
Program analysis

Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc10.html

Abstract Interpretation

Static analysis

• Automatically identify program properties
– No user provided loop invariants

• Sound but incomplete methods
– But can be rather precise

• Non-standard interpretation of the program
operational semantics

• Applications
– Compiler optimization

– Code quality tools
• Identify potential bugs

• Prove the absence of runtime errors

• Partial correctness

Control Flow Graph(CFG)

z = 3

while (x>0) {

if (x = 1)

y = 7;

else

y =z + 4;

assert y == 7

}

z =3

while (x>0)

if (x=1)

y =7 y =z+4

assert y==7

Constant Propagation

z =3

while (x>0)

if (x=1)

y =7 y =z+4

assert y==7

[x?, y?, z?]

[x?, y?, z 3]

[x?, y?, z3]

[x?, y?, z3][x1, y?, z3]

[x1, y7, z3]
[x?, y7, z3]

[x?, y?, z3]

List reverse(Element head)

{

List rev, n;

rev = NULL;

while (head != NULL) {

n = head next;

head next = rev;

head = n;

rev = head;

}

return rev;

}

Memory Leakage

potential leakage of address
pointed to by head

Memory Leakage
Element reverse(Element head)

{

Element rev, n;

rev = NULL;

while (head != NULL) {

n = head next;

head next = rev;

rev = head;

head = n;

}

return rev; }

No memory leaks

A Simple Example

void foo(char *s)

{

while (*s != „ „)

s++;

*s = 0;

}

Potential buffer overrun:

offset(s) alloc(base(s))

A Simple Example

void foo(char *s) @require string(s)

{

while (*s != „ „&& *s != 0)

s++;

*s = 0;

}

No buffer overruns

Example Static Analysis Problem

• Find variables which are live at a given

program location

• Used before set on some execution paths

from the current program point

A Simple Example

/* c */

L0: a := 0

/* ac */

L1: b := a + 1

/* bc */

c := c + b

/* bc */

a := b * 2

/* ac */

if c < N goto L1

/* c */

return c

a b

c

a:=0

b:=a+1

c := c +b

a := b * 2

c < N

return c

T

F

c

ac

bc

bc

ac

c

Compiler Scheme

String
Scanner

Parser

Semantic Analysis

Code Generator

Static analysis

Transformations

Tokens

source-program

tokens

AST

IR

IR +information

Undecidability issues

• It is impossible to compute exact static

information

• Finding if a program point is reachable

• Difficulty of interesting data properties

Undecidabily

• A variable is live at a given

point in the program

– if its current value is used after this point prior to

a definition in some execution path

• It is undecidable if a variable is live at a

given program location

Proof Sketch

Pr

L: x := y

Is y live at L?

Conservative (Sound)

• The compiler need not generate the optimal
code

• Can use more registers (“spill code”) than
necessary

• Find an upper approximation of the live
variables

• Err on the safe side

• A superset of edges in the interference graph

• Not too many superfluous live variables

Conservative(Sound) Software

Quality Tools

• Can never miss an error

• But may produce false alarms

– Warning on non existing errors

Data Flow Values

• Order data flow values

– a b a “is more precise than” b

– In live variables

• a b a b

– In constant propagation

• a b a includes more constants than b

• Compute the least solution

• Merge control flow paths optimistically

– a b

– In live variables

• a b= ab

Transfer Functions

• Program statements operate on data flow

values conservatively

Transfer Functions

(Constant Propagation)

• Program statements operate on data flow values
conservatively

• If a=3 and b=7 before
“z = a + b;”
– then a=3, b =7, and z =10 after

• If a=? and b=7 before
“z = a + b;”
– then a=?, b =7, and z =? After

• For x = exp
– CpOut = CpIn [x [[exp]](CpIn)]

Transfer Functions

LiveVariables

• If a and c are potentially live after

“a = b *2”

– then b and c are potentially live before

• For “x = exp;”

– LiveIn = Livout – {x} arg(exp)

Iterative computation of

conservative static information

• Construct a control flow graph(CFG)

