
Assembler/Linker/Loader

Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc10.html

Chapter 4.3

J. Levine: Linkers & Loaders

http://linker.iecc.com/

Outline

• Where does it fit into the compiler

• Functionality

• “Backward” description

• Assembler design issues

• Linker design issues

• Advanced Issues

– Position-Independent Code (PIC)

– Shared Libraries

– Dynamic Library Loading

A More Realistic Compiler

Assembler

• Generate executable code from assembly

• Yet another compiler

• One-to one translation

• Resolve external references

• Relocate code

• How does it fit together?

• Is it really part of the compiler?

Program Runtime State

Code

segment

Stack

segment

Data

Segment

Machine

Registers

Program Run

Code

segment

Stack

segment

Data

Segment

Machine

Registers

Operating System

Loader

.EXE

Code

segment

Data

Segment

Initial stack

size

Start address

Debug

Program Run

Code

segment

Stack

segment

Data

Segment

Machine

Registers

.EXE

Code

segment

Data

Segment

Initial stack

size

Start address

Loader (Summary)

• Part of the operating system

• Does not depend on the programming

language

• Privileged mode

• Initializes the runtime state

• Invisible activation record

Linker

Code

Segment

Data

Segment

Code

Segment

Data

Segment

0

0

100
0

101

Relocation

Bits

External Symbol Table

Linker

• Merge several executables

• Resolve external references

• Relocate addresses

• User mode

• Provided by the operating system

• But can be specific for the compiler

– More secure code

– Better error diagnosis

Relocation information

• How to change internal addresses

• Positions in the code which contains

addresses (data/code)

• Two implementations

– Bitmap

– Linked-lists

External References

• The code may include references to external

names (identifiers)

– Library calls

– External data

• Stored in external symbol table

Example

Recap

• Assembler generates binary code

– Unresolved addresses

– Relocatable addresses

• Linker generates executable code

• Loader generates runtime states (images)

Assembler Design Issues

• Converts symbolic machine code to binary

• One to one conversion
addl %edx, %ecx 000 0001 11 010 001 = 01 D1 (Hex)

• Some assemblers support overloading

– Different opcodes based on types

• Format conversions

• Handling internal addresses

Handling Internal Addresses

Resolving Internal Addresses

• Two scans of the code

– Construct a table label address

– Replace labels with values

• Backpatching

– One scan of the code

– Simultaneously construct the table and resolve

symbolic addresses

– Maintains list of unresolved labels

– Useful beyond assemblers

Backpatching

Handling External Addresses

• Record symbol table in external table

• Produce binary version together with the
code and relocation bits

• Output of the assembly

– Code segment

– Data segment

– Relocation bits

– External table

Example of External Symbol Table

Example

Linker Design Issues

• Append

– Code segments

– Data segments

– Relocation bit maps

– External symbol tables

• Retain information about static length

• Real life complications

– Aggregate initializations

– Object file formats

– Large library

– Efficient search procedures

Position-Independent Code(PIC)

• Code which does not need to be changed regardless of the

address in which it is loaded

• Enable loading the same program at different addresses

– Shared libraries

– Dynamic loading

• Good examples

– relative jumps

– reference to activation records

• Bad examples

– Fixed addresses

• Global and static data

PIC: The Main Idea

• Keep the data in a table

• Use register to point to the beginning of the

table

• Refer to all data relative to the designated

register

• But how to set the register?

TSS/IBM370

• Every routine has two addresses

– The start address of the code (V-con)

– The start address of the data (R-con)

Caller:

1. Copy R-con into Save-Area

2. Load V-con into R15

3. Call via R15

Callee:

1. Load R-con from Save-Area

2. Address subprocedures in

data area

R-con

Register

save area

R13

TSS Drawbacks

• Bulky calling sequence

• Procedure pointer requires two words

Per-Routine Pointer Table

• Store the pointer to the routine in the table

• Employed in some Unix systems
Caller:

1. Load Pointer table address

into RP

2. Load Code address from

0(RP) into RC

3. Call via RC

Callee:

1. RP points to pointer table

2. Table has addresses of

pointer table for

subprocedures

Other data

RP
.func

ELF-Position Independent Code

• Introduced in Unix System V

• Observation

– Executable consists of code followed by data

– The offset of the data from the beginning of the code is

known at compile-time

GOTData

Segment

Code

Segment

XX0000

call L2

L2:

popl %ebx

addl $_GOT[.-..L2], %ebx

PIC costs and benefits

• Enable loading w/o

relocation

• Share memory

locations among

processes

• Data segment may

need to be reloaded

• GOT can be large

• More runtime

overhead

• More space overhead

Shared Libraries
• Heavily used libraries

• Significant code space

– 5-10 Mega for print

• Significant disk space

• Significant memory space

• Can be saved by sharing the same code

• Enforce consistency

• But introduces some overhead

• Can be implemented either with static or dynamic

loading

Content of ELF file

Call

PLT

GOT

T
ex

t
D

at
a

Routine

PLT

GOT

T
ex

t
D

at
a

Program Libraries

ELF format

Consistency

• How to guarantee that the code/library used the

“right” library version

Loading Dynamically Linked

Programs

• Start the dynamic linker

• Finding the libraries

• Initialization

– Resolve symbols

– GOT

• Typically small

– Library specific initialization

• Lazy procedure linkage

Microsoft Dynamic Libraries (DLL)

• Similar to ELF

• Somewhat simpler

• Require compiler support to address dynamic

libraries

• Programs and DLL are Portable Executable (PE)

• Each application has it own address

• Supports lazy bindings

Dynamic Linking Approaches

• Unix/ELF uses a single name space space

and MS/PE uses several name spaces

• ELF executable lists the names of symbols

and libraries it needs

• PE file lists the libraries to import from

other libraries

• ELF is more flexible

• PE is more efficient

Costs of dynamic loading

• Load time relocation of libraries

• Load time resolution of libraries and

executable

• Overhead from PIC prolog

• Overhead from indirect addressing

• Reserved registers

Summary

• Code generation yields code which is still
far from executable

– Delegate to existing assembler

• Assembler translates symbolic instructions
into binary and creates relocation bits

• Linker creates executable from several files
produced by the assembly

• Loader creates an image from executable

