
Eran Yahav
Technion

Recent Developments in the Real World

1

Meanwhile, In the real world

• new hardware

– Multi-core, GPU, Accelerators

• new compilers for new languages

• new compilers for old languages

– e.g., Java->JavaScript

• new uses of compiler technology

• new performance criteria

2

Google Web Toolkit

3

Javascript

code

js

Java

code

txt

Semantic

Representation

Backend

(synthesis)

Compiler

Frontend

(analysis)

GWT Compiler Optimization
public class ShapeExample implements EntryPoint {

 private static final double SIDE_LEN_SMALL = 2;

 private final Shape shape = new SmallSquare();

 public static abstract class Shape {

 public abstract double getArea();

 }

 public static abstract class Square extends Shape {

 public double getArea() { return getSideLength() * getSideLength(); }

 public abstract double getSideLength();

 }

 public static class SmallSquare extends Square {

 public double getSideLength() { return SIDE_LEN_SMALL; }

 }

 public void onModuleLoad() {

 Shape shape = getShape();

 Window.alert("Area is " + shape.getArea());

 }

 private Shape getShape() { return shape; }

4
(source: http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf)

http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf

GWT Compiler Optimization
public class ShapeExample implements EntryPoint {

 public void onModuleLoad() {

 Window.alert("Area is 4.0");

 }

5
(source: http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf)

http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf
http://dl.google.com/io/2009/pres/Th_1045_TheStoryofyourCompile-ReadingtheTeaLeavesoftheGWTCompilerforanOptimizedFuture.pdf

Adobe ActionScript

First introduced in Flash Player 9, ActionScript 3 is an object-oriented
programming (OOP) language based on ECMAScript—the same standard
that is the basis for JavaScript—and provides incredible gains in runtime
performance and developer productivity. ActionScript 2, the version of
ActionScript used in Flash Player 8 and earlier, continues to be supported
in Flash Player 9 and Flash Player 10.

6

ActionScript 3.0 introduces a new highly optimized ActionScript Virtual
Machine, AVM2, which dramatically exceeds the performance possible with
AVM1. As a result, ActionScript 3.0 code executes up to 10 times faster than
legacy ActionScript code.

(source: http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html)

http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html

Adobe ActionScript

7

AVM

bytecode

swf

AS

code

txt

Semantic

Representation

Backend

(synthesis)

Compiler

Frontend

(analysis)

Adobe ActionScript: Tamarin

8

The goal of the "Tamarin" project is to implement a high-performance, open
source implementation of the ActionScript™ 3 language, which is based upon
and extends ECMAScript 3rd edition (ES3). ActionScript provides many
extensions to the ECMAScript language, including packages, namespaces,
classes, and optional strict typing of variables.
"Tamarin" implements both a high-performance just-in-time compiler and
interpreter.

The Tamarin virtual machine is used within the Adobe® Flash® Player and is
also being adopted for use by projects outside Adobe. The Tamarin just-in-
time compiler (the "NanoJIT") is a collaboratively developed component
used by both Tamarin and Mozilla TraceMonkey. The ActionScript compiler is
available as a component from the open source Flex SDK.

http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK

Mozilla SpiderMonkey

• SpiderMonkey is a fast interpreter
• runs an untyped bytecode and operates on values of type jsval—

type-tagged double-sized values that represent the full range of
JavaScript values.

• SpiderMonkey contains two JavaScript Just-In-Time (JIT) compilers,
a garbage collector, code implementing the basic behavior of
JavaScript values…

• SpiderMonkey's interpreter is mainly a single, tremendously long
function that steps through the bytecode one instruction at a time,
using a switch statement (or faster alternative, depending on the
compiler) to jump to the appropriate chunk of code for the current
instruction.

9
(source: https://developer.mozilla.org/En/SpiderMonkey/Internals)

https://developer.mozilla.org/En/SpiderMonkey/JSAPI_Reference/Jsval
http://blog.mozilla.com/rob-sayre/2010/08/02/mozillas-new-javascript-value-representation/
http://blog.mozilla.com/rob-sayre/2010/08/02/mozillas-new-javascript-value-representation/
http://blog.mozilla.com/rob-sayre/2010/08/02/mozillas-new-javascript-value-representation/
https://developer.mozilla.org/En/SpiderMonkey/Internals
https://developer.mozilla.org/En/SpiderMonkey/Internals

Mozilla SpiderMonkey: Compiler

• consumes JavaScript source code
• produces a script which contains bytecode, source annotations, and

a pool of string, number, and identifier literals. The script also
contains objects, including any functions defined in the source
code, each of which has its own, nested script.