• Optimistically start with the best value at

every node

• “Interpret” every statement in a

conservative way

• Forward/Backward traversal of CFG

• Stop when no changes occur

Pseudo Code (forward)
forward(G(V, E): CFG, start: CFG node, initial: value){

// initialization

value[start]:= initial

for each v V – {start} do value[v] :=

// iteration

WL = V

while WL != {} do

select and remove a node v WL

for each u V such that (v, u) E do

value[u] := value[u] f(v, u)(value[v])

if value[u] was changed WL := WL {u}

Constant Propagation

1: z =3

2: while (x>0)

3: if (x=1)

4: y =7 5: y =z+4

N Val WL

v[1]=[x?, y?, z ?] {1, 2, 3, 4, 5}

1 v[2]=[x?, y?, z 3] {2, 3, 4, 5}

2 v[3]=[x?, y?, z 3] {3, 4, 5}

3 v[4] =[x?, y?, z3]

v[5] =[x?, y?, z3]

{4, 5}

4 {5}

5 {}

Only values before CFG are shown

Pseudo Code (backward)
backward(G(V, E): CFG, exit: CFG node, initial: value){

// initialization

value[exit]:= initial

for each v V – {exit} do value[v] :=

// iteration

WL = V

while WL != {} do

select and remove a node v WL

for each u V such that (u, v) E do

value[u] := value[u] f(v, u)(value[v])

if value[u] was changed WL := WL {u}

/* c */

L0: a := 0

/* ac */

L1: b := a + 1

/* bc */

c := c + b

/* bc */

a := b * 2

/* ac */

if c < N goto L1

/* c */

return c

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

{c}

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

{c}

{c}

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

{c}

{c}

{c, b}

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

{c}

{c}

{c, b}

{c, b}

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

{c}

{c}

{c, b}

{c, a}

{c, b}

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

{c, a}

{c, a}

{c, b}

{c, a}

{c, b}

Summary Iterative Procedure

• Analyze one procedure at a time

– More precise solutions exit

• Construct a control flow graph for the

procedure

• Initializes the values at every node to the

most optimistic value

• Iterate until convergence

Abstract Interpretation

• The mathematical foundations of program

analysis

• Established by Cousot and Cousot 1979

• Relates static and runtime values

Abstract (Conservative) interpretation

abstract

representation

Set of states

concretization

Abstract

semantics

statement s
abstract

representation

abstraction

Operational

semantics

statement s
Set of states

Example rule of signs

• Safely identify the sign of variables at every program

location

• Abstract representation {P, N, ?}

• Abstract (conservative) semantics of *

*# P N ?

P P N ?

N N P ?

? ? ? ?

Abstract (conservative) interpretation

<N, N>

{…,<-88, -2>,…}

concretization

Abstract

semantics

x := x*#y
<P, N>

abstraction

Operational

semantics

x := x*y
{…, <176, -2>…}

Example rule of signs
• Safely identify the sign of variables at every program location

• Abstract representation {P, N, ?}

• (C) = if all elements in C are positive

then return P

else if all elements in C are negative

then return N

else return ?

• (a) = if (a==P) then

return{0, 1, 2, … }

else if (a==N)

return {-1, -2, -3, …, }

else return Z

Example Constant Propagation

• Abstract representation

– set of integer values and and extra value “?” denoting

variables not known to be constants

• Conservative interpretation of +

Example Program

x = 5;

y = 7;

if (getc())

y = x + 2;

z = x +y;

Example Program (2)

if (getc())

x= 3 ; y = 2;

else

x =2; y = 3;

z = x +y;

Local Soundness of

Abstract Interpretation

Abstract

semantics

statement#

concretization

Operational

semantics

statement

concretization

Local Soundness of

Abstract Interpretation

abstraction abstraction

Operational

semantics

statement

Abstract

semantics

statement#

Some Success Stories

Software Quality Tools

• The prefix Tool identified interesting bugs

in Windows

• The Microsoft SLAM tool checks

correctness of device driver

– Driver correctness rules

• Astree checks floating point operation

Summary

• Program analysis provides non-trivial

insights on the runtime executions of the

program

– Degenerate case – types (flow insensitive)

• Mathematically justified

– Operational semantics

– Abstract interpretation (lattice theory)

• Employed in compilers

• Will be employed in software quality tools

