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Outline
• Where does it fit into the compiler
• Functionality
• “Backward” description
• Assembler design issues
• Linker design issues



A More Realistic Compiler



Assembler

• Generate executable code from assembly
• Yet another compiler
• One-to one translation
• Resolve external references
• Relocate code
• How does it fit together?
• Is it really part of the compiler?
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Loader (Summary)

• Part of the operating system
• Does not depend on the programming 

language
• Privileged mode
• Initializes the runtime state
• Invisible activation record
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Linker

• Merge several executables
• Resolve external references
• Relocate addresses
• User mode
• Provided by the operating system
• But can be specific for the compiler

– More secure code
– Better error diagnosis



Relocation information

• How to change internal addresses
• Positions in the code which contains 

addresses (data/code)
• Two implementations

– Bitmap
– Linked-lists



External References

• The code may include references to external 
names (identifiers)
– Library calls
– External data

• Stored in external symbol table



Example



Recap

• Assembler generates binary code 
– Unresolved addresses
– Relocatable addresses

• Linker generates executable code
• Loader generates runtime states (images)



Assembler Design Issues 

• Converts symbolic machine code to binary
• One to one conversion

addl %edx, %ecx ⇒ 000 0001 11 010 001 = 01 D1 (Hex)

• Some assemblers support overloading
– Different opcodes based on types

• Format conversions
• Handling internal addresses



Handling Internal Addresses



Resolving Internal Addresses

• Two scans of the code
– Construct a table label → address
– Replace labels with values

• Backpatching
– One scan of the code
– Simultaneously construct the table and resolve 

symbolic addresses
– Maintains list of unresolved labels
– Useful beyond assemblers



Backpatching



Handling External Addresses

• Record symbol table in external table
• Produce binary version together with the 

code and relocation bits
• Output of the assembly

– Code segment
– Data segment
– Relocation bits
– External table



Example of External Symbol Table



Example



Linker Design Issues
• Append

– Code segments
– Data segments
– Relocation bit maps
– External symbol tables

• Retain information about static length
• Real life complications

– Aggregate initializations 
– Object file formats
– Large library
– Efficient search procedures



Summary

• Code generation yields code which is still 
far from executable
– Delegate to existing assembler

• Assembler translates symbolic instructions 
into binary and creates relocation bits

• Linker creates executable from several files 
produced by the assembly

• Loader creates an image from executable
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