
Code Generation

Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc10.html

Chapter 4

Tentative Schedule

23/11 Code Generation

30/11 Activation Records

7/12 Program Analysis

14/12 Global Register Allocation

21/12 Assembler/Linker/Loader

28/12 Garbage Collection

4/1 Object Oriented Programming

11/1 Functional Programming

Basic Compiler Phases

Code Generation

• Transform the AST into machine code

– Several phases

– Many IRs exist

• Machine instructions can be described by tree
patterns

• Replace tree-nodes by machine instruction

– Tree rewriting

– Replace subtrees

• Applicable beyond compilers

a := (b[4*c+d]*2)+9

leal movsbl

9

Ra

+

*

2
mem

+

@b +

* Rd

Rc4

9

Ra

+

*

2Rt

Load_Byte (b+Rd)[Rc], 4, Rt

Ra

Load_Byte (b+Rd)[Rc], 4, Rt

Load_address 9[Rt], 2, Ra

Overall Structure

Code generation issues

• Code selection

• Register allocation

• Instruction ordering

Simplifications

• Consider small parts of AST at time

• Simplify target machine

• Use simplifying conventions

Outline

• Simple code generation for expressions (4.2.4, 4.3)

– Pure stack machine

– Pure register machine

• Code generation of basic blocks (4.2.5)

• [Automatic generation of code generators (4.2.6)]

• Later

– Handling control statements

– Program Analysis

– Register Allocation

– Activation frames

Simple Code Generation

• Fixed translation for each node type

• Translates one expression at the time

• Local decisions only

• Works well for simple machine model

– Stack machines (PDP 11, VAX)

– Register machines (IBM 360/370)

• Can be applied to modern machines

Simple Stack Machine

BP

SP

Stack

Stack Machine Instructions

Example

p := p + 5

Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

Simple Stack Machine

BP

SP

Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p7 BP+5

Simple Stack Machine

BP

SP
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

7

BP+57

Simple Stack Machine

BP

SP
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

7

BP+57

5

Simple Stack Machine

BP

SP
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

12

BP+57

Simple Stack Machine

BP

SP

Push_Local #p

Push_Const 5

Add_Top2

Store_Local #pBP+512

Register Machine

• Fixed set of registers

• Load and store from/to memory

• Arithmetic operations on register only

Register Machine Instructions

Example

p := p + 5

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P
7 x770

memory

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P
7 x770

memory

7

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

57

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P
7 x770

memory

512

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P
12 x770

memory

512

R1 R2

Simple Code Generation for

Stack Machine

• Tree rewritings

• Bottom up AST traversal

Abstract Syntax Trees for Stack Machine Instructions

Example

-

*

*

b b 4 *

a c

Push_Local #b Push_Local #b

Mult_Top2

Push_Constant 4

Push_Local #a Push_Local #c

Mult_Top2

Mult_Top2

Subt_Top2

Bottom-Up Code Generation

Simple Code Generation for

Register Machine

• Need to allocate register for temporary
values

– AST nodes

• The number of machine registers may not
suffice

• Simple Algorithm:

– Bottom up code generation

– Allocate registers for subtrees

Register Machine Instructions

Abstract Syntax Trees for

Register Machine Instructions

Simple Code Generation

• Assume enough registers

• Use DFS to:

– Generate code

– Assign Registers

• Target register

• Auxiliary registers

Code Generation with Register Allocation

Code Generation with Register Allocation(2)

Example

-

*

*

b b 4 *

a c

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R2

Load_Mem a, R3 Load_Mem c, R4

Mult_Reg R4, R3

Mult_Reg R3, R2

Subt_Reg R1, R2

T=R1

T=R1

T=R1

T=R2

T=R2

T=R2

T=R3

T=R3 T=R4

Example

Runtime Evaluation

Optimality

• The generated code is suboptimal

• May consume more registers than necessary

– May require storing temporary results

• Leads to larger execution time

Example

Observation (Aho&Sethi)

