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Topics 

• Heap allocation 

• Manuel heap allocation 

• Automatic memory reallocation (GC) 
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Limitations of Stack Frames 

• A local variable of P cannot be stored in the 

activation record of P if its duration exceeds 

the duration of P 

• Example: Dynamic allocation 

int * f()  { return (int *) malloc(sizeof(int)); 

} 
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Currying Functions  

int (*)() f(int x)  

{ 

   int g(int y)    

   { 

       return x + y; 

    } 

    return g ; 

 } 

 

int (*h)() = f(3); 

int (*j)()  = f(4); 

 

int z = h(5); 

int  w = j(7); 
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Data Allocation Methods 

• Explicit deallocation 

• Automatic deallocation 
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Explicit Deallocation  

• Pascal, C, C++ 

• Two basic mechanisms 

– void * malloc(size_t size) 

– void free(void *ptr) 

• Part of the language runtime 

• Expensive 

• Error prone 

• Different implementations 
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Memory Structure used by 

malloc()/free() 
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Simple Implementation 

call gc 
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Next Free Block 
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Splitting Chunks 
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Coalescing Chunks 
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Fragmentation 

• External 

– Too many small chunks 

• Internal 

–  A use of too big chunk without splitting the 

chunk 

• Freelist may be implemented as an array of 

lists 
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Garbage Collection 
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What is garbage collection 

• The runtime environment reuse chunks that were 

allocated but are not subsequently used 

• garbage chunks  

– not live 

• It is undecidable to find the garbage chunks: 

– Decidability of liveness 

– Decidability of type information 

• conservative collection 

– every live chunk is identified 

– some garbage runtime chunk are not identified 

• Find the reachable chunks via pointer chains 

• Often done in the allocation function 
16 
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typedef struct list  {struct list *link; int key} *List; 

typedef struct tree {int key; 

                                struct tree *left:   

                                struct tree *right} *Tree; 

foo() {    List x = cons(NULL, 7); 

    List y = cons(x, 9); 

   x->link = y; 

     } 

void main() { 

  Tree p, r; int q; 

  foo(); 

  p = maketree();   r = p->right; 

  q= r->key; 

  showtree(r);} 

 

 

 

p 

q 

r 

17 



 

 

stack heap 

7 

link 

key 
x 

y 

key 

link 

9 

typedef struct list  {struct list *link; int key} *List; 

typedef struct tree {int key; 

                                struct tree *left:   

                                struct tree *right} *Tree; 

foo() {    List x = cons(NULL, 7); 

    List y = cons(x, 9); 

   x->link = y; 

     } 

void main() { 

  Tree p, r; int q; 

  foo(); 

  p = maketree();   r = p->right; 

  q= r->key; 

  showtree(r);} 
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typedef struct list  {struct list *link; int key} *List; 

typedef struct tree {int key; 

                                struct tree *left:   

                                struct tree *right} *Tree; 

foo() {    List x = create_list(NULL, 7); 

    List y = create_list(x, 9); 

   x->link = y; 

     } 

void main() { 

  Tree p, r; int q; 

  foo(); 

  p = maketree();   r = p->right; 

  q= r->key; 

  showtree(r);} 
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Outline 

• Why is it needed? 

• Why is it taught? 

• Reference Counts 

• Mark-and-Sweep Collection 

• Copying Collection 

• Generational Collection 

• Incremental Collection 

• Interfaces to the Compiler 

Tracing 
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A Pathological C Program 

a =  malloc(…) ; 

b = a; 

free (a); 

c = malloc (…); 

if  (b == c)  printf(“unexpected equality”); 
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Garbage Collection vs.  

Explicit Memory Deallocation 

• Faster program development 

• Less error prone 

• Can lead to faster programs 
– Can improve locality of 

references 

• Support very general 
programming styles, e.g. 
higher order and OO 
programming 

• Standard in ML, Java, C# 

• Supported in C and C++ via 
separate libraries 

• May require more space 

• Needs a large memory 

• Can lead to long pauses 

• Can change locality of 
references 

• Effectiveness depends on 
programming language 
and style 

• Hides documentation 

• More trusted code 
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Interesting Aspects of Garbage Collection 

• Data structures 

• Non constant time costs 

• Amortized algorithms 

• Constant factors matter 

• Interfaces between compilers and runtime 

environments 

• Interfaces between compilers and virtual 

memory management 
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Reference Counts 

