
Assembler/Linker/Loader

Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc12-13.html

Chapter 4.3

J. Levine: Linkers & Loaders

http://linker.iecc.com/
1

Outline

• Where does it fit into the compiler

• Functionality

• “Backward” description

• Assembler design issues

• Linker design issues

• Advanced Issues

– Position-Independent Code (PIC)

– Shared Libraries

– Dynamic Library Loading

2

A More Realistic Compiler

3

Assembler

• Generate executable code from assembly

• Yet another compiler

• One-to one translation

• Resolve external references

• Relocate code

• How does it fit together?

• Is it really part of the compiler?

4

Program Runtime State

Code

segment

Stack

segment

Data

Segment

Machine

Registers
5

Program Run

Code

segment

Stack

segment

Data

Segment

Machine

Registers

Operating System

Loader

.EXE

Code

segment

Data

Segment

Initial stack

size

Start address

Debug
6

Program Run

Code

segment

Stack

segment

Data

Segment

Machine

Registers

.EXE

Code

segment

Data

Segment

Initial stack

size

Start address

7

Loader (Summary)

• Part of the operating system

• Does not depend on the programming

language

• Privileged mode

• Initializes the runtime state

• Invisible activation record

8

Linker

Code

Segment

Data

Segment

Code

Segment

Data

Segment

0

0

100
0

101

Relocation

Bits

External Symbol Table

9

Linker

• Merge several executables

• Resolve external references

• Relocate addresses

• User mode

• Provided by the operating system

• But can be specific for the compiler

– More secure code

– Better error diagnosis

10

Relocation information

• How to change internal addresses

• Positions in the code which contains

addresses (data/code)

• Two implementations

– Bitmap

– Linked-lists

11

External References

• The code may include references to external

names (identifiers)

– Library calls

– External data

• Stored in external symbol table

12

Example

13

Recap

• Assembler generates binary code

– Unresolved addresses

– Relocatable addresses

• Linker generates executable code

• Loader generates runtime states (images)

14

Assembler Design Issues

• Converts symbolic machine code to binary

• One to one conversion
addl %edx, %ecx 000 0001 11 010 001 = 01 D1 (Hex)

• Some assemblers support overloading

– Different opcodes based on types

• Format conversions

• Handling internal addresses

15

Handling Internal Addresses

16

Resolving Internal Addresses

• Two scans of the code

– Construct a table label address

– Replace labels with values

• Backpatching

– One scan of the code

– Simultaneously construct the table and resolve

symbolic addresses

– Maintains list of unresolved labels

– Useful beyond assemblers

17

Backpatching

18

Handling External Addresses

• Record symbol table in external table

• Produce binary version together with the
code and relocation bits

• Output of the assembly

– Code segment

– Data segment

– Relocation bits

– External table

19

Example of External Symbol Table

20

Example

21

Linker Design Issues

• Append
– Code segments

– Data segments

– Relocation bit maps

– External symbol tables

• Retain information about static length

• Real life complications
– Aggregate initializations

– Object file formats

– Large library

– Efficient search procedures

22

Position-Independent Code(PIC)

• Code which does not need to be changed regardless of the

address in which it is loaded

• Enable loading the same program at different addresses

– Shared libraries

– Dynamic loading

• Good examples

– relative jumps

– reference to activation records

• Bad examples

– Fixed addresses

• Global and static data

23

PIC: The Main Idea

• Keep the data in a table

• Use register to point to the beginning of the

table

• Refer to all data relative to the designated

register

• But how to set the register?

24

Per-Routine Pointer Table

• Store the pointer to the routine in the table

Caller:

1. Load Pointer table address

into RP

2. Load Code address from

0(RP) into RC

3. Call via RC

Callee:

1. RP points to pointer table

2. Table has addresses of

pointer table for

subprocedures

Other data

RP
.func

25

ELF-Position Independent Code

• Introduced in Unix System V

• Observation

– Executable consists of code followed by data

– The offset of the data from the beginning of the code is

known at compile-time

GOT

Data

Segment

Code

Segment

XX0000

 call L2

L2:

 popl %ebx

 addl $_GOT[.-..L2], %ebx

26

PIC costs and benefits

• Enable loading w/o

relocation

• Share memory

locations among

processes

• Data segment may

need to be reloaded

• GOT can be large

• More runtime

overhead

• More space overhead

27

Shared Libraries
• Heavily used libraries

• Significant code space

– 5-10 Mega for print

• Significant disk space

• Significant memory space

• Can be saved by sharing the same code

• Enforce consistency

• But introduces some overhead

• Can be implemented either with static or dynamic

loading

28

Content of ELF file

Call

PLT

GOT

T
ex

t
D

at
a

Routine

PLT

GOT

T
ex

t
D

at
a

Program Libraries

29

ELF Structure

segments

Consistency

• How to guarantee that the code/library used the

“right” library version

31

Loading Dynamically Linked

Programs

• Start the dynamic linker

• Finding the libraries

• Initialization

– Resolve symbols

– GOT

• Typically small

– Library specific initialization

• Lazy procedure linkage
32

Microsoft Dynamic Libraries (DLL)

• Similar to ELF

• Somewhat simpler

• Require compiler support to address dynamic

libraries

• Programs and DLL are Portable Executable (PE)

• Each application has it own address

• Supports lazy bindings

33

Dynamic Linking Approaches

• Unix/ELF uses a single name space space

and MS/PE uses several name spaces

• ELF executable lists the names of symbols

and libraries it needs

• PE file lists the libraries to import from

other libraries

• ELF is more flexible

• PE is more efficient
34

Costs of dynamic loading

• Load time relocation of libraries

• Load time resolution of libraries and

executable

• Overhead from PIC prolog

• Overhead from indirect addressing

• Reserved registers

35

Summary

• Code generation yields code which is still
far from executable

– Delegate to existing assembler

• Assembler translates symbolic instructions
into binary and creates relocation bits

• Linker creates executable from several files
produced by the assembly

• Loader creates an image from executable

36

