
Memory Management

Chapter 5
Mooly Sagiv

http://www.cs.tau.ac.il/~msagiv/courses/wcc12-13.html

1

Topics

• Heap allocation

• Manuel heap allocation

• Automatic memory reallocation (GC)

2

Limitations of Stack Frames

• A local variable of P cannot be stored in the

activation record of P if its duration exceeds

the duration of P

• Example: Dynamic allocation

int * f() { return (int *) malloc(sizeof(int));

}

3

Currying Functions

int (*)() f(int x)

{

 int g(int y)

 {

 return x + y;

 }

 return g ;

 }

int (*h)() = f(3);

int (*j)() = f(4);

int z = h(5);

int w = j(7);
4

Program Runtime State

Code

segment

Stack

segment

Data

Segment

Machine

Registers

fixed

heap

5

Data Allocation Methods

• Explicit deallocation

• Automatic deallocation

6

Explicit Deallocation

• Pascal, C, C++

• Two basic mechanisms

– void * malloc(size_t size)

– void free(void *ptr)

• Part of the language runtime

• Expensive

• Error prone

• Different implementations

7

Memory Structure used by

malloc()/free()

8

Simple Implementation

call gc

9

Next Free Block

10

Splitting Chunks

11

Coalescing Chunks

12

Fragmentation

• External

– Too many small chunks

• Internal

– A use of too big chunk without splitting the

chunk

• Freelist may be implemented as an array of

lists

13

Garbage Collection

HEAP

ROOT SET

a

b

c

d

e

f

Stack +Registers
14

Garbage Collection

HEAP

ROOT SET

a

b

c

d

e

f

Stack +Registers
15

What is garbage collection

• The runtime environment reuse chunks that were

allocated but are not subsequently used

• garbage chunks

– not live

• It is undecidable to find the garbage chunks:

– Decidability of liveness

– Decidability of type information

• conservative collection

– every live chunk is identified

– some garbage runtime chunk are not identified

• Find the reachable chunks via pointer chains

• Often done in the allocation function
16

stack heap

7

link
x

y

link

9

typedef struct list {struct list *link; int key} *List;

typedef struct tree {int key;

 struct tree *left:

 struct tree *right} *Tree;

foo() { List x = cons(NULL, 7);

 List y = cons(x, 9);

 x->link = y;

 }

void main() {

 Tree p, r; int q;

 foo();

 p = maketree(); r = p->right;

 q= r->key;

 showtree(r);}

p

q

r

17

stack heap

7

link

key
x

y

key

link

9

typedef struct list {struct list *link; int key} *List;

typedef struct tree {int key;

 struct tree *left:

 struct tree *right} *Tree;

foo() { List x = cons(NULL, 7);

 List y = cons(x, 9);

 x->link = y;

 }

void main() {

 Tree p, r; int q;

 foo();

 p = maketree(); r = p->right;

 q= r->key;

 showtree(r);}

p

q

r

18

typedef struct list {struct list *link; int key} *List;

typedef struct tree {int key;

 struct tree *left:

 struct tree *right} *Tree;

foo() { List x = create_list(NULL, 7);

 List y = create_list(x, 9);

 x->link = y;

 }

void main() {

 Tree p, r; int q;

 foo();

 p = maketree(); r = p->right;

 q= r->key;

 showtree(r);}

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

19

Outline

• Why is it needed?

• Why is it taught?

• Reference Counts

• Mark-and-Sweep Collection

• Copying Collection

• Generational Collection

• Incremental Collection

• Interfaces to the Compiler

Tracing

20

A Pathological C Program

a = malloc(…) ;

b = a;

free (a);

c = malloc (…);

if (b == c) printf(“unexpected equality”);

21

Garbage Collection vs.

Explicit Memory Deallocation

• Faster program development

• Less error prone

• Can lead to faster programs
– Can improve locality of

references

• Support very general
programming styles, e.g.
higher order and OO
programming

• Standard in ML, Java, C#

• Supported in C and C++ via
separate libraries

• May require more space

• Needs a large memory

• Can lead to long pauses

• Can change locality of
references

• Effectiveness depends on
programming language
and style

• Hides documentation

• More trusted code

22

Interesting Aspects of Garbage Collection

• Data structures

• Non constant time costs

• Amortized algorithms

• Constant factors matter

• Interfaces between compilers and runtime

environments

• Interfaces between compilers and virtual

memory management

23

Reference Counts

• Maintain a counter per chunk

• The compiler generates code to update

counter

• Constant overhead per instruction

• Cannot reclaim cyclic elements

24

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

1

1

1

2

1

1

1

25

Another Example

x

26

Another Example (xb=NULL)

x

27

Code for p := q

28

Recursive Free

29

Lazy Reference Counters

• Free one element

• Free more elements when required

• Constant time overhead

• But may require more space

30

Reference Counts (Summary)

• Fixed but big constant overhead

• Fragmentation

• Cyclic Data Structures

• Compiler optimizations can help

• Can delay updating reference counters from the stack

• Implemented in libraries and file systems
– No language support

• But not currently popular

• Will it be popular for large heaps?

