
1

Program analysis

Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc08.html

Outline
• What is (static) program analysis
• Example
• Undecidability
• An Iterative Algorithm
• Properties of the algorithm
• The theory of Abstract Interpretation

Abstract Interpretation
Static analysis

• Automatically identify program properties
– No user provided loop invariants

• Sound but incomplete methods
– But can be rather precise

• Non-standard interpretation of the program
operational semantics

• Applications
– Compiler optimization
– Code quality tools

• Identify potential bugs
• Prove the absence of runtime errors
• Partial correctness

2

Control Flow Graph(CFG)

z = 3

while (x>0) {

if (x = 1)

y = 7;

else

y =z + 4;

assert y == 7

}

z =3

while (x>0)

if (x=1)

y =7 y =z+4

assert y==7

Constant Propagation

z =3

while (x>0)

if (x=1)

y =7 y =z+4

assert y==7

[xx?, yx?, zx?]

[xx?, yx?, z x 3]

[xx?, yx?, zx3]

[xx?, yx?, zx3][xx1, yx?, zx3]

[xx1, yx7, zx3] [xx?, yx7, zx3]

[xx?, yx?, zx3]

List reverse(Element ∗head)
{

List rev, n;
rev = NULL;
while (head != NULL) {

n = head →next;
head → next = rev;
head = n;
rev = head;

}
return rev;

}

Memory Leakage

potential leakage of address
pointed to by head

3

Memory Leakage
Element∗ reverse(Element ∗head)
{

Element ∗rev, ∗n;
rev = NULL;
while (head != NULL) {

n = head → next;
head → next = rev;
rev = head;
head = n;

}
return rev; }

No memory leaks

A Simple Example

void foo(char *s)
{

while (*s != ‘ ‘)
s++;

*s = 0;
}

Potential buffer overrun:
offset(s) m alloc(base(s))

A Simple Example

void foo(char *s) @require string(s)
{

while (*s != ‘ ‘&& *s != 0)
s++;

*s = 0;
}

No buffer overruns

4

Example Static Analysis Problem
• Find variables which are live at a given

program location
• Used before set on some execution paths

from the current program point

A Simple Example
/* c */

L0: a := 0

/* ac */

L1: b := a + 1

/* bc */

c := c + b

/* bc */

a := b * 2

/* ac */

if c < N goto L1

/* c */

return c

a b

c

Compiler Scheme

String
Scanner

Parser

Semantic Analysis

Code Generator

Static analysis

Transformations

Tokens

source-program

tokens

AST

IR

IR +information

5

Undecidability issues

• It is impossible to compute exact static
information

• Finding if a program point is reachable
• Difficulty of interesting data properties

Undecidabily

• A variable is live at a given
point in the program
– if its current value is used after this point prior to

a definition in some execution path
• It is undecidable if a variable is live at a

given program location

Proof Sketch

Pr

L: x := y

Is y live at L?

6

Conservative (Sound)
• The compiler need not generate the optimal

code
• Can use more registers (“spill code”) than

necessary
• Find an upper approximation of the live

variables
• Err on the safe side
• A superset of edges in the interference graph
• Not too many superfluous live variables

Conservative(Sound) Software
Quality Tools

• Can never miss an error
• But may produce false alarms

– Warning on non existing errors

Data Flow Values
• Order data flow values

– a b b ⇔ a “is more precise than” b
– In live variables

• a b b ⇔ a ⊆ b
– In constant propagation

• a b b ⇔ a includes more constants than b

• Compute the least solution
• Merge control flow paths optimistically

– a 7 b
– In live variables

• a 7 b= a∪b

7

Transfer Functions

• Program statements operate on data flow
values conservatively

Transfer Functions
(Constant Propagation)

• Program statements operate on data flow values
conservatively

• If a=3 and b=7 before
“z = a + b;”
– then a=3, b =7, and z =10 after

• If a=? and b=7 before
“z = a + b;”
– then a=?, b =7, and z =? After

• For x = exp
– CpOut = CpIn [x h [[exp]](CpIn)]

Transfer Functions
LiveVariables

• If a and c are potentially live after
“a = b *2”
– then b and c are potentially live before

• For “x = exp;”
– LiveIn = Livout – {x} ∪ arg(exp)

8

Iterative computation of
conservative static information

• Construct a control flow graph(CFG)
• Optimistically start with the best value at

every node
• “Interpret” every statement in a

conservative way
• Forward/Backward traversal of CFG
• Stop when no changes occur

