
Code Generation
Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc08.html

Chapter 4

Tentative Schedule
25/2 Code generation

Expression
3/3 Basic Blocks

Activation Records
10/3 Program Analysis

{12|13}/3 18-21 Register Allocation

17/3 Control Flow

24/3 Assembler/Linker/Loader
OO

[30/3] Garbage Collection
Not included in the course material

Basic Compiler Phases

Code Generation

• Transform the AST into machine code
– Several phases
– Many IRs exist

• Machine instructions can be described by tree
patterns

• Replace tree-nodes by machine instruction
– Tree rewriting
– Replace subtrees

• Applicable beyond compilers

a := (b[4*c+d]*2)+9

leal movsbl

9

Ra

+

*

2
mem

+

@b +

* Rd

Rc4

9

+

*

2

Ra

Rt

Load_Byte (b+Rd)[Rc], 4, Rt

Ra

Load_Byte (b+Rd)[Rc], 4, Rt

Load_address 9[Rt], 2, Ra

Overall Structure

Code generation issues

• Code selection
• Register allocation
• Instruction ordering

Simplifications

• Consider small parts of AST at time
• Simplify target machine
• Use simplifying conventions

Outline
• Simple code generation for expressions (4.2.4, 4.3)

– Pure stack machine
– Pure register machine

• Code generation of basic blocks (4.2.5)
• [Automatic generation of code generators (4.2.6)]
• Later

– Handling control statements
– Program Analysis
– Register Allocation
– Activation frames

Simple Code Generation

• Fixed translation for each node type
• Translates one expression at the time
• Local decisions only
• Works well for simple machine model

– Stack machines (PDP 11, VAX)
– Register machines (IBM 360/370)

• Can be applied to modern machines

Simple Stack Machine

BP

SP

Stack

Stack Machine Instructions

Example

p := p + 5
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

Simple Stack Machine

BP

SP
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p7 BP+5

Simple Stack Machine

BP

SP
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

7

BP+57

Simple Stack Machine

BP

SP
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

7

BP+57

5

Simple Stack Machine

BP

SP Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p

12

BP+57

Simple Stack Machine

BP

SP

Push_Local #p

Push_Const 5

Add_Top2

Store_Local #pBP+512

Register Machine

• Fixed set of registers
• Load and store from/to memory
• Arithmetic operations on register only

Register Machine Instructions

Example

p := p + 5
Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

7

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

57

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

512

R1 R2

Simple Register Machine

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P12 x770

memory

512

R1 R2

Simple Code Generation for
Stack Machine

• Tree rewritings
• Bottom up AST traversal

Abstract Syntax Trees for Stack Machine Instructions

Example

-

*
*

b b 4 *

a c

Push_Local #b Push_Local #b

Mult_Top2

Push_Constant 4

Push_Local #a Push_Local #c

Mult_Top2

Mult_Top2

Subt_Top2

Bottom-Up Code Generation

Simple Code Generation for
Register Machine

• Need to allocate register for temporary
values
– AST nodes

• The number of machine registers may not
suffice

• Simple Algorithm:
– Bottom up code generation
– Allocate registers for subtrees

Register Machine Instructions

Abstract Syntax Trees for
Register Machine Instructions

Simple Code Generation

• Assume enough registers
• Use DFS to:

– Generate code
– Assign Registers

• Target register
• Auxiliary registers

Code Generation with Register Allocation

Code Generation with Register Allocation(2)

Example

-

*
*

b b 4 *

a c

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R2

Load_Mem a, R3 Load_Mem c, R4

Mult_Reg R4, R3

Mult_Reg R3, R2

Subt_Reg R1, R2

T=R1

T=R1

T=R2

T=R2

T=R2
T=R3

T=R3 T=R4

T=R1

Example

Runtime Evaluation

Optimality

• The generated code is suboptimal
• May consume more registers than necessary

– May require storing temporary results
• Leads to larger execution time

Example

Observation (Aho&Sethi)

• The compiler can reorder the computations
of sub-expressions

• The code of the right-subtree can appear
before the code of the left-subtree

• May lead to faster code

Example

-

*
*

b b 4 *

a c

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R3

Load_Mem a, R2 Load_Mem c, R3

Mult_Reg R3, R2

Mult_Reg R2, R3

Subt_Reg R3, R1

T=R1

T=R1

T=R2

T=R2

T=R3
T=R2

T=R2 T=R3

T=R1

Example

Load_Mem b, R1

Load_Mem b, R2

Mult_Reg R2, R1

Load_Mem a, R2

Load_Mem c, R3

Mult_Reg R3, R2

Load_Constant 4, R3

Mult_Reg R2, R3

Subt_Reg R3, R1

Two Phase Solution
Dynamic Programming

Sethi & Ullman

• Bottom-up (labeling)
– Compute for every subtree

• The minimal number of registers needed
• Weight

• Top-Down
– Generate the code using labeling by preferring

“heavier” subtrees (larger labeling)