• Maintain a counter per chunk 

• The compiler generates code to update 

counter 

• Constant overhead per instruction 

• Cannot reclaim cyclic elements 
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Another Example 

x 
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Another Example (xb=NULL) 

x 
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Code for p := q 
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Recursive Free 
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Lazy Reference Counters 

• Free one element 

• Free more elements when required 

• Constant time overhead 

• But may require more space 
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Reference Counts (Summary) 

• Fixed but big constant overhead 

• Fragmentation 

• Cyclic Data Structures 

• Compiler optimizations can help 

• Can delay updating reference counters from the stack 

• Implemented in libraries and file systems 
– No language support 

• But not currently popular 

• Will it be popular for large heaps? 
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Mark-and-Sweep(Scan) Collection 

• Mark the chunks reachable from the roots 

(stack, static variables and machine 

registers) 

• Sweep the heap space by moving 

unreachable chunks to the freelist (Scan) 
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The Mark Phase 

for each root v 

   DFS(v) 

 

function DFS(x) 

   if x is a pointer and chunk x is not marked 

                mark x 

                for each reference field fi of chunk x 

                     DFS(x.fi) 
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The Sweep Phase 

p := first address in heap 

while p < last address in the heap 

        if chunk p is marked 

                   unmark p 

        else let f1 be the first pointer reference field in p 

                       p.f1 := freelist 

                       freelist := p 

        p := p + size of chunk p 
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Cost of GC 

• The cost of a single garbage collection can be 
linear in the size of the store 
– may cause quadratic program slowdown 

• Amortized cost 
– collection-time/storage reclaimed 

– Cost of one garbage collection 
• c1 R + c2 H 

– H - R Reclaimed chunks 

– Cost per reclaimed chunk 
• (c1 R + c2 H)/ (H - R) 

– If R/H > 0.5 
•  increase H 

– if R/H < 0.5  
•  cost per reclaimed word is c1 + 2c2 ~16 

– There is no lower bound 
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The Mark Phase 

for each root v 

   DFS(v) 

 

function DFS(x) 

   if x is a pointer and chunk x is not marked 

                mark x 

                for each reference field fi of chunk x 

                     DFS(x.fi) 
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Efficient implementation of Mark(DFS) 

• Explicit stack 

• Parent pointers 

• Pointer reversal 

• Other data structures 
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Adding Parent Pointer 
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Avoiding Parent Pointers 

(Deutch-Schorr-Waite) 

• Depth first search can be implemented without 

recursion or stack 

• Maintain a counter of visited children 

• Observation: 

– The pointer link from a parent to a child is not needed 

when it is visited 

– Temporary store pointer to the parent (instead of the 

field) 

– Restore when the visit of child is finished 
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Arriving at C 
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Visiting n-pointer field D 

SET old parent pointer TO parent pointer ; 

SET Parent pointer TO chunk pointer ;  

SET Chunk pointer TO n-th pointer field of C; 

SET n-th pointer field in C TO  old parent pointer;  
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About to return from D 

SET old parent pointer TO Parent pointer ; 

SET Parent pointer TO n-th pointer field of C ;  

SET n-th pointer field of C TO chunk pointer; 

SET chunk pointer TO  old parent pointer;  45 



Compaction 

• The sweep phase can compact adjacent 

chunks 

• Reduce fragmentation 
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Copying Collection 

• Maintains two separate heaps 
– from-space  

– to-space 

• pointer next to the next free chunk in from-space 

• A pointer limit to the last chunk in from-space 

• If next = limit copy the reachable chunks from 
from-space into to-space 
– set next and limit 

– Switch from-space and to-space 

• Requires type information 

From-space 

 

 

To-Space 

 

 

next 

limit 47 



Breadth-first Copying Garbage Collection 

next := beginning of to-space 

scan := next 

for each root r 

     r := Forward(r) 

while scan < next 

             for each reference field fi of chunk at scan 

                        scan.fi := Forward(scan.fi) 

             scan := scan + size of chunk at scan 
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The Forwarding Procedure 
function  Forward(p) 

    if p points to from-space 

               then if p.f1 points to to-space 

                            return p.f1 

                            else for each reference field fi of p 

                                  next.fi := p.fi 

                                 p.f1 := next 

                                 next := next size of chunk p 

                                 return p.f1 

                        else return p 49 



A Simple Example  
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Amortized Cost of Copy Collection 

c3R / (H/2 - R) 
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Locality of references 

