The Code Generation Problem

* Input: A high level program
e Output: Assembly Program

* Two related problems:
* Instruction selection
* Register allocation
* The problem is very hard

e Compilers break the program into subprograms and compile them separately maintaining
invariants

* Good but not optimal code

Granularity of compilation Complexity of optimal register allocation

Expression trees Linear

Procedure NP hard - Undecidable

Why intermediate representation?

* Breaks the compilation into well understood components
* Well tunes compilation techniques
* Instruction selection
* Register allocation
* More efficient generated code

* Reuse across different machines
* Reuse across different high level languages

CH+— :
ntium Gt Pentium
Jav Jav
> MIPS
C \ C_—>
P&SC/SDE\ rc Pasca/ Sparc

M

Intermediate Representations(IRs)

e Abstract machine code: hides details of the target architecture
* Allows machine independent code generation and optimization

Optimizations

Multiple IRs

* Goal: get program closer to machine code without losing the
information needed to do analysis and optimizations

* Multiple intermediate representations used for different purposes

Optimizations Optimizations Optimizations

What makes a good IR?

* Easy translation target
 from the level above

* Easy to translate
* to the level below

* Narrow interface
* Fewer constructs means simpler phases/optimizations

* Example: Source language might have “while”, “for”, and “foreach”
loops (and maybe more variants)

 "for(<pre>;<cond>;<post>){<body>" =<pre>; while<cond>{<body>; <post>}

IR’s at the extreme

* High-level IR’s
* AST + Extra nodes with type information
* Normal form
* Core language
e “Qli]”=*@a + i)=*(i+a)="i[a]”
* Machine dependent assembly code
e Extra pseudo code
* interfacing with garbage collector or memory allocators
 Unbounded number of registers
* Unify certain instructions
* General multiplications
e Brunch/Jump

X86 with symbolic registers
foo(): foo():
push rbp push rbp
mov rbp, rsp m mov rbp, rsp
int fOO() { sub rsp, 16 sl eax sub rsp, 16
intx=1 - mov s1,1 2 s mov eax, 1
’ mov s2, sl MoV eax, eax
x=x+1; add s2,1 R add eax, 1
X=x+1, mov s3,s2 mov eax, eax
printf(“%d”, x); add s3,1 add eax 1
} mov esi, s3 mov esi, eax
mov edi, OFFSET FLAT:.LC1 mov edi, OFFSET FLAT:.LC1
mov eax, 0 mov eax, 0
call printf call printf
leave leave
ret ret

X86 with symbolic registers
foo(): foo():
push rbp push rbp
mov rbp, rsp m mov rbp, rsp
int foo() { sub rsp, 16 s1 eax sub rsp, 16
intx=1: mov s1,1 2 s mov eax, 1
’ mov s2, sl moV-eax-—eax
Xx=x+1; add s2,1 R add eax, 1
X=x+1, mov s3, s2 ROvV—eax—eax
printf(“%d”, x); add s3,1 add eax, 1
} mov esi, s3 mov esi, eax
mov edi, OFFSET FLAT:.LC1 mov edi, OFFSET FLAT:.LC1
mov eax, 0 mov eax, 0
call printf call printf
leave leave
ret ret

Static Single Assignment(SSA)

* Every variable has a unique assignment
* Defined before used

* Makes the program functional
e Simplifies program reasoning

Converting to SSA

Y3<=0(yy, ¥,)
Z <X,1Y3

Source: Wikipedia

Mid-level IR’s: Many Varieties

* Intermediate between AST (abstract syntax) and assembly
* May have unstructured jumps, abstract registers or memory locations
e Convenient for translation to high-quality machine code

R Bamples ___[Pos ________|Cons

Quadruples RISC Flexible Suboptimal X86
a=bopc translation

(3-address)

Variant of quadruples with LLVM Facilitates Verbose

SSA optimizations

Triples(2-addres) Easy to generate X86 Register allocation may
X=XO0pYy via tiling be harder

Stack based UCODE, Java Easy to generate code Hard to optimize

Bytecode

Basic Block

* Parts of control graph without split

* A sequence of assignments and expressions which are always
executed together

* Maximal Basic Block Cannot be extended

 Start at label or at routine entry
* Ends just before jump like node, label, procedure call, routine exit

