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Outline

• Where does it fit into the compiler

• Functionality

• “Backward” description

• Assembler design issues

• Linker design issues

• Advanced Issues

– Position-Independent Code (PIC)

– Shared Libraries

– Dynamic Library Loading



A More Realistic Compiler



Assembler

• Generate executable code from assembly

• Yet another compiler

• One-to one translation

• Resolve external references

• Relocate code

• How does it fit together?

• Is it really part of the compiler?
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Loader (Summary)

• Part of the operating system

• Does not depend on the programming 

language

• Privileged mode

• Initializes the runtime state

• Invisible activation record
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Linker

• Merge several executables

• Resolve external references

• Relocate addresses

• User mode

• Provided by the operating system

• But can be specific for the compiler

– More secure code

– Better error diagnosis



Relocation information

• How to change internal addresses

• Positions in the code which contains 

addresses (data/code)

• Two implementations

– Bitmap

– Linked-lists



External References

• The code may include references to external 

names (identifiers)

– Library calls

– External data

• Stored in external symbol table



Example



Recap

• Assembler generates binary code 

– Unresolved addresses

– Relocatable addresses

• Linker generates executable code

• Loader generates runtime states (images)



Assembler Design Issues 

• Converts symbolic machine code to binary

• One to one conversion
addl %edx, %ecx  000 0001 11 010 001 = 01 D1 (Hex)

• Some assemblers support overloading

– Different opcodes based on types

• Format conversions

• Handling internal addresses



Handling Internal Addresses



Resolving Internal Addresses

• Two scans of the code

– Construct a table label  address

– Replace labels with values

• Backpatching

– One scan of the code

– Simultaneously construct the table and resolve 

symbolic addresses

– Maintains list of unresolved labels

– Useful beyond assemblers



Backpatching



Handling External Addresses

• Record symbol table in external table

• Produce binary version together with the 
code and relocation bits

• Output of the assembly

– Code segment

– Data segment

– Relocation bits

– External table



Example of External Symbol Table



Example



Linker Design Issues

• Append

– Code segments

– Data segments

– Relocation bit maps

– External symbol tables

• Retain information about static length

• Real life complications

– Aggregate initializations 

– Object file formats

– Large library

– Efficient search procedures



Position-Independent Code(PIC)

• Code which does not need to be changed  regardless of the 

address in which it is loaded 

• Enable loading the same program at different addresses

– Shared libraries

– Dynamic loading

• Good examples

– relative jumps

– reference to activation records

• Bad examples

– Fixed addresses 

• Global and static data



PIC: The Main Idea

• Keep the data in a table

• Use register to point to the beginning of the 

table

• Refer to all data relative to the designated 

register

• But how to set the register?



TSS/IBM370

• Every routine has two addresses

– The start address of the code (V-con)

– The start address of the data (R-con)

Caller:

1. Copy R-con into Save-Area

2. Load V-con into R15

3. Call via R15

Callee:

1. Load R-con from Save-Area

2. Address subprocedures in 

data area

R-con

Register 

save area

R13



TSS Drawbacks

• Bulky calling sequence

• Procedure pointer requires two words



Per-Routine Pointer Table

• Store the pointer to the routine in the table

• Employed in some Unix systems
Caller:

1. Load Pointer table address 

into RP

2. Load Code address from 

0(RP) into RC

3. Call via RC

Callee:

1. RP points to pointer table

2. Table has addresses of 

pointer table for 

subprocedures

Other data

RP
.func



ELF-Position Independent Code

• Introduced in Unix System V

• Observation

– Executable consists of code followed by data

– The offset of the data from the beginning of the code is 

known at compile-time

GOTData

Segment

Code

Segment

XX0000

call L2

L2: 

popl %ebx

addl $_GOT[.-..L2], %ebx



PIC costs and benefits

• Enable loading w/o 

relocation

• Share memory 

locations among 

processes

• Data segment may 

need to be reloaded

• GOT can be large

• More runtime 

overhead

• More space overhead 



Shared Libraries
• Heavily used libraries

• Significant code space 

– 5-10 Mega for print

• Significant disk space

• Significant memory space

• Can be saved by sharing the same code

• Enforce consistency

• But introduces some overhead

• Can be implemented either with static or dynamic 

loading
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ELF format



Consistency

• How to guarantee that the code/library used the 

“right” library version



Loading Dynamically Linked 

Programs

• Start the dynamic linker

• Finding the libraries

• Initialization

– Resolve symbols 

– GOT

• Typically small

– Library specific initialization

• Lazy procedure linkage



Microsoft Dynamic Libraries  (DLL)

• Similar to ELF

• Somewhat simpler

• Require compiler support to address dynamic 

libraries

• Programs and DLL are Portable Executable (PE)

• Each application has it own address

• Supports lazy bindings



Dynamic Linking Approaches

• Unix/ELF uses a single name space space 

and MS/PE uses several name spaces

• ELF executable lists the names of symbols 

and libraries it needs

• PE file lists the libraries to import from 

other libraries

• ELF is more flexible

• PE is more efficient 



Costs of dynamic loading

• Load time relocation of libraries

• Load time resolution of libraries and 

executable

• Overhead from PIC prolog

• Overhead from indirect addressing

• Reserved registers



Summary

• Code generation yields code which is still 
far from executable

– Delegate to existing assembler

• Assembler translates symbolic instructions 
into binary and creates relocation bits

• Linker creates executable from several files 
produced by the assembly

• Loader creates an image from executable


