
Compiling Functional Programs

Mooly Sagiv

Chapter 7

http://www.cs.tau.ac.il/~msagiv/courses/wcc10.html

Main features of Haskel

• No side effects

– Referential Transparency

• List comprehension

• Pattern matching

• Higher order functions

– Curried notions

• Polymorphic typing

• Lazy evaluation

Factorial in Haskel vs. C

fac 0 = 1

fac n = n * fac (n -1)

int fac(int n) {

int product = 1;

while (n > 0) {

product *= n ;

n --;

}

return product;

}

Function Application

• Concise syntax

• No argument parenthesizes

– f 11 13

• Function application is left associative and

has higher precedence than any operator

– g g n = (g g) n

– g n + 1 = (g n) + 1

Offside rule
• Layout characters matter to parsing

divide x 0 = inf

divide x y = x / y

• Everything below and right of = in equations defines a new

scope

• Applied recursively

fac n = if (n ==0) then 1 else prod n (n-1)

where

prod acc n = if (n == 0) then acc

else prod (acc * n) (n -1)

• Lexical analyzer maintains a stack

Lists

• Part of all functional programs since Lisp

• Empty list [] = Nil

• [1]

• [1, 2, 3, 4]

• [4, 3, 7, 7, 1]

• [“red”, “yellow”, “green”]

• [1 .. 10]

• Can be constructed using “:” infix operator

– [1, 2, 3] = (1 : (2 : (3 : [])))

– range n m = if n > m then []

else (n: range (n+1) m)

List Comprehension

• Inspired by set comprehension

S = {n2 | n  {1, …, 100}  odd n}

• Haskel code

s = [n^2 | n <- [1..100], odd n]

“n square such that n is an element of [1..100] and n is

odd”

• Qsort in Haskel

qsort [] = []

qsort (x: xs) = qsort [y | y <- xs, y < x]

++ [x]

++ qsort[y | y <- xs, y >= x]

Pattern Matching
• Convenient way to define recursive functions

• A simple example

fac 0 = 1

fac n = n * fac (n-1)

• Equivalent code

fac n = if (n == 0) then 1

else n * fac (n -1)

• Another example

length [] = 0

length (x: xs) = 1 + length xs

• Equivalent code

length list = if (list == []) then 0

else let

x = head list

xs = tail list

in 1 + length xs

Polymorphic Typing
• Polymorphic expression has many types

• Benefits:

– Code reuse

– Guarantee consistency

• The compiler infers that in

length [] = 0

length (x: xs) = 1 + length xs

– length has the type [a] -> int

length :: [a] -> int

• Example expressions

– length [1, 2, 3] + length [“red”, “yellow”, “green”]

– length [1, 2, “green”] // invalid list

• The user can optionally declare types

• Every expression has the most general type

• “boxed” implementations

Referential Transparency

• Expressions in Haskel have no side effects

• Usually requires more space

add_one [] = []

add_one (x xs) = x +1 : add_one xs

• Can be tolerated by garbage collection and

smart compilers

• Input/Output operations can be also be

defined using Monads

Higher Order Functions
• Functions are first class objects

– Passed as parameters

– Returned as results

Example Higher Order Function

• The differential operator

Df = f’ where f’(x) = lim ho (f(x+h)-f(x))/h

• In Haskel

diff f = f_

where

f_ x = (f (x +h) – f x) / h

h = 0.0001

• diff :: (float -> float) -> (float -> float)

• (diff square) 0 = 0.0001

• (diff square) 0.0001 = 0.0003

• (diff (diff square)) 0 = 2

Currying

• Functions can be created by partially applying a

function to some of its arguments

• deriv f x = (f (x + h) – f x) / h

where h = 0.0001

• deriv f x == (diff f) x

• Non semantic difference by Unary and n-ary

functions

• f e1 e2 … en = (n((f e1) e2) … en)

• Complicates compilation

Lazy vs. Eager Evaluation

• When to evaluate expressions

• A simple example

let const c x = c in const 1 (2 + 3)

• In eager evaluation

const 1 (2 + 3)  const 1 5 = 1

• In lazy Evaluation (Haskel)

const 1 (2 + 3)  1

• Another example

let const c x = c in const 1 (2 / 0)

Benefits of Lazy Evaluation

• Define streams

main = take 100 [1 ..]