25

Example Basic Blocks

void foo()

{

if (x>8){
z=09;
t=z+1;
¥
Z2=2%*12
t=t-2z,;
bar();
t=t+1,

t=z+1;

26

Control Flow Graph

* The compiler does not know the actual executions

A finite directed graph conservatively represents all behaviors
* Nodes are basic blocks
* Edges represent immediate flow of control

27

Example Control Flow Graph

void foo()

{

if (x>8){
z=09;
t=z+1;
¥
Z2=2%*12
t=t-2z,;
bar();
t=t+1,

>8]

Z=9:

t=z+1;

28

Constructing Basic Blocks

* Applied for each function body
* Scan the statement list from left to right
* Whenever a LABEL is found

* a new block begins (and the previous block ends)

e Whenever JUMP or BRANCH are found

 the current block ends (and the next block begins)

 When a block ends without JUMP or BRANCH}
* JUMP to the following LABEL

e When a block does not start with a LABEL
e Add a LABEL

* At the end of the function body jump to the beginning of the epilogue

What is the LLVM Project?

* Collection of industrial strength compiler technology

* Optimizer and Code Generator
* |lvm-gcc and Clang Front-ends
 MSIL and .NET Virtual Machines ’

» Started as a PhD by Chris Lattner
* University of lllinois Urbana-Champaign
 ACM Software System Award

LLVM Vision and Approach

* build a set of modular compiler components

* Reduces the time & cost to construct a particular compiler
 Components are shared across different compilers

* Allows choice of the right component for the job

X86 PPC CBE clang claa LTO

Code

DWARF Target gen JIT Optzn linker IPO

BC 1O LLIO System Core Support Xxforms analysis GC

GNU Compiler Collection(gcc)

* GNU Project
* 1987—now
* Various programming languages and architectures

* Highly optimized |
* 7,348,239 lines of code Richard Stallman
 Hard to extend

LLVM gccd.2 Design

* Reuses gcc optimizer and code generation with LLVM
* Reuses parser and runtime libraries

gcc 4.2 gcc 4.2 gcc 4.2 < file
Frontend Optimizer Code Generator '
gcc4.2 LLVM LLVM ,
s file

Frontend Optimizer Code Generator

r. . define i32 @fact(i32) #0 {
Compiling factorial %2 = alloca i32, align 4

%3 = allocai32, align 4
store i32 %0, i32* %3, align 4
%4 =load i32, i32* %3, align 4

int factorial(int num) { %5 =icmp eq i32 %4, 1
if (num==1)return1; bril %5, label %6, label %7
else return num * factorial(num -1); ; <label>:6: ; preds = %1
} storei32 1,i32* %2, align 4
br label %13
; <label>:7: ; preds = %1

%8 = load i32, i32* %3, align 4
%9 = load i32, i32* %3, align 4
%10 = sub nsw i32 %9, 1
%11 = call i32 @fact(i32 %10)
%12 = mul nsw i32 %8, %11
store i32 %12, i32* %2, align 4
br label %13
; <label>:13: ; preds = %7, %6
%14 =load i32, i32* %2, align 4
reti32 %14
}

Compiling LLVM to X86

e Instruction selection
* Map sequences of LLVM instructions into X86

* Compile 3-address into 2-address
e “%10=subnswi32%9,1” = mov %10, %9 ; sub32 %10, 1

* Register allocation
* Allocate physical registers to symbolic
* Increase stack frame if necessary

Instruction Selection

* Every instruction has a cost
e “Tile” every LLVM instruction with an appropriate sequence
e Can deploy dynamic programming

Register Allocation

* Map symbolic registers into physical

* Chose between caller= and callee-save registers
* Reuse machine registers

e Avoid store/loads

* Sometimes eliminate mov
* Allocate the same register to source and target

A Simple Example

LO:

L1:

a<0
b«—a+1l
C«cC+hb
a<b*2

iIfc<Ngoto L1
return c

LO:

L1:

1«0

Nerl+1
2« r12+rl
1<«rl*2

Ifr2<Ngoto L1
return r2

Can this be implemented in a machine with two

registers?

