
Assembler/Linker/Loader
Mooly Sagiv

html://www.cs.tau.ac.il/~msagiv/courses/wcc08.html

Chapter 4.3



Outline
• Where does it fit into the compiler
• Functionality
• “Backward” description
• Assembler design issues
• Linker design issues



A More Realistic Compiler



Assembler

• Generate executable code from assembly
• Yet another compiler
• One-to one translation
• Resolve external references
• Relocate code
• How does it fit together?
• Is it really part of the compiler?



Program Runtime State

Code

segment

Stack

segment

Data

Segment
Machine

Registers



Program Run

Code

segment

Stack

segment

Data

Segment
Machine

Registers

Operating System

Loader

.EXE

Code

segment

Data

Segment

Initial stack 
size

Start address

Debug



Program Run

Code

segment

Stack

segment

Data

Segment
Machine

Registers

.EXE

Code

segment

Data

Segment

Initial stack 
size

Start address



Loader (Summary)

• Part of the operating system
• Does not depend on the programming 

language
• Privileged mode
• Initializes the runtime state
• Invisible activation record



Linker
Code 

Segment

Data

Segment

Code 
Segment

Data

Segment

0

0

100
0

101

Relocation 
Bits

External Symbol Table



Linker

• Merge several executables
• Resolve external references
• Relocate addresses
• User mode
• Provided by the operating system
• But can be specific for the compiler

– More secure code
– Better error diagnosis



Relocation information

• How to change internal addresses
• Positions in the code which contains 

addresses (data/code)
• Two implementations

– Bitmap
– Linked-lists



External References

• The code may include references to external 
names (identifiers)
– Library calls
– External data

• Stored in external symbol table



Example



Recap

• Assembler generates binary code 
– Unresolved addresses
– Relocatable addresses

• Linker generates executable code
• Loader generates runtime states (images)



Assembler Design Issues 

• Converts symbolic machine code to binary
• One to one conversion

addl %edx, %ecx ⇒ 000 0001 11 010 001 = 01 D1 (Hex)

• Some assemblers support overloading
– Different opcodes based on types

• Format conversions
• Handling internal addresses



Handling Internal Addresses



Resolving Internal Addresses

• Two scans of the code
– Construct a table label → address
– Replace labels with values

• Backpatching
– One scan of the code
– Simultaneously construct the table and resolve 

symbolic addresses
– Maintains list of unresolved labels
– Useful beyond assemblers



Backpatching



Handling External Addresses

• Record symbol table in external table
• Produce binary version together with the 

code and relocation bits
• Output of the assembly

– Code segment
– Data segment
– Relocation bits
– External table



Example of External Symbol Table



Example



Linker Design Issues
• Append

– Code segments
– Data segments
– Relocation bit maps
– External symbol tables

• Retain information about static length
• Real life complications

– Aggregate initializations 
– Object file formats
– Large library
– Efficient search procedures



Summary

• Code generation yields code which is still 
far from executable
– Delegate to existing assembler

• Assembler translates symbolic instructions 
into binary and creates relocation bits

• Linker creates executable from several files 
produced by the assembly

• Loader creates an image from executable


	Assembler/Linker/Loader
	Outline
	A More Realistic Compiler
	Assembler
	Program Runtime State
	Program Run
	Program Run
	Loader (Summary)
	Linker
	Linker
	Relocation information
	External References
	Example
	Recap
	Assembler Design Issues 
	Handling Internal Addresses
	Resolving Internal Addresses
	Backpatching
	Handling External Addresses
	Example of External Symbol Table
	Example
	Linker Design Issues
	Summary