• deriv f x = lim [(f (x + h) – f x) / h | h <- [1/2^n | n <- [1..]]]

where lim (a: b: lst) = if abs(a/b -1) < eps then b

else lim (b: lst)

eps = 1.0 e-6

• Lower asymptotic complexity

• Language extensibility

– Domain specific languages

• But some costs

Functional Programming Languages

PL types evaluation Side-effect

scheme Weakly typed Eager yes

ML

OCAML

F#

Polymorphic

strongly typed

Eager References

Haskel Polymorphic

strongly typed

Lazy None

Compiling Functional Programs
Compiler Phase Language Aspect

Lexical Analyzer Offside rule

Parser List notation

List comprehension

Pattern matching

Context Handling Polymorphic type checking

Run-time system Referential transparency

Higher order functions

Lazy evaluation

Structure of a functional compiler

High-level language

Functional core

Polymorphic type inference
De-sugaring:

1. Pattern matching

2. List to pairs

3. List comprehension

4. Lambda lifting

Optimizations

Code generation

C code Runtime system

Graph Reduction

• The runtime state of a lazy functional

program can be represented as a direct

graph

– Nodes represent arguments in expressions

– Edges between functions and argument

• An execution is simulated with a graph

reduction

• Supports laziness and higher order functions

Function Application

• f e1 e2 … en = (n((f e1) e2) … en)

= (n((f @ e1) @ e2) … en)

@

.

.
.

@

en

.

.
.

e1f

@

e2

A Simple Example

• let const c x = c in const 1 (2 + 3)

@

@ +

const 1 2 3

1

c

x

Another Example

• let twice f x = f (f x)

square n = n * n

in

twice square 3

@

@ 3

twice square

@

@ x

twice f

@

f @

x

@

square @

3

x

f

Another Example (cont1)

• let twice f x = f (f x)

square n = n * n

in

twice square 3

@

square @

3

@

square n

@

*

@

n

n

@

*

@

@

square 3

Another Example (cont2)

• let twice f x = f (f x)

square n = n * n

in

twice square 3

@

square n

@

*

@

n

@

*

@

@

square 3

n

@

*

@

@

*

@

3

Another Example (cont3)

• let twice f x = f (f x)

square n = n * n

in

twice square 3
@

*

@

@

*

@

3

@

*

@

9 81

Reduction Order
• At every point in execution redexes can be selected

• Start at the root

• If the root is not application node print the result

• If the root is an application node  its value is needed

– Traverse the application spine to the left to find the

function, say f

– Check if the application spine contains all the

arguments for f

• No a Curried function is detected

• Yes search and apply the redex

The reduction Engine

• Usually implemented in C

• Apply redexes

• Use a stack to match arguments

• Use Eval to apply redexes using function pointers

• Built in functions are part of the runtime system

• User defined functions are mapped into C in a

straightforward way using Eval function

• Significant runtime overhead

C Header file
typedef enum {FUNC, NUM, NIL, CONS, APPL} node_type

typedef struct node *Pnode

typedef Pnode (*unary) (Pnode *arg)

struct function_descriptor {

int arity;

const char * name;

unary code ;

};

struct node_type {

node_type tag;

union {

struct function_descriptor func;

int num;

struct {Pnode hd, Pnode tl ;} cons

struct {Pnode fun; Pnode arg;} appl;

} nd;

}

extern Pnode Func(int arity, const char *name, unary code);

extern Pnode Nil(int num);

…

Reducing the cost of graph reduction

• Shortcut reductions

• Detect lazy expressions which are always

executed

– Strict

Optimizing the functional core

• Boxing analysis

• Tail call elimination

• Accumulator translation

• Strictness analysis

Strictness Analysis

• A function is strict in an argument a if it

needs the value of a in all executions

• Example safe_div a b = if (b == 0) then 0

else a / b

– strict in b

• Can be computed using dataflow equations

Limitations

• Usually the generated C code can be

reasonably efficient

• Current strictness analysis works poorly for

user-defined data structures and higher

order functions

Summary

• Functional programs provide concise

coding

• Compiled code compares with C code

• Successfully used in some commercial

applications

– F#, ERLANG

• Ideas used in imperative programs

• Less popular than imperative programs

