
The undecidability of Aliasing

G. Ramalingam

Presented by:
Ory Samorodnitzky

Language Computation

𝑅𝑒𝑔 ⊊ 𝐶𝐹𝐿 ⊊ 𝑅 ⊊ 𝑅𝐸 ⊊ 𝐿

 𝑎𝑛𝑏𝑛 𝑛 ≥ 0 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0 𝐻𝑎𝑙𝑡

Alphabets/Languages Properties

 𝐴 = 𝐴𝑙𝑝𝑎𝑏𝑒𝑡

 𝐴∗ = 𝑤 𝑤𝜖𝐴

 Countable Set:

o ∃𝑓, 𝑓: 𝑆 → ℕ,𝑓 is bijective

 𝐴∗ is countable

 𝐴∗ = ℵ0

 Lemma1:

o 𝑋 = ℵ0

o 𝑌 ⊆ 𝑋

 𝑌 is finite, or countable

Alphabets/Languages Properties

 Cantor’s Theorem:

o 𝑃(𝑋) ≔ 2𝑋 > 𝑋

 Let 𝑍 = 𝐿 𝐿 ⊆ 𝐴∗

 𝑍 > 𝐴∗ = ℵ0

 𝑍 = 2ℵ0 = ℵ

Turing Machine

 𝑀 = 𝑄, Γ, 𝑏, Σ, δ, q0, F

 𝑄- Finite set of states

 Γ- Finite set of the tape alphabet

 𝑏 ∈ Γ – blank symbol

 Σ ⊆ Γ ∖ 𝑏 – set of input symbols

 δ ∶ 𝑄 × Γ → 𝑄 × Γ × 𝐿,𝑅,𝑁 -

transition function

 𝑞0 ∈ 𝑄 – initial state

 𝐹 ⊆ 𝑄 – set of accepting states

Turing Machine

 𝑀 = 𝑄, Γ, 𝑏, Σ, δ, q0, F

 𝑀𝐴 – Turing Machine Alphabet

 𝐿 - is the language accepted by 𝑀

 We denote:

o 𝐿 = 𝐿 𝑀

 ℳ = 𝐿 𝐿 = 𝐿(𝑀)

o Set of all Turing Machines

o ℳ ⊆ 𝑀𝐴 ∗

 From Lemma1:

 ℳ = 𝑀𝐴 ∗ = ℵ0

Undecidable Languages
Existence Proof

 𝑍 = 𝐿 𝐿 ⊆ 𝐴∗

 𝑍 = 2ℵ0 = ℵ

 ℳ = ℵ0

 ∃𝐿 ∈ 𝐴∗,∀𝑀 𝐿 ≠ 𝐿 𝑀

Recursively Enumerable Set

• Definition:

• S – Recursively Enumerable, Computabely
Enumerable

𝑆 ∈ ℕ,∃𝑓 𝑥 =
0, 𝑥 ∈ 𝑆

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑥 ∉ 𝑆

Halting Problem

Description of
a program

Finite input

The program
finishes

running or will
run forever

Halting Problem

• Let f be a total computable function

• g is also computable

 There exists a program e which computes g

 𝑖, 𝑥 =
1, 𝑝𝑟𝑜𝑔 𝑖 𝑎𝑙𝑡𝑠 𝑜𝑛 𝑥
0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

𝑔 𝑖, 𝑥 =
0, 𝑓 𝑖, 𝑖 = 0
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

Halting Problem

• Exactly one of the following cases holds:

• In either case f ≠ h

𝑔 𝑖, 𝑥 =
0, 𝑓 𝑖, 𝑖 = 0
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 𝑔 𝑒 = 𝑓 𝑒, 𝑒 = 0

 𝑒, 𝑒 = 1

 𝑔 𝑒 is undefined, and 𝑓 𝑒, 𝑒 ≠ 0

 𝑒, 𝑒 = 0

Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

ℳ𝑖

𝑤𝑖𝜖Σ
∗

Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

𝑔 𝑒 = 𝑓 𝑒, 𝑒 = 0

Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

𝑔 𝑒 = 𝑓 𝑒, 𝑒 = 0

 𝑒, 𝑒 = 1

Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

𝑔 𝑒 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓 𝑒, 𝑒 = 1

Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

 𝑒, 𝑒 = 0

𝑔 𝑒 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓 𝑒, 𝑒 = 1

Halting Problem – Alt. Proof

𝑔′ 𝑥 =

1, 𝑓 𝑖, 𝑖 = 0

0, 𝑓 𝑖, 𝑖 = 1

𝑓 𝑖, 𝑗 𝑖 ≠ 𝑗

 No ℳ𝑖 corresponds to 𝑔′

 𝑔′ ≠ 𝐿𝑛 ∀𝑛 ∈ ℕ

 𝑔′ is not RE

Halting Problem – Alt. Proof

Lemma 2 – Let 𝐿 ⊆ Σ∗.

