Operational Semantics

Mooly Sagiv

Reference: Semantics with Applications

Chapter 2

H. Nielson and F. Nielson

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

Syntax vs. Semantics

- The pattern of formation of sentences or phrases in a language
- Examples
 - Regular expressions
 - Context free grammars

- The study or science of meaning in language
- Examples
 - Interpreter
 - Compiler
 - Better mechanisms will be given today

Benefits of Formal Semantics

- Programming language design
 - hard- to-define= hard-to-implement=hard-to-use
- Programming language implementation
- Programming language understanding
- Program correctness
- Program equivalence
- Compiler Correctness
- Automatic generation of interpreter
- But probably not
 - Automatic compiler generation

Alternative Formal Semantics

Operational Semantics

- The meaning of the program is described "operationally"
- Natural Operational Semantics
- Structural Operational Semantics
- Denotational Semantics
 - The meaning of the program is an input/output relation
 - Mathematically challenging but complicated
- Axiomatic Semantics
 - The meaning of the program are observed properties

return z

return z

}

return z

}

Denotational Semantics int fact(int x) { int z, y; z = 1; y= x ; $f = \lambda x$. if x = 0 then 1 else x * f(x - 1)while (y>0) { z = z * y;y = y - 1;}

return z;

 ${x=n}$

int fact(int x) { int z, y; Axiomatic Semantics z = 1;

 $\{x{=}n \land z{=}1\}$

y = x

 $\{x{=}n \land z{=}1 \land y{=}n\}$

while

```
 \{x=n \land y \ge 0 \land z=n! / y! \} 
 \{y>0\} \{ \\ \{x=n \land y > 0 \land z=n! / y! \} 
 z = z * y; 
 \{x=n \land y>0 \land z=n! / (y-1)! \} 
 y = y - 1; 
 \{x=n \land y \ge 0 \land z=n! / y! \} 
 \} return z \} \{x=n \land z=n! \}
```

Operational Semantics

Natural Semantics

Operational Semantics of Arithmetic Expressions

Exp → | number | Exp PLUS Exp | Exp MINUS Exp | Exp MUL Exp | UMINUS Exp

$$A[]: Exp \rightarrow Z$$

 $A\llbracket n \rrbracket = val(n)$ $A\llbracket e_1 PLUS e_2 \rrbracket = A \llbracket e_1 \rrbracket + A\llbracket e_2 \rrbracket$ $A\llbracket e_1 MINUS e_2 \rrbracket = A\llbracket e_1 \rrbracket - A\llbracket e_2 \rrbracket$ $A\llbracket e_1 MUL e_2 \rrbracket = A\llbracket e_1 \rrbracket * A\llbracket e_2 \rrbracket$ $A\llbracket UMINUS e \rrbracket = A\llbracket e \rrbracket$

Handling Variables

Exp → | number
 | variable
 | Exp PLUS Exp
 | Exp MINUS Exp
 | Exp MUL Exp
 | UMINUS Exp

Need the notions of states
States State = Var → Z
Lookup in a state s: s x
Update of a state s: s [x ↦ 5]

Example State Manipulations

[x→1, y→7, z→16] y =
[x→1, y→7, z→16] t =
[x→1, y→7, z→16][x→5] =
[x→1, y→7, z→16][x→5] x =
[x→1, y→7, z→16][x→5] y =

Semantics of arithmetic expressions

- Assume that arithmetic expressions are side-effect free
- A [[Aexp]] : State \rightarrow Z
- Defined by induction on the syntax tree
 - $A[\![n]\!] s = n$
 - $A\llbracket x \rrbracket s = s x$
 - $A\llbracket e_1 PLUS e_2 \rrbracket s = A\llbracket e_1 \rrbracket s + A\llbracket e_2 \rrbracket s$
 - $A\llbracket e_1 MUL e_2 \rrbracket s = A\llbracket e_1 \rrbracket s * A\llbracket e_2 \rrbracket s$
 - A[[UMINUS e]] s = -A[[e]] s
- Compositional
- Properties can be proved by structural induction

Semantics of Boolean expressions

- Assume that Boolean expressions are side-effect free
- $B[[Bexp]] : State \rightarrow T$
- Defined by induction on the syntax tree
 - B[[true]] s = tt
 - B[[false]] s = ff

$$- B\llbracket e_1 = e_2 \rrbracket s =$$

$$- B[e_1 \land e_2] s = \begin{cases} tt \text{ if } A[[e_1]] s = A[[e_2]] s \\ ff \text{ if } A[[e_1]] s \neq A[[e_2]] s \end{cases}$$
$$\begin{cases} tt \text{ if } B[[e_1]] s = tt \text{ and } B[[e_2]] = tt \\ ff \text{ if } B[[e_1]] s = ff \text{ or } B[[e_2]] s = ff \end{cases}$$