• The compiler can reorder the computations

of sub-expressions

• The code of the right-subtree can appear

before the code of the left-subtree

• May lead to faster code

Example

-

*

*

b b 4 *

a c

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R3

Load_Mem a, R2 Load_Mem c, R3

Mult_Reg R3, R2

Mult_Reg R2, R3

Subt_Reg R3, R1

T=R1

T=R1

T=R1

T=R2

T=R2

T=R3

T=R2

T=R2 T=R3

Example

Load_Mem b, R1

Load_Mem b, R2

Mult_Reg R2, R1

Load_Mem a, R2

Load_Mem c, R3

Mult_Reg R3, R2

Load_Constant 4, R3

Mult_Reg R2, R3

Subt_Reg R3, R1

Two Phase Solution

Dynamic Programming

Sethi & Ullman

• Bottom-up (labeling)

– Compute for every subtree

• The minimal number of registers needed

• Weight

• Top-Down

– Generate the code using labeling by preferring
“heavier” subtrees (larger labeling)

The Labeling Principle

+

m registers n registers

m > n

m registers

The Labeling Principle

+

m registers n registers

m < n

n registers

The Labeling Principle

+

m registers n registers

m = n

m+1 registers

The Labeling Procedure

Labeling the example (weight)

-

*

*

b b 4 *

a c

1

2

1 1

1 1

2

2

3

Top-Down

-3

*
2 *2

b1 b1 41 *2

a1 c1

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R2

Load_Mem a, R3 Load_Mem c, R2

Mult_Reg R2, R3

Mult_Reg R3, R2

Subt_Reg R2, R1

T=R1

T=R1

T=R1

T=R2

T=R2

T=R2

T=R3

T=R3 T=R2

Generalizations

• More than two arguments for operators

– Function calls

• Register/memory operations

• Multiple effected registers

• Spilling

– Need more registers than available

Register Memory Operations

• Add_Mem X, R1

• Mult_Mem X, R1

• No need for registers to store right operands

Labeling the example (weight)

-

*

*

b b 4 *

a c

1

1

0 1

1 0

1

2

2

Top-Down

-2

*
1 *2

b1 b0 41 *1

a1 c0

Load_Mem b, R1

Mult_Mem b, R1

Load_Constant 4, R2

Load_Mem a, R1

Mult_Mem c,R1

Mult_Reg R1, R2

Subt_Reg R2, R1

T=R1

T=R1

T=R1
T=R2

T=R2

T=R2

T=R1

Empirical Results

• Experience shows that for handwritten

programs 5 registers suffice (Yuval 1977)

• But program generators may produce

arbitrary complex expressions

Spilling

• Even an optimal register allocator can
require more registers than available

• Need to generate code for every correct
program

• The compiler can save temporary results

– Spill registers into temporaries

– Load when needed

• Many heuristics exist

Simple Spilling Method

• Heavy tree – Needs more registers than
available

• A `heavy‟ tree contains a `heavy‟ subtree
whose dependents are „light‟

• Generate code for the light tree

• Spill the content into memory and replace
subtree by temporary

• Generate code for the resultant tree

Simple Spilling Method

Mult_Reg R2, R1

Top-Down (2 registers)

-3

*
2 *2

b1 b1 41 *2

a1 c1

Load_Constant 4, R2

Load_Mem a, R2 Load_Mem c, R1

Mult_Reg R1, R2

Mult_Reg R2, R1

T=R1

T=R1

T=R2

T=R2 T=R1

Store_Reg R1, T1

T=R1

T=R1

T=R1

Load_Mem b, R1

T=R2

Load_Mem b, R2

Load_Mem T1, R2

Subt_Reg R2, R1

Top-Down (2 registers)

Load_Mem a, R2

Load_Mem c, R1

Mult_Reg R1, R2

Load_Constant 4, R2

Mult_Reg R2, R1

Store_Reg R1, T1

Load_Mem b, R1

Load_Mem b, R2

Mult_Reg R2, R1

Load_Mem T1, R2

Subtr_Reg R2, R1

Summary

• Register allocation of expressions is simple

• Good in practice

• Optimal under certain conditions

– Uniform instruction cost

– `Symbolic‟ trees

• Can handle non-uniform cost

– Code-Generator Generators exist (BURS)