The Labeling Principle
+

m registers n registers

m > n
m registers

The Labeling Principle
+

m registers n registers

m < n
n registers

The Labeling Principle
+

m registers n registers

m = n
m+1 registers

The Labeling Procedure

Labeling the example (weight)

-

*
*

b b 4 *

a c

1

2 2

1 1

1 1

2

3

Top-Down

-3

*2 *2

b1 b1 41 *2

a1 c1

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R2

Load_Mem a, R3 Load_Mem c, R2

Mult_Reg R2, R3

Mult_Reg R3, R2

Subt_Reg R2, R1

T=R1

T=R1

T=R2

T=R2

T=R2
T=R3

T=R3 T=R2

T=R1

Generalizations

• More than two arguments for operators
– Function calls

• Register/memory operations
• Multiple effected registers
• Spilling

– Need more registers than available

Register Memory Operations

• Add_Mem X, R1
• Mult_Mem X, R1
• No need for registers to store right operands

Labeling the example (weight)

-

*
*

b b 4 *

a c

1

1 2

0 1

1 0

1

2

Top-Down

-2

*1 *2

b1 41 *1

a1

b0

c0

Load_Mem b, R1

Mult_Mem b, R1

Load_Constant 4, R2

Load_Mem a, R1

Mult_Mem c,R1

Mult_Reg R1, R2

Subt_Reg R2, R1

T=R1

T=R1 T=R2

T=R2
T=R2

T=R1

T=R1

Empirical Results

• Experience shows that for handwritten
programs 5 registers suffice (Yuval 1977)

• But program generators may produce
arbitrary complex expressions

Spilling

• Even an optimal register allocator can
require more registers than available

• Need to generate code for every correct
program

• The compiler can save temporary results
– Spill registers into temporaries
– Load when needed

• Many heuristics exist

Simple Spilling Method

• Heavy tree – Needs more registers than
available

• A `heavy’ tree contains a `heavy’ subtree
whose dependents are ‘light’

• Generate code for the light tree
• Spill the content into memory and replace

subtree by temporary
• Generate code for the resultant tree

Simple Spilling Method

Mult_Reg R2, R1

-3

*2 *2

b1 b1 41 *2

a1 c1

Top-Down (2 registers)

Load_Constant 4, R2

Load_Mem a, R2 Load_Mem c, R1

Mult_Reg R1, R2

Mult_Reg R2, R1

T=R1

T=R1
T=R2

T=R2 T=R1

T=R1

T=R1

Store_Reg R1, T1

T=R1

Load_Mem b, R1

T=R2

Load_Mem b, R2

Load_Mem T1, R2

Subt_Reg R2, R1

Top-Down (2 registers)

Load_Mem a, R2
Load_Mem c, R1
Mult_Reg R1, R2
Load_Constant 4, R2
Mult_Reg R2, R1
Store_Reg R1, T1
Load_Mem b, R1
Load_Mem b, R2
Mult_Reg R2, R1
Load_Mem T1, R2
Subtr_Reg R2, R1

Summary

• Register allocation of expressions is simple
• Good in practice
• Optimal under certain conditions

– Uniform instruction cost
– `Symbolic’ trees

• Can handle non-uniform cost
– Code-Generator Generators exist (BURS)

• Even simpler for 3-address machines
• Simple ways to determine best orders
• But misses opportunities to share registers between different

expressions
– Can employ certain conventions

• Better solutions exist
– Graph coloring

Code Generation
for Basic Blocks

Introduction

Chapter 4.2.5

The Code Generation Problem

• Given
– AST
– Machine description

• Number of registers
• Instructions + cost

• Generate code for AST with minimum cost
• NPC [Aho 77]

Example Machine Description

Simplifications

• Consider small parts of AST at time
– One expression at the time

• Target machine simplifications
– Ignore certain instructions

• Use simplifying conventions

Basic Block

• Parts of control graph without split
• A sequence of assignments and expressions

which are always executed together
• Maximal Basic Block Cannot be extended

– Start at label or at routine entry
– Ends just before jump like node, label,

procedure call, routine exit

Example
void foo()

{

if (x > 8) {

z = 9;

t = z + 1;

}

z = z * z;

t = t – z ;

bar();

t = t + 1;

x>8

z=9;

t = z + 1;

z=z*z;

t = t - z;

bar()

t=t+1;

Running Example

Running Example AST

Optimized code(gcc)

Outline

• Dependency graphs for basic blocks
• Transformations on dependency graphs
• From dependency graphs into code