 $- \quad B[\![e_1 \ge e_2 \]\!] s =$

The While Programming Language

Abstract syntax

- $$\begin{split} \mathbf{S} &::= \mathbf{x} \; := \mathbf{a} \mid \textbf{skip} \mid \mathbf{S}_1 \; ; \; \mathbf{S}_2 \mid \textbf{if} \; \mathbf{b} \; \textbf{then} \; \mathbf{S}_1 \; \textbf{else} \; \mathbf{S}_2 \mid \\ & \textbf{while} \; \mathbf{b} \; \textbf{do} \; \mathbf{S} \end{split}$$
- Use parenthesizes for precedence
- Informal Semantics
 - skip behaves like no-operation
 - Import meaning of arithmetic and Boolean operations

Example While Program

y := 1; while ¬(x=1) do (y := y * x; x := x − 1

General Notations

- Syntactic categories
 - Var the set of program variables
 - Aexp the set of arithmetic expressions
 - Bexp the set of Boolean expressions
 - Stm set of program statements
- Semantic categories
 - Natural values $N = \{0, 1, 2, ...\}$
 - Truth values $T = {ff, tt}$
 - States State = Var \rightarrow N
 - Lookup in a state s: s x
 - Update of a state s: s $[x \mapsto 5]$

Natural Operational Semantics

- Describe the "overall" effect of program constructs
- Ignores non terminating computations

Natural Semantics

Notations

- <S, s> the program statement S is executed on input state s
- s representing a terminal (final) state
- For every statement S, write meaning rules $\langle S, i \rangle \rightarrow o$

"If the statement S is executed on an input state i, it terminates and yields an output state o"

- The meaning of a program P on an input state s is the set of outputs states *o* such that $\langle P, i \rangle \rightarrow o$
- The meaning of compound statements is defined using the meaning immediate constituent statements

Natural Semantics for While

$$[ass_{ns}] < x := a, s > \rightarrow s[x \mapsto A[[a]]s]$$
axioms
$$[skip_{ns}] < skip, s > \rightarrow s$$
$$[comp_{ns}] < S_1, s > \rightarrow s', < S_2, s' > \rightarrow s''$$
rules
$$[comp_{ns}] < S_1, s > \rightarrow s', < S_2, s > \rightarrow s''$$
$$[if^{ft}_{ns}] < S_1, s > \rightarrow s'$$
$$[if^{ft}_{ns}] < S_1, s > \rightarrow s'$$
$$[if^{ff}_{ns}] < S_2, s > \rightarrow s'$$
$$[if b then S_1 else S_2, s > \rightarrow s'$$
$$[if b then S_1 else S_2, s > \rightarrow s']$$

Natural Semantics for While (More rules)

[while^{ff}_{ns}]

 $\langle while b do S, s \rangle \rightarrow s$

if **B**[[b]]s=ff

$$[\text{while}_{ns}^{tt}] < S, s \rightarrow s', < \text{while b do } S, s' \rightarrow s'' \\ \hline < \text{while b do } S, s \rightarrow s'' \\ \hline \text{if } \mathbf{B}[\![b]\!]s = tt \\ \end{cases}$$

A Derivation Tree

- A "proof" that $\langle S, s \rangle \rightarrow s$ "
- The root of tree is $\langle S, s \rangle \rightarrow s'$
- Leaves are instances of axioms
- Internal nodes rules
 - Immediate children match rule premises

assns

assns

Top Down Evaluation of Derivation Trees

- Given a program S and an input state s
- Find an output state s' such that $\langle S, s \rangle \rightarrow s'$
- Start with the root and repeatedly apply rules until the axioms are reached
- Inspect different alternatives in order
- In While s' and the derivation tree is unique

Example of Top Down Tree Construction

ass_{ns}

Semantic Equivalence

- S₁ and S₂ are semantically equivalent if for all s and s'
 - $\langle S_1, s \rangle \rightarrow s'$ if and only if $\langle S_2, s \rangle \rightarrow s'$
- Simple example
 - "while b do S"
 - is semantically equivalent to:
 - "if b then (S; while b do S) else skip"