31

Mark-and-Sweep(Scan) Collection

• Mark the chunks reachable from the roots

(stack, static variables and machine

registers)

• Sweep the heap space by moving

unreachable chunks to the freelist (Scan)

32

The Mark Phase

for each root v

 DFS(v)

function DFS(x)

 if x is a pointer and chunk x is not marked

 mark x

 for each reference field fi of chunk x

 DFS(x.fi)
33

The Sweep Phase

p := first address in heap

while p < last address in the heap

 if chunk p is marked

 unmark p

 else let f1 be the first pointer reference field in p

 p.f1 := freelist

 freelist := p

 p := p + size of chunk p

34

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

Mark

35

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

freelist

Sweep

36

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

freelist

37

Cost of GC

• The cost of a single garbage collection can be
linear in the size of the store
– may cause quadratic program slowdown

• Amortized cost
– collection-time/storage reclaimed

– Cost of one garbage collection
• c1 R + c2 H

– H - R Reclaimed chunks

– Cost per reclaimed chunk
• (c1 R + c2 H)/ (H - R)

– If R/H > 0.5
• increase H

– if R/H < 0.5
• cost per reclaimed word is c1 + 2c2 ~16

– There is no lower bound
38

The Mark Phase

for each root v

 DFS(v)

function DFS(x)

 if x is a pointer and chunk x is not marked

 mark x

 for each reference field fi of chunk x

 DFS(x.fi)
39

Efficient implementation of Mark(DFS)

• Explicit stack

• Parent pointers

• Pointer reversal

• Other data structures

40

Adding Parent Pointer

41

Avoiding Parent Pointers

(Deutch-Schorr-Waite)

• Depth first search can be implemented without

recursion or stack

• Maintain a counter of visited children

• Observation:

– The pointer link from a parent to a child is not needed

when it is visited

– Temporary store pointer to the parent (instead of the

field)

– Restore when the visit of child is finished

42

Arriving at C

43

Visiting n-pointer field D

SET old parent pointer TO parent pointer ;

SET Parent pointer TO chunk pointer ;

SET Chunk pointer TO n-th pointer field of C;

SET n-th pointer field in C TO old parent pointer;

44

About to return from D

SET old parent pointer TO Parent pointer ;

SET Parent pointer TO n-th pointer field of C ;

SET n-th pointer field of C TO chunk pointer;

SET chunk pointer TO old parent pointer; 45

Compaction

• The sweep phase can compact adjacent

chunks

• Reduce fragmentation

46

Copying Collection

• Maintains two separate heaps
– from-space

– to-space

• pointer next to the next free chunk in from-space

• A pointer limit to the last chunk in from-space

• If next = limit copy the reachable chunks from
from-space into to-space
– set next and limit

– Switch from-space and to-space

• Requires type information

From-space

To-Space

next

limit 47

Breadth-first Copying Garbage Collection

next := beginning of to-space

scan := next

for each root r

 r := Forward(r)

while scan < next

 for each reference field fi of chunk at scan

 scan.fi := Forward(scan.fi)

 scan := scan + size of chunk at scan

48

The Forwarding Procedure
function Forward(p)

 if p points to from-space

 then if p.f1 points to to-space

 return p.f1

 else for each reference field fi of p

 next.fi := p.fi

 p.f1 := next

 next := next size of chunk p

 return p.f1

 else return p 49

A Simple Example

50

f400 17

f800

0

13

0

f400

f800

f400

From-Space

struct DL{

 int data;

 struct DL* f;

 struct DL *b

 }

f
b

stack

Before Forward(f400)

51

f400 17

f800

0

13

0

f400

f800

f400

From-Space

f
b

stack to-Space

t600 next

scan

After Forward(f400)

before Forward(f800)

52

t600 17

t600

0

13

0

f400

f800

f400

From-Space

b

stack to-Space

t600 17

f800

0

scan

next
f

f

After Forward(f800)

Before Forward(0)

53

t600 17

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t600 17

t612

0

scan

next

f

13

0

f400

t612

b
f

f

t612

After Forward(0)

Before Forward(0)

54

t600 17

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t600 17

t612

0 scan

next

f

13

0

f400

b

t612

After Forward(0)

Before Forward(f400)

55

t600 17

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t600 17

t612

0 scan

next

f

13

0

f400

f b

t612

After Forward(f400)