• Copy collection does not create fragmentation 

• Cheney's algorithm may lead to subfields that point 
to far away chunks  

– poor virtual memory and cache performance 

• DFS normally yields better locality but is harder to 
implement 

• DFS may also be bad for locality for chunks with 
more than one pointer fields 

• A compromise is a hybrid breadth first search with 
two levels down (Semi-depth first forwarding) 

• Results can be improved using dynamic 
information 
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The New Forwarding Procedure 

function Forward(p) 

    if p points to from-space 

               then if p.f1 points to to-space 

                            return p.f1 

              else Chase(p); return p.f1 

else return p 

function Chase(p) 

repeat 

    q := next 

    next := next +size of chunk p 

    r := null 

   for each reference field fi of p 

        q.fi := p.fi 

        if q.fi points to from-space and                                   

 q.fi.f1 does not point to to-space 

                                   then r := q.fi 

               p.f1 := q 

               p := r 

    until p = null 64 



Generational Garbage Collection 

• Newly created objects contain higher 
percentage of garbage 

• Partition the heap into generations G1 and G2 

• First garbage collect the G1 heap  

– chunks which are reachable  

• After two or three collections chunks are 
promoted to G2 

• Once a while garbage collect G2 

• Can be generalized to more than two heaps 

• But how can we garbage collect in G1? 
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Scanning roots from older generations 

• remembered list 

– The compiler generates code after each destructive 
update  b.fi := a 
to put b into a vector of updated objects scanned by the 
garbage collector 

• remembered set  

– remembered-list + “set-bit” 

• Card marking 

– Divide the memory into 2k cards 

• Page marking 

– k = page size 

– virtual memory system catches updates to old-
generations using the dirty-bit 
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Incremental Collection 

• Even the most efficient garbage collection can 
interrupt the program for quite a while 

• Under certain conditions the collector can run 
concurrently with the program (mutator) 

• Need to guarantee that mutator leaves the chunks in 
consistent state, e.g., may need to restart collection 

• Two solutions 

– compile-time 
•  Generate extra instructions at store/load 

– virtual-memory  
• Mark certain pages as read(write)-only 

•  a write into (read from) this page by the program restart 
mutator 
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Tricolor marking 

• Generalized GC  

• Three kinds of chunks 

– White 

• Not visited (not marked or not copied) 

– Grey  

• Marked or copied but children have not been 

examined 

– Black 

•  Marked and their children are marked 
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Basic Tricolor marking 

while there are any grey objects 

   select a grey chunk p 

  for each reference field fi of 

chunk p 

             if chunk p.fi is white 

                 color chunk p.fi grey 

color chunk p black 

Invariants 

•No black points to white 

•Every grey is on the collector's 

(stack or queue) data structure 
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Establishing the invariants 

 
• Dijkstra, Lamport, et al 

–  Mutator stores a white pointer a into a black pointer b 
• color a grey (compile-time) 

• Steele  
– Mutator stores a white pointer a into a black pointer b 

• color b grey (compile-time) 

• Boehm, Demers, Shenker 
– All black pages are marked read-only 

– A store into black page  mark all the objects in this page grey (virtual 
memory system) 

• Baker 
– Whenever the mutator fetches a pointer b to a grey or white object 

• color b grey (compile-time) 

• Appel, Ellis, Li 
– Whenever the mutator fetches a pointer b from a page containing a non 

black object  
• color every object on this page black and children grey (virtual memory system) 
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Interfaces to the Compiler 

• The semantic analysis identifies chunk fields which 

are pointers and their size 

• Generate runtime descriptors at the beginning of 

the chunks 

– Can employ different allocation/deallocation functions 

• Pass the descriptors to the allocation function 

• The compiler also passes pointer-map 

– the set of live pointer locals, temporaries, and registers 

• Recorded at ?-time for every procedure  
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Summary 

• Garbage collection is an effective technique 

• Leads to more secure programs 

• Tolerable cost 

• But is not used in certain applications 

– Realtime 

• Generational garbage collection works fast 

– Emulates stack 

• But high synchronization costs 

• Compiler can allocate data on stack sometimes 

– Escape analysis 

• May be improved 
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