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Basic Compiler Phases



Code Generation

• Transform the AST into machine code
– Several phases
– Many IRs exist

• Machine instructions can be described by tree 
patterns

• Replace tree-nodes by machine instruction
– Tree rewriting
– Replace subtrees

• Applicable beyond compilers
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Overall Structure



Code generation issues

• Code selection
• Register allocation
• Instruction ordering



Simplifications

• Consider small parts of AST at time
• Simplify target machine
• Use simplifying conventions



Outline
• Simple code generation for expressions (4.2.4, 4.3)

– Pure stack machine
– Pure register machine

• Code generation of basic blocks (4.2.5)
• [Automatic generation of code generators (4.2.6)]
• Later

– Handling control statements
– Program Analysis
– Register Allocation 
– Activation frames 



Simple Code Generation

• Fixed translation for each node type
• Translates one expression at the time
• Local decisions only
• Works well for simple machine model

– Stack machines (PDP 11, VAX)
– Register machines (IBM 360/370)

• Can be applied to modern machines



Simple Stack Machine
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Stack Machine Instructions



Example 

p := p + 5
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p



Simple Stack Machine

BP

SP
Push_Local #p

Push_Const 5

Add_Top2

Store_Local #p7 BP+5



Simple Stack Machine
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Simple Stack Machine
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Simple Stack Machine
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Simple Stack Machine

BP

SP

Push_Local #p

Push_Const 5

Add_Top2

Store_Local #pBP+512



Register Machine

• Fixed set of registers
• Load and store from/to memory
• Arithmetic operations on register only



Register Machine Instructions



Example 

p := p + 5
Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P



Simple Register Machine 

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

R1 R2



Simple Register Machine 

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770
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R1 R2



Simple Register Machine 

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

57

R1 R2



Simple Register Machine 

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P7 x770

memory

512

R1 R2



Simple Register Machine 

Load_Mem p, R1

Load_Const 5, R2

Add_Reg R2, R1

Store_Reg R1, P12 x770

memory

512

R1 R2



Simple Code Generation for 
Stack Machine

• Tree rewritings
• Bottom up AST traversal



Abstract Syntax Trees for Stack Machine Instructions



Example

-

*
*

b b 4 *

a c

Push_Local #b Push_Local #b

Mult_Top2

Push_Constant 4

Push_Local #a Push_Local #c

Mult_Top2

Mult_Top2

Subt_Top2



Bottom-Up Code Generation



Simple Code Generation for
Register Machine

• Need to allocate register for temporary 
values
– AST nodes

• The number of machine registers may not 
suffice

• Simple Algorithm:  
– Bottom up code generation
– Allocate registers for subtrees



Register Machine Instructions



Abstract Syntax Trees for
Register Machine Instructions



Simple Code Generation

• Assume enough registers
• Use DFS to:

– Generate code 
– Assign Registers

• Target register
• Auxiliary registers



Code Generation with Register Allocation



Code Generation with Register Allocation(2)



Example

-

*
*

b b 4 *

a c

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R2

Load_Mem a, R3 Load_Mem c, R4

Mult_Reg R4, R3

Mult_Reg R3, R2

Subt_Reg R1, R2

T=R1

T=R1

T=R2

T=R2

T=R2
T=R3

T=R3 T=R4

T=R1



Example



Runtime Evaluation



Optimality

• The generated code is suboptimal
• May consume more registers than necessary

– May require storing temporary results
• Leads to larger execution time



Example



Observation (Aho&Sethi)