Live symbolic registers

* A symbolic register is live at a program point if it may be used before
set on some path from this point

* A symbolic register is not live (dead) at a program point if it is not
used on all paths from this point

Liveness in the example

LO: a<«0
b«—a+1
L1: b«—a+1
c<cCc+b
cC«cCc+bhb
a«<b*2
a<h*2

if c <N goto L1

iIfc<Ngoto L1
return c

return c

40

Which variables are live at the entry to the
orocedure?

void foo()

{

if (x>8){
z=09;
t=z+1;
¥
Z2=2%*1
t=t-2z,
bar();
t=t+1,

Live symbolic registers

* A symbolic register is live at a program point if it may be used before
set on some path from this point

* A symbolic register is not live (dead) at a program point if it is not
used on all paths from this point

* The problem of computing liveness is undecidable

X=05;
foo();
Y=X

* But the compiler can over-approximate
* Every live variable is detected

Using Liveness information

* Symbolic Registers which are not live together can share the same
symbolic register

Using Liveness Information

c«c+b

a«<b*2

if c< N goto L1

return c

44

Coloring the graph

LO: a<«0

L1: b«a+1l
C«<cCc+hb
a<b*2

ifc<Ngoto L1
return c

rl rl

r2

LO:

L1:

1< 0

NNerl+1
2«r2+rl
l«rl*>2

Ifr2<Ngoto L1
return c

45

Remaining Problems

* Compute liveness information

e Color the graph

Computing Liveness(Simple Algorithm)

* Reverse the control flow graph
* Every variable is live from its use until the first assignment

e Can be computed via Depth First Search
* Cycles do not matter

Computing Liveness via DFS(1)

be—a+1
c«c+b

a«<b*2

if c< N goto L1

return c

48

Computing Liveness via DFS(2)

be—a+1
c«c+b

a«<b*2

if c <N goto L1

return c

49

Computing Liveness via DFS(3)

be—a+1
c«c+b

a<b*2

if c< N goto L1

return c

50

Computing Liveness via DFS(4)

be—a+1
c«c+b

a«<b*2

if c< N goto L1

return c

51

Computing Liveness via DFS(5)

be—a+1
c«c+b

a«<b*2

if c< N goto L1

return c

52

Computing Liveness via DFS(6)

b—a+1
c«c+b

a«<b*2

if c< N goto L1

return c

53

Coloring by Simplification
[Kempe 1879]

e K
* the number of machine registers
* G(V, E)
* the interference graph
* Consider a node v €V with less than K neighbors:

e ColorG—vin K colors
e Color vin a color different than its (colored) neighbors

54

Graph Coloring by Simplification

| Build: Construct the interference graph |

!

Simplify: Recursively remove nodes with less than K b

neighbors ; Push removed nodes into stack

l

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

1

| Select: Assign actual registers (from simplify/spill stack) @

l

\l

Actual-Spill: Spill some potential spills and repeat the process |

95

Artificial Example K=2

@

t6

56

Artificial Example K=2

@

t6

O

o7

(¥

Artificial Example K=2

®

()
)

58

t2
(¥

Artificial Example K=2

®

()
)

59

t3
t2
t1

Artificial Example K=2

®

()
)

60

t4
t3
t2
t1

Artificial Example K=2

OX0.

®
()

61

t5
t4
t3
t2
(¥

Artificial Example K=2

OX0.

®

62

t6
t5
t4
t3
t2
(o

Artificial Example K=2

OX0.

®

OXO0,

63

t7
t6
t5
t4
t3
t2
tl

Artificial Example K=2

OX0.

®

OXO0,

64

t6
t5
t4
t3
t2
t1

Artificial Example K=2

OX0.

®

R1

OXO0,

65

t5
t4
t3
t2
tl

Artificial Example K=2

OX0.

66

t4
t3
t2
tl

Artificial Example K=2

OX0.

®

R1

R2

67

t3
t2
tl

Artificial Example K=2

®

R1

R2

)

R2

68

t2
tl

Artificial Example K=2

®

R1

R2

)

R2

69

tl

Artificial Example K=2

®

R1

R2

R2 R1

70

Artificial Example K=2

71

Artificial Example K=2

R2
©

R1 R2

72

Extensions

* Spilling heuristics
* MOV nodes
* Caller-/Callee Save Registers

summary

* Intermediate Languages simplifies compilation

* Two related problems:
* Instruction selection
* Register allocation

* LLVM provides a reusable software platform to implement both