• Even simpler for 3-address machines

• Simple ways to determine best orders

• But misses opportunities to share registers between different
expressions

– Can employ certain conventions

• Better solutions exist

– Graph coloring

Code Generation

for Basic Blocks

Introduction

Chapter 4.2.5

The Code Generation Problem

• Given

– AST

– Machine description

• Number of registers

• Instructions + cost

• Generate code for AST with minimum cost

• NPC [Aho 77]

Example Machine Description

Simplifications

• Consider small parts of AST at time

– One expression at the time

• Target machine simplifications

– Ignore certain instructions

• Use simplifying conventions

Basic Block

• Parts of control graph without split

• A sequence of assignments and expressions

which are always executed together

• Maximal Basic Block Cannot be extended

– Start at label or at routine entry

– Ends just before jump like node, label,

procedure call, routine exit

Example
void foo()

{

if (x > 8) {

z = 9;

t = z + 1;

}

z = z * z;

t = t – z ;

bar();

t = t + 1;

x>8

z=9;

t = z + 1;

z=z*z;

t = t - z;

bar()

t=t+1;

Running Example

Running Example AST

Optimized code(gcc)

Outline

• Dependency graphs for basic blocks

• Transformations on dependency graphs

• From dependency graphs into code

– Instruction selection

(linearizations of dependency graphs)

– Register allocation (the general idea)

Dependency graphs

• Threaded AST imposes an order of execution

• The compiler can reorder assignments as long as
the program results are not changed

• Define a partial order on assignments

– a < b a must be executed before b

• Represented as a directed graph

– Nodes are assignments

– Edges represent dependency

• Acyclic for basic blocks

Running Example

Sources of dependency

• Data flow inside expressions

– Operator depends on operands

– Assignment depends on assigned expressions

• Data flow between statements

– From assignments to their use

• Pointers complicate dependencies

Sources of dependency

• Order of subexpresion evaluation is

immaterial

– As long as inside dependencies are respected

• The order of uses of a variable are

immaterial as long as:

– Come between

• Depending assignment

• Next assignment

Creating Dependency Graph from AST

1. Nodes AST becomes nodes of the graph

2. Replaces arcs of AST by dependency arrows

• Operator Operand

3. Create arcs from assignments to uses

4. Create arcs between assignments of the same

variable

5. Select output variables (roots)

6. Remove ; nodes and their arrows

Running Example

Dependency Graph Simplifications

• Short-circuit assignments

– Connect variables to assigned expressions

– Connect expression to uses

• Eliminate nodes not reachable from roots

Running Example

Cleaned-Up Data Dependency Graph

Common Subexpressions

• Repeated subexpressions

• Examples

x = a * a + 2* a*b + b * b;

y = a * a – 2 * a * b + b * b ;

a[i] + b [i]

• Can be eliminated by the compiler

• In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

• Linearize the dependency graph
– Instructions must follow dependency

• Many solutions exist

• Select the one with small runtime cost

• Assume infinite number of registers
– Symbolic registers

– Assign registers later
• May need additional spill

– Possible Heuristics
• Late evaluation

• Ladders

Pseudo Register Target Code

Register Allocation

• Maps symbolic registers into physical
registers

• Reuse registers as much as possible

• Graph coloring

– Undirected graph

– Nodes = Registers (Symbolic and real)

– Edges = Interference

• May require spilling

Register Allocation (Example)

R1 R2

X1

R3

X1 R2

Running Example

Optimized code(gcc)

Summary

• Heuristics for code generation of basic

blocks

• Works well in practice

• Fits modern machine architecture

• Can be extended to perform other tasks

– Common subexpression elimination

• But basic blocks are small

• Can be generalized to a procedure

