
Program analysis

Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc12-13.html

1

Abstract Interpretation

Static analysis

• Automatically identify program properties
– No user provided loop invariants

• Sound but incomplete methods
– But can be rather precise

• Non-standard interpretation of the program
operational semantics

• Applications
– Compiler optimization

– Code quality tools
• Identify potential bugs

• Prove the absence of runtime errors

• Partial correctness
2

Control Flow Graph(CFG)

z = 3

while (x>0) {

 if (x = 1)

 y = 7;

 else

 y =z + 4;

 assert y == 7

}

z =3

while (x>0)

if (x=1)

y =7 y =z+4

assert y==7
3

Iterative Approximation
[x?, y?, z?]

[x?, y?, z  3]

[x?, y?, z3] [x1, y?, z3]

[x?, y7, z3]

[x?, y?, z3]

z :=3

z <=0

z >0

[x1, y7, z3]

[x?, y7, z3]

List reverse(Element head)

{

 List rev, n;

rev = NULL;

 while (head != NULL) {

 n = head next;

 head  next = rev;

 head = n;

 rev = head;

 }

return rev;

}

Memory Leakage

potential leakage of address
pointed to by head

5

Memory Leakage
Element reverse(Element head)

{

 Element rev, n;

rev = NULL;

 while (head != NULL) {

 n = head  next;

 head  next = rev;

 rev = head;

 head = n;

 }

return rev; }

No memory leaks

6

A Simple Example

 void foo(char *s)

 {

 while (*s != ‘ ‘)

 s++;

 *s = 0;

 }

Potential buffer overrun:

 offset(s)  alloc(base(s))

7

A Simple Example

 void foo(char *s) @require string(s)

 {

 while (*s != ‘ ‘&& *s != 0)

 s++;

 *s = 0;

 }

No buffer overruns

8

Example Static Analysis Problem

• Find variables which are live at a given

program location

• Used before set on some execution paths

from the current program point

9

A Simple Example

/* c */

L0: a := 0

/* ac */

L1: b := a + 1

/* bc */

 c := c + b

/* bc */

 a := b * 2

/* ac */

 if c < N goto L1

/* c */

 return c

a b

c

ac

bc

 bc

ac

c

c < N

c

a :=0

b := a +1

c := c +b

a := b * 2

c  N

10

Compiler Scheme

String

 Scanner

Parser

Semantic Analysis

Code Generator

Static analysis

 Transformations

Tokens

source-program

tokens

AST

IR

IR +information

11

Undecidability issues

• It is impossible to compute exact static

information

• Finding if a program point is reachable

• Difficulty of interesting data properties

12

Undecidabily

• A variable is live at a given

point in the program

– if its current value is used after this point prior to

a definition in some execution path

• It is undecidable if a variable is live at a

given program location

13

Proof Sketch

Pr

L: x := y

Is y live at L?

14

Conservative (Sound)

• The compiler need not generate the optimal
code

• Can use more registers (“spill code”) than
necessary

• Find an upper approximation of the live
variables

• Err on the safe side

• A superset of edges in the interference graph

• Not too many superfluous live variables

15

Conservative(Sound) Software

Quality Tools

• Can never miss an error

• But may produce false alarms

– Warning on non existing errors

16

Iterative Solution

• Generate a system of equations per procedure

– Defines the live variables recursively

• The live variables at the return of the procedure is

known

• The live variables before a statement (basic block)

are defined in terms of the live variables after the

procedure

• The live variables at control flow join is the union

of live variables at successor nodes

• Compute the minimal solution
17

The System of Equations

/* c */

L0: a := 0

/* ac */

L1: b := a + 1

/* bc */

 c := c + b

/* bc */

 a := b * 2

/* ac */

 if c < N goto L1

/* c */

 return c
18

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

Transfer Functions

LiveVariables

• If a and c are potentially live after

 “a = b *2”

– then b and c are potentially live before

• For “x = exp;”

– LiveIn = (Livout – {x})  arg(exp)

19

The System of Equations / Solutions

20

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{c}

{a, c}

{b, c}

{b, c}

{a, c}

{ c}

{c}

{a, c}

{b, c}

{b, c}

{ c}

{ c}

{c, d}

{a, c, d}

{b, c, d}

{b, c, d}

{a, c, d}

{ c}

The Simultaneous Least Solution

• Every equation is monotone in the inputs

• Unique least solution

• Guaranteed to be sound

– Every live variable is detected

• May be overly conservative

• Optimal under the condition that every control flow path is

feasible

• Can be computed iteratively on O(nested loops * N)

21

Iterative computation of

conservative static information

• Construct a control flow graph(CFG)

• Optimistically start with the best value at

every node

• “Interpret” every statement in a

conservative way

• Backward traversal of CFG

• Stop when no changes occur

22

Pseudo Code
live_analysis(G(V, E): CFG, exit: CFG node, initial: value){

 // initialization

 lv[exit]:= initial

 for each v  V – {exit} do lv[v] := 

 WL = {exit}

 while WL != {} do

 select and remove a node v WL

 for each u  V such that (u, v) do

 lv[u] := lv[u]  ((lv[v] – kill[u, v])  gen[u, v]

 if lv[u] was changed WL := WL  {u}

23

The System of Equations / Iteration 1

24

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{}

{}

{}

{}

{}

{c } WL={5}

The System of Equations / Iteration 2

25

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{}

{}

{}

{}

{c}

{c }

WL={4}

The System of Equations / Iteration 3

26

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{}

{}

{}

{c, b}

{c}

{c }

WL={3}

The System of Equations / Iteration 4

27

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{}

{}

{c, b}

{c, b}

{c}

{c }

WL={2}

The System of Equations / Iteration 5

28

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{}

{c, a}

{c, b}

{c, b}

{c}

{c }

WL={1, 5}

The System of Equations / Iteration 6

29

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{}

{c, a}

{c, b}

{c, b}

{c, a}

{c }

WL={1}

The System of Equations / Iteration 7

30

Lv[6] = {c}

Lv[5] = (Lv[2] -  {c}) 

 (Lv[6] -  {c})

Lv[4] = Lv[5] – {a} {b}

Lv[3] = Lv[4] – {c} {c, b}

Lv[2] = Lv[3] – {b} {a}

Lv[1] = Lv[2] – {a}  

c < N

2

3

 4

5

6

1

a :=0

b := a +1

c := c +b

a := b * 2

c  N

{c}

{c, a}

{c, b}

{c, b}

{c, a}

{c }

WL={}

Summary Iterative Procedure

• Analyze one procedure at a time

– More precise solutions exit

• Construct a control flow graph for the

procedure

• Initializes the values at every node to the

most optimistic value

• Iterate until convergence

31