• The compiler can reorder the computations 
of sub-expressions

• The code of the right-subtree can appear 
before the code of the left-subtree

• May lead to faster code 



Example

-

*
*

b b 4 *

a c

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R3

Load_Mem a, R2 Load_Mem c, R3

Mult_Reg R3, R2

Mult_Reg R2, R3

Subt_Reg R3, R1

T=R1

T=R1

T=R2

T=R2

T=R3
T=R2

T=R2 T=R3

T=R1



Example

Load_Mem b, R1

Load_Mem b, R2

Mult_Reg R2, R1

Load_Mem a, R2

Load_Mem c, R3

Mult_Reg R3, R2

Load_Constant 4, R3

Mult_Reg R2, R3

Subt_Reg R3, R1



Two Phase Solution
Dynamic Programming

Sethi & Ullman

• Bottom-up (labeling)
– Compute for every subtree

• The minimal number of registers needed
• Weight

• Top-Down
– Generate the code using labeling by preferring 

“heavier” subtrees (larger labeling)



The Labeling Principle
+

m registers n registers

m > n
m registers



The Labeling Principle
+

m registers n registers

m < n
n registers



The Labeling Principle
+

m registers n registers

m = n
m+1 registers



The Labeling Procedure



Labeling the example (weight)

-

*
*

b b 4 *

a c

1

2 2

1 1

1 1

2

3



Top-Down

-3

*2 *2

b1 b1 41 *2

a1 c1

Load_Mem b, R1 Load_Mem b, R2

Mult_Reg R2, R1

Load_Constant 4, R2

Load_Mem a, R3 Load_Mem c, R2

Mult_Reg R2, R3

Mult_Reg R3, R2

Subt_Reg R2, R1

T=R1

T=R1

T=R2

T=R2

T=R2
T=R3

T=R3 T=R2

T=R1



Generalizations

• More than two arguments for operators
– Function calls

• Register/memory operations
• Multiple effected registers
• Spilling 

– Need more registers than available



Register Memory Operations

• Add_Mem X, R1
• Mult_Mem X, R1
• No need for registers to store right operands  



Labeling the example (weight)

-

*
*

b b 4 *

a c

1

1 2

0 1

1 0

1

2



Top-Down

-2

*1 *2

b1 41 *1

a1

b0

c0

Load_Mem b, R1

Mult_Mem b, R1

Load_Constant 4, R2

Load_Mem a, R1

Mult_Mem c,R1

Mult_Reg R1, R2

Subt_Reg R2, R1

T=R1

T=R1 T=R2

T=R2
T=R2

T=R1

T=R1



Empirical Results

• Experience shows that for handwritten 
programs 5 registers suffice (Yuval 1977)

• But program generators may produce 
arbitrary complex expressions



Spilling

• Even an optimal register allocator can 
require more registers than available

• Need to generate code for every correct 
program

• The compiler can save temporary results
– Spill registers into temporaries
– Load when needed

• Many heuristics exist



Simple Spilling Method

• Heavy tree – Needs more registers than 
available

• A `heavy’ tree contains a `heavy’ subtree
whose dependents are ‘light’

• Generate code for the light tree
• Spill the content into memory and replace 

subtree by temporary
• Generate code for the resultant tree



Simple Spilling Method



Mult_Reg R2, R1

-3

*2 *2

b1 b1 41 *2

a1 c1

Top-Down (2 registers)

Load_Constant 4, R2

Load_Mem a, R2 Load_Mem c, R1

Mult_Reg R1, R2

Mult_Reg R2, R1

T=R1

T=R1
T=R2

T=R2 T=R1

T=R1

T=R1

Store_Reg R1, T1

T=R1

Load_Mem b, R1

T=R2

Load_Mem b, R2

Load_Mem T1, R2

Subt_Reg R2, R1



Top-Down (2 registers)

Load_Mem a, R2
Load_Mem c, R1
Mult_Reg R1, R2
Load_Constant 4, R2
Mult_Reg R2, R1
Store_Reg R1, T1
Load_Mem b, R1
Load_Mem b, R2
Mult_Reg R2, R1
Load_Mem T1, R2
Subtr_Reg R2, R1



Summary

• Register allocation of expressions is simple
• Good in practice
• Optimal under certain conditions