56

t600 17

t600

0

13

t612

f400

f800

f400

From-Space

b

stack to-Space

t600 17

t612

0

scan

next

f

13

0

t600

f
b

7

link

link

9

p

q

r

37

right

12

left

right

15

left

20

left

right

right

37

59

left

left

right

57

7
link

link

9

p

q

r

37

right

12

left

right

left

20

left

right

right

37

59

left

left

right

right

15

left

scan

next

58

7

link

link

9

p

q

r

37

right

12

left

right

left

20

left

right

right

59

left

left

right

right

15

left

right

37

left

scan

next

59

7

link

link

9

p

q

r

37

right

left

right

left

20

left

right

right

37

59

left

left

right

right

15

left

right

37

left

scan

next

12

left

right

60

7

link

link

9

p

q

r

37

right

12

left

right

left

20

left

right

right

37

59

left

left

right

right

15

left

right

37

left

scan

next

12

left

right

61

Amortized Cost of Copy Collection

c3R / (H/2 - R)

62

Locality of references

• Copy collection does not create fragmentation

• Cheney's algorithm may lead to subfields that point
to far away chunks

– poor virtual memory and cache performance

• DFS normally yields better locality but is harder to
implement

• DFS may also be bad for locality for chunks with
more than one pointer fields

• A compromise is a hybrid breadth first search with
two levels down (Semi-depth first forwarding)

• Results can be improved using dynamic
information

63

The New Forwarding Procedure

function Forward(p)

 if p points to from-space

 then if p.f1 points to to-space

 return p.f1

 else Chase(p); return p.f1

else return p

function Chase(p)

repeat

 q := next

 next := next +size of chunk p

 r := null

 for each reference field fi of p

 q.fi := p.fi

 if q.fi points to from-space and

 q.fi.f1 does not point to to-space

 then r := q.fi

 p.f1 := q

 p := r

 until p = null 64

Generational Garbage Collection

• Newly created objects contain higher
percentage of garbage

• Partition the heap into generations G1 and G2

• First garbage collect the G1 heap

– chunks which are reachable

• After two or three collections chunks are
promoted to G2

• Once a while garbage collect G2

• Can be generalized to more than two heaps

• But how can we garbage collect in G1?
65

Scanning roots from older generations

• remembered list

– The compiler generates code after each destructive
update b.fi := a
to put b into a vector of updated objects scanned by the
garbage collector

• remembered set

– remembered-list + “set-bit”

• Card marking

– Divide the memory into 2k cards

• Page marking

– k = page size

– virtual memory system catches updates to old-
generations using the dirty-bit

66

Incremental Collection

• Even the most efficient garbage collection can
interrupt the program for quite a while

• Under certain conditions the collector can run
concurrently with the program (mutator)

• Need to guarantee that mutator leaves the chunks in
consistent state, e.g., may need to restart collection

• Two solutions

– compile-time
• Generate extra instructions at store/load

– virtual-memory
• Mark certain pages as read(write)-only

• a write into (read from) this page by the program restart
mutator

67

Tricolor marking

• Generalized GC

• Three kinds of chunks

– White

• Not visited (not marked or not copied)

– Grey

• Marked or copied but children have not been

examined

– Black

• Marked and their children are marked

68

Basic Tricolor marking

while there are any grey objects

 select a grey chunk p

 for each reference field fi of

chunk p

 if chunk p.fi is white

 color chunk p.fi grey

color chunk p black

Invariants

•No black points to white

•Every grey is on the collector's

(stack or queue) data structure

69

Establishing the invariants

• Dijkstra, Lamport, et al

– Mutator stores a white pointer a into a black pointer b
• color a grey (compile-time)

• Steele
– Mutator stores a white pointer a into a black pointer b

• color b grey (compile-time)

• Boehm, Demers, Shenker
– All black pages are marked read-only

– A store into black page mark all the objects in this page grey (virtual
memory system)

• Baker
– Whenever the mutator fetches a pointer b to a grey or white object

• color b grey (compile-time)

• Appel, Ellis, Li
– Whenever the mutator fetches a pointer b from a page containing a non

black object
• color every object on this page black and children grey (virtual memory system)

70

Interfaces to the Compiler

• The semantic analysis identifies chunk fields which

are pointers and their size

• Generate runtime descriptors at the beginning of

the chunks

– Can employ different allocation/deallocation functions

• Pass the descriptors to the allocation function

• The compiler also passes pointer-map

– the set of live pointer locals, temporaries, and registers

• Recorded at ?-time for every procedure

71

Summary

• Garbage collection is an effective technique

• Leads to more secure programs

• Tolerable cost

• But is not used in certain applications

– Realtime

• Generational garbage collection works fast

– Emulates stack

• But high synchronization costs

• Compiler can allocate data on stack sometimes

– Escape analysis

• May be improved

72