• The compiler consists of
– a random-logic rather than table-driven lexical scanner
– a recursive-descent parser that produces an AST
– a tree-walking code generator

• The emitter does some constant folding and a few codegen

optimizations

10
(source: https://developer.mozilla.org/En/SpiderMonkey/Internals)

https://developer.mozilla.org/En/SpiderMonkey/Internals
https://developer.mozilla.org/En/SpiderMonkey/Internals

Mozilla SpiderMonkey

• SpiderMonkey contains a just-in-time trace compiler

that converts bytecode to machine code for faster
execution.

• The JIT works by detecting commonly executed loops,
tracing the executed bytecodes in those loops as they
run in the interpreter, and then compiling the trace to
machine code.

• See the page about the Tracing JIT for more details.

• The SpiderMonkey GC is a mark-and-sweep, non-
conservative (exact) collector.

11
(source: https://developer.mozilla.org/En/SpiderMonkey/Internals)

https://developer.mozilla.org/En/SpiderMonkey/Internals/Tracing_JIT
https://developer.mozilla.org/En/SpiderMonkey/Internals
https://developer.mozilla.org/En/SpiderMonkey/Internals

Mozilla TraceMonkey

12
(source: http://hacks.mozilla.org/2009/07/tracemonkey-overview/)

http://hacks.mozilla.org/2009/07/tracemonkey-overview/
http://hacks.mozilla.org/2009/07/tracemonkey-overview/
http://hacks.mozilla.org/2009/07/tracemonkey-overview/
http://hacks.mozilla.org/2009/07/tracemonkey-overview/
http://hacks.mozilla.org/2009/07/tracemonkey-overview/
http://hacks.mozilla.org/2009/07/tracemonkey-overview/
http://hacks.mozilla.org/2009/07/tracemonkey-overview/
http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Mozilla TraceMonkey

• Goal: generate type-specialized code
• Challenges

– no type declarations
– statically trying to determine types mostly hopeless

• Idea
– run the program for a while and observe types
– use observed types to generate type-specialized code
– compile traces

• Sounds suspicious?

13

Mozilla TraceMonkey

• Problem 1: “observing types” + compiling
possibly more expensive than running the
code in the interpreter

• Solution: only compile code that executes
many times
– “hot code” = loops

– initially everything runs in the interpreter

– start tracing a loop once it becomes “hot”

14

Mozilla TraceMonkey

• Problem 2: past types do not guarantee future
types… what happens if types change?

• Solution: insert type-checks into the compiled
code
– if type-check fails, need to recompile for new

types

– code with frequent type changes will suffer some
slowdown

15

Mozilla TraceMonkey

16

function addTo(a, n) {
 for (var i = 0; i < n; ++i)
 a = a + i;
 return a;
 }

 var t0 = new Date();
 var n = addTo(0,
10000000);
 print(n);
 print(new Date() - t0);

 a = a + i; // a is an integer number (0 before, 1 after)
++i; // i is an integer number (1 before, 2 after)
if (!(i < n)) // n is an integer number (10000000)
 break;

trace_1_start:
++i; // i is an integer number (0 before, 1 after)
temp = a + i; // a is an integer number (1 before, 2 after)
if (lastOperationOverflowed())
 exit_trace(OVERFLOWED);
a = temp;
if (!(i < n)) // n is an integer number (10000000)
 exit_trace(BRANCHED);
goto trace_1_start;

Mozilla TraceMonkey

17

System Run Time (ms)

SpiderMonkey (FF3) 990

TraceMonkey (FF3.5) 45

Java (using int) 25

Java (using double) 74

C (using int) 5

C (using double) 15

Static Analysis Tools

• Coverity

• SLAM

• ASTREE

• …

18

19

20

Lots and lots of research

• Program Analysis

• Program Synthesis

• …

21