– Uniform instruction cost
– `Symbolic’ trees

• Can handle non-uniform cost
– Code-Generator Generators exist (BURS) 

• Even simpler for 3-address machines
• Simple ways to determine best orders
• But misses opportunities to share registers between different 

expressions
– Can employ certain conventions

• Better solutions exist
– Graph coloring



Code Generation
for Basic Blocks

Introduction

Chapter 4.2.5 



The Code Generation Problem

• Given
– AST
– Machine description

• Number of registers
• Instructions + cost

• Generate code for AST with minimum cost
• NPC [Aho 77]



Example Machine Description



Simplifications

• Consider small parts of AST at time
– One expression at the time

• Target machine simplifications
– Ignore certain instructions

• Use simplifying conventions



Basic Block

• Parts of control graph without split
• A sequence of assignments and expressions  

which are always executed together
• Maximal Basic Block Cannot be extended

– Start at label or at routine entry
– Ends just before jump like node, label, 

procedure call, routine exit 



Example
void foo() 

{

if (x > 8) {

z = 9;

t = z + 1;

}

z = z * z;

t = t – z ;

bar();

t = t + 1;

x>8

z=9;

t = z + 1;

z=z*z;

t = t - z;

bar()

t=t+1;



Running Example



Running Example AST



Optimized code(gcc)



Outline

• Dependency graphs for basic blocks
• Transformations on dependency graphs
• From dependency graphs into code

– Instruction selection 
(linearizations of dependency graphs)

– Register allocation (the general idea)



Dependency graphs

• Threaded AST imposes an order of execution
• The compiler can reorder assignments as long as 

the program results are not changed
• Define a partial order on assignments

– a < b ⇔ a must be executed before b
• Represented as a directed graph

– Nodes are assignments
– Edges represent dependency

• Acyclic for basic blocks



Running Example



Sources of dependency

• Data flow inside expressions
– Operator depends on operands
– Assignment depends on assigned expressions

• Data flow between statements
– From assignments to their use

• Pointers complicate dependencies



Sources of dependency

• Order of subexpresion evaluation is 
immaterial
– As long as inside dependencies are respected

• The order of uses of a variable are 
immaterial as long as:
– Come between 

• Depending assignment
• Next assignment 



Creating Dependency Graph from AST

1. Nodes AST becomes nodes of the graph
2. Replaces arcs of AST by dependency arrows

• Operator → Operand
3. Create arcs from assignments to uses
4. Create arcs between assignments of the same 

variable
5. Select output variables (roots)
6. Remove ; nodes and their arrows



Running Example



Dependency Graph Simplifications

• Short-circuit assignments
– Connect variables to assigned expressions
– Connect expression to uses

• Eliminate nodes not reachable from roots



Running Example



Cleaned-Up Data Dependency Graph



Common Subexpressions

• Repeated subexpressions
• Examples

x = a * a +   2* a*b + b * b;
y = a * a – 2 * a * b + b * b ;
a[i] + b [i]

• Can be eliminated by the compiler
• In the case of basic blocks rewrite the DAG



From Dependency Graph into Code

• Linearize the dependency graph
– Instructions must follow dependency

• Many solutions exist
• Select the one with small runtime cost
• Assume infinite number of registers

– Symbolic registers
– Assign registers later 

• May need additional spill
– Possible Heuristics

• Late evaluation
• Ladders



Pseudo Register Target Code



Register Allocation

• Maps symbolic registers into physical 
registers

• Reuse registers as much as possible
• Graph coloring

– Undirected graph
– Nodes = Registers (Symbolic and real)
– Edges = Interference

• May require spilling



Register Allocation (Example)

R1 R2

X1

R3

X1 →R2



Running Example



Optimized code(gcc)



Summary

• Heuristics for code generation of basic 
blocks

• Works well in practice
• Fits modern machine architecture
• Can be extended to perform other tasks

– Common subexpression elimination
• But basic blocks are small
• Can be generalized to a procedure
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