– Instruction selection
(linearizations of dependency graphs)

– Register allocation (the general idea)

Dependency graphs

• Threaded AST imposes an order of execution
• The compiler can reorder assignments as long as

the program results are not changed
• Define a partial order on assignments

– a < b ⇔ a must be executed before b
• Represented as a directed graph

– Nodes are assignments
– Edges represent dependency

• Acyclic for basic blocks

Running Example

Sources of dependency

• Data flow inside expressions
– Operator depends on operands
– Assignment depends on assigned expressions

• Data flow between statements
– From assignments to their use

• Pointers complicate dependencies

Sources of dependency

• Order of subexpresion evaluation is
immaterial
– As long as inside dependencies are respected

• The order of uses of a variable are
immaterial as long as:
– Come between

• Depending assignment
• Next assignment

Creating Dependency Graph from AST

1. Nodes AST becomes nodes of the graph
2. Replaces arcs of AST by dependency arrows

• Operator → Operand
3. Create arcs from assignments to uses
4. Create arcs between assignments of the same

variable
5. Select output variables (roots)
6. Remove ; nodes and their arrows

Running Example

Dependency Graph Simplifications

• Short-circuit assignments
– Connect variables to assigned expressions
– Connect expression to uses

• Eliminate nodes not reachable from roots

Running Example

Cleaned-Up Data Dependency Graph

Common Subexpressions

• Repeated subexpressions
• Examples

x = a * a + 2* a*b + b * b;
y = a * a – 2 * a * b + b * b ;
a[i] + b [i]

• Can be eliminated by the compiler
• In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

• Linearize the dependency graph
– Instructions must follow dependency

• Many solutions exist
• Select the one with small runtime cost
• Assume infinite number of registers

– Symbolic registers
– Assign registers later

• May need additional spill
– Possible Heuristics

• Late evaluation
• Ladders

Pseudo Register Target Code

Register Allocation

• Maps symbolic registers into physical
registers

• Reuse registers as much as possible
• Graph coloring

– Undirected graph
– Nodes = Registers (Symbolic and real)
– Edges = Interference

• May require spilling

Register Allocation (Example)

R1 R2

X1

R3

X1 →R2

Running Example

Optimized code(gcc)

Summary

• Heuristics for code generation of basic
blocks

• Works well in practice
• Fits modern machine architecture
• Can be extended to perform other tasks

– Common subexpression elimination
• But basic blocks are small
• Can be generalized to a procedure

	Code Generation
	Tentative Schedule
	Basic Compiler Phases
	Code Generation
	a := (b[4*c+d]*2)+9
	Overall Structure
	Code generation issues
	Simplifications
	Outline
	Simple Code Generation
	Simple Stack Machine
	Stack Machine Instructions
	Example
	Simple Stack Machine
	Simple Stack Machine
	Simple Stack Machine
	Simple Stack Machine
	Simple Stack Machine
	Register Machine
	Register Machine Instructions
	Example
	Simple Register Machine
	Simple Register Machine
	Simple Register Machine
	Simple Register Machine
	Simple Register Machine
	Simple Code Generation for �Stack Machine
	Abstract Syntax Trees for Stack Machine Instructions
	Example
	Bottom-Up Code Generation
	Simple Code Generation for�Register Machine
	Register Machine Instructions
	Abstract Syntax Trees for�Register Machine Instructions
	Simple Code Generation
	Code Generation with Register Allocation
	Code Generation with Register Allocation(2)
	Example
	Example
	Runtime Evaluation
	Optimality
	Example
	Observation (Aho&Sethi)
	Example
	Example
	Two Phase Solution�Dynamic Programming�Sethi & Ullman
	The Labeling Principle
	The Labeling Principle
	The Labeling Principle
	The Labeling Procedure
	Labeling the example (weight)
	Top-Down
	Generalizations
	Register Memory Operations
	Labeling the example (weight)
	Top-Down
	Empirical Results
	Spilling
	Simple Spilling Method
	Simple Spilling Method
	Top-Down (2 registers)
	Top-Down (2 registers)
	Summary
	Code Generation�for Basic Blocks�Introduction�
	The Code Generation Problem
	Example Machine Description
	Simplifications
	Basic Block
	Example
	Running Example
	Running Example AST
	Optimized code(gcc)
	Outline
	Dependency graphs
	Running Example
	Sources of dependency
	Sources of dependency
	Creating Dependency Graph from AST
	Running Example
	Dependency Graph Simplifications
	Running Example
	Cleaned-Up Data Dependency Graph
	Common Subexpressions
	From Dependency Graph into Code
	Pseudo Register Target Code
	Register Allocation
	Register Allocation (Example)
	Running Example
	Optimized code(gcc)
	Summary