Deterministic Semantics for While

- If $\langle S, s \rangle \rightarrow s_1$ and $\langle S, s \rangle \rightarrow s_2$ then $s_1 = s_2$
- The proof uses induction on the shape of derivation trees
 - Prove that the property holds for all simple derivation trees by showing it holds for axioms
 - Prove that the property holds for all composite trees:
 - » For each rule assume that the property holds for its premises (induction hypothesis) and prove it holds for the conclusion of the rule

The Semantic Function S_{ns}

- The meaning of a statement S is defined as a partial function from State to State
- ♦ S_{ns} : Stm → (State \hookrightarrow State)
- ◆ $S_{ns} \llbracket S \rrbracket s = s' \text{ if } \langle S, s \rangle \rightarrow s' \text{ and otherwise}$ $S_{ns} \llbracket S \rrbracket s \text{ is undefined}$
- Examples
 - $S_{ns} \llbracket skip \rrbracket s = s$
 - $S_{ns} [[x := 1]] s = s [x \mapsto 1]$
 - S_{ns} [[while true do skip]]s = undefined

Extensions to While

- Abort statement (like C exit w/o return value)
- Non determinism
- Parallelism
- Local Variables
- Procedures
 - Static Scope
 - Dynamic scope

The **While** Programming Language with Abort

Abstract syntax

- $$\begin{split} \mathbf{S} &::= \mathbf{x} \; := \mathbf{a} \mid \textbf{skip} \mid \mathbf{S}_1 \; ; \; \mathbf{S}_2 \mid \textbf{if } \mathbf{b} \; \textbf{then} \; \mathbf{S}_1 \; \textbf{else} \; \mathbf{S}_2 \mid \\ & \textbf{while} \; \mathbf{b} \; \textbf{do} \; \mathbf{S} \mid \textbf{abort} \end{split}$$
- Abort terminates the execution
- No new rules are needed in natural operational semantics

Statements

- if x = 0 then abort else y := y / x
- skip
- abort
- while true do skip

Conclusion

 The natural semantics cannot distinguish between looping and abnormal termination (unless the states are modified)

The **While** Programming Language with Non-Determinism

Abstract syntax S::= x := a | skip | S₁; S₂ | if b then S₁ else S₂ | while b do S| S₁ or S₂
Either S₁ or S₂ is executed
Example

- x := 1 or (x := 2; x := x+2)

The While Programming Language with Non-Determinism Natural Semantics

$$[\text{or}_{ns}^1] \leq S_1, s > \rightarrow s'$$

$$\langle S_1 \text{ or } S_2, s \rangle \rightarrow s^2$$

$$[\text{or}_{ns}^2] \langle S_2, s \rangle \rightarrow s'$$

$$<$$
S₁ or S₂, s> \rightarrow s'

The While Programming Language with Non-Determinism Examples

- x := 1 or (x := 2; x := x+2)
- (while true do skip) or (x :=2 ; x := x+2)

Conclusion

 In the natural semantics non-determinism will suppress looping if possible (mnemonic)

The **While** Programming Language with Parallel Constructs

Abstract syntax

$$\begin{split} \mathbf{S} &::= \mathbf{x} \; := \mathbf{a} \mid \mathbf{skip} \mid \mathbf{S}_1 \; ; \; \mathbf{S}_2 \mid \mathbf{if} \; \mathbf{b} \; \mathbf{then} \; \mathbf{S}_1 \; \mathbf{else} \; \mathbf{S}_2 \mid \\ \mathbf{while} \; \mathbf{b} \; \mathbf{do} \; \mathbf{S} \mid \mathbf{S}_1 \; \mathbf{par} \; \mathbf{S}_2 \end{split}$$

• All the interleaving of S_1 or S_2 are executed

Example

$$-x := 1 \text{ par} (x := 2; x := x+2)$$

Conclusion

 In the natural semantics immediate constituent is an atomic entity so we cannot express interleaving of computations

The **While** Programming Language with local variables and procedures

 Abstract syntax
 S::= x := a | skip | S₁; S₂ | if b then S₁ else S₂ | while b do S|
 begin D_v D_p S end | call p
 D_v ::= var x := a ; D_v | ε
 D_p ::= proc p is S ; D_p | ε

Conclusions Local Variables

The natural semantics can "remember" local states

Summary

Operational Semantics is useful for:

- Language Designers
- Compiler/Interpreter Writer
- Programmers
- Natural operational semantics is a useful abstraction
 - Can handle many PL features
 - No stack/ program counter
 - Simple
 - "Mostly" compositional
- Other abstractions exist