Pseudo Code (forward)
forward(G(V, E): CFG, start: CFG node, initial: value){

// initialization

value[start]:= initial

for each v ∈ V – {start} do value[v] := z

// iteration

WL = V

while WL != {} do

select and remove a node v ∈WL

for each u ∈ V such that (v, u) ∈ E do

value[u] := value[u] 7 f(v, u)(value[v])

if value[u] was changed WL := WL ∪ {u}

Constant Propagation

1: z =3

2: while (x>0)

3: if (x=1)

4: y =7 5: y =z+4

N Val WL

v[1]=[xh?, yh?, z h?] {1, 2, 3, 4, 5}

v[2]=[xh?, yh?, z h3]

v[3]=[xh?, yh?, z h3]

v[4] =[xh?, yh?, zh3]
v[5] =[xh?, yh?, zh3]

1 {2, 3, 4, 5}

2 {3, 4, 5}

3 {4, 5}

4 {5}

5 {}

Only values before CFG are shown

9

Pseudo Code (backward)
backward(G(V, E): CFG, exit: CFG node, initial: value){

// initialization

value[exit]:= initial

for each v ∈ V – {exit} do value[v] := z

// iteration

WL = V

while WL != {} do

select and remove a node v ∈WL

for each u ∈ V such that (u, v) ∈ E do

value[u] := value[u] 7 f(v, u)(value[v])

if value[u] was changed WL := WL ∪ {u}

/* c */

L0: a := 0

/* ac */

L1: b := a + 1

/* bc */

c := c + b

/* bc */

a := b * 2

/* ac */

if c < N goto L1

/* c */

return c

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ;

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ; ∅

∅

∅

∅

∅

∅

10

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ; ∅

{c}

∅

∅

∅

∅

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ; ∅

{c}

{c}

∅

∅

∅

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ; ∅

{c}

{c}

{c, b}

∅

∅

11

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ; ∅

{c}

{c}

{c, b}

∅

{c, b}

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ; ∅

{c}

{c}

{c, b}

{c, a}

{c, b}

a := 0 ;

b := a +1 ;

c := c +b ;

a := b*2 ;

c <N goto L1

return c ; ∅

{c, a}

{c, a}

{c, b}

{c, a}

{c, b}

12

Summary Iterative Procedure

• Analyze one procedure at a time
– More precise solutions exit

• Construct a control flow graph for the
procedure

• Initializes the values at every node to the
most optimistic value

• Iterate until convergence

Abstract Interpretation

• The mathematical foundations of program
analysis

• Established by Cousot and Cousot 1979
• Relates static and runtime values

Abstract (Conservative) interpretation

abstract
representation

Set of states

concretization

Abstract
semantics

statement s abstract
representation

abstraction

Operational
semantics

statement s
Set of states

13

Example rule of signs
• Safely identify the sign of variables at every program

location
• Abstract representation {P, N, ?}
• Abstract (conservative) semantics of *

*# P N ?

P P N ?

N N P ?

? ? ? ?

Abstract (conservative) interpretation

<N, N>

{…,<-88, -2>,…}

concretization

Abstract
semantics

x := x*#y
<P, N>

abstraction

Operational
semantics

x := x*y {…, <176, -2>…}

Example rule of signs
• Safely identify the sign of variables at every program location
• Abstract representation {P, N, ?}
• α(C) = if all elements in C are positive

then return P
else if all elements in C are negative

then return N
else return ?

• γ(a) = if (a==P) then
return{0, 1, 2, … }
else if (a==N)

return {-1, -2, -3, …, }
else return Z

14

Example Constant Propagation
• Abstract representation

– set of integer values and and extra value “?” denoting
variables not known to be constants

• Conservative interpretation of +

+# ? 0 1 2

? ? ? ? ?

0 ? 0 1 2

1 ? 1 2 3

2 ? 2 3 4

Example Program
x = 5;

y = 7;

if (getc())

y = x + 2;

z = x +y;

Example Program (2)
if (getc())

x= 3 ; y = 2;

else

x =2; y = 3;

z = x +y;

15

Local Soundness of
Abstract Interpretation

Abstract
semantics

statement#

⊆

concretization

Operational
semantics

statement

concretization

Local Soundness of
Abstract Interpretation

abstraction abstraction

Operational
semantics

statement

Abstract
semantics

statement#
t

Some Success Stories
Software Quality Tools

• The prefix Tool identified interesting bugs
in Windows

• The Microsoft SLAM tool checks
correctness of device driver
– Driver correctness rules

• Polyspace checks ANSI C conformance
– Flags potential runtime errors

16

Summary

• Program analysis provides non-trivial
insights on the runtime executions of the
program
– Degenerate case – types (flow insensitive)

• Mathematically justified
– Operational semantics
– Abstract interpretation (lattice theory)

• Employed in compilers
• Will be employed in software quality tools