L is Recursive ⟺ L is RE and co-L is RE

 𝑔′ is not RE

 𝑐𝑜_𝑔′ = 𝐻𝑎𝑙𝑡′

 𝐻𝑎𝑙𝑡′ is not R

Rice’s Theorem

• The question of whether a given algorithm
computes a partial function with a non-trivial
property is undecidable.

• May/Must-alias problem is not-trivial.

• Rice’s Theorem says nothing about properties
of machines.

• May/Must-alias is not a property of an
algorithm/Language.

Post correspondence problem -
Definition

given:

𝐴,𝐵 ⊆ {0,1}+

 𝐴 = 𝐵 = 𝑟

𝐴 = 𝑤1 ,𝑤2,𝑤3,… ,𝑤𝑟

𝐵 = 𝑧1, 𝑧2, 𝑧3,… , 𝑧𝑟

decide:

∃𝐼 = 𝑖1 , 𝑖2, 𝑖3,… , 𝑖𝑘 𝑘 > 0

s.t.

𝑤𝑖1 ,𝑤𝑖2 ,𝑤𝑖3 ,⋯ ,𝑤𝑖𝑘 = 𝑧𝑖1 , 𝑧𝑖2 , 𝑧𝑖3 ,⋯ , 𝑧𝑖𝑘

Post correspondence problem -
Example

aba
w1 bbb

w2 aab
w3 bb

w4

a
z1 aaa

z2 abab
z3 babba

z4

Post correspondence problem -
Example

aba
w1 bb

w4 aab
w3 aba

w1

a
z1 babba

z4 abab
z3 a

z1

ababbaababa𝐼 = 𝑖1, 𝑖4, 𝑖3, 𝑖1

Post correspondence problem

• Undecidable

– Hopcroft and Ullman, 1979

– PCP is simpler than Halting problem

• Often used in proofs of undecidability

Alias Analysis

• Two pointers are said to be aliased if they point to the
same location

• Aliasing scenarios:
– Two variables cannot alias
– Two variables must alias
– Two variables may alias. Cannot be determined at compile-

time.

• Applications
– More accurate (less conservative) memory dependence

analysis
– More accurate data flow analysis
– Better optimizations and scheduling

Alias Analysis

• Decision Version:

– Given:

• Program point - P

• Two names – u,v

– Decide:

• The may-alias relation holds between u,v at P

• Theorem 1:

– The intraprocedural may-alias problem is undecidable
for languages with if statements, loops, dynamic
storage, and recursive data structures

Alias Analysis

• Proof by reduction

• Reduction Buildup:

– Binary Tree

• branch(0) – Left

• branch(1) – Right

– Strings as Paths:

• For binary string

root

0

0

0 1

1

0 1

1

0

0 1

1

0 1

𝑏1, 𝑏2, 𝑏3,⋯ , 𝑏𝑛

𝑃𝑎𝑡 𝑏1, 𝑏2,𝑏3,⋯ , 𝑏𝑛 =

𝑏𝑟𝑎𝑛𝑐 𝑏1 → 𝑏𝑟𝑎𝑛𝑐 𝑏2 → ⋯ → 𝑏𝑟𝑎𝑛𝑐(𝑏𝑛)

Alias Analysis

• Proof by reduction

• Reduction Buildup:

– Binary Tree

• branch(0) – Left

• branch(1) – Right

– Strings as Paths:

• For binary string

root

0

0

0 1

1

0 1

1

0

0 1

1

0 1

𝑏1, 𝑏2, 𝑏3,⋯ , 𝑏𝑛

𝑃𝑎𝑡 𝑏1, 𝑏2,𝑏3,⋯ , 𝑏𝑛 =

𝑏𝑟𝑎𝑛𝑐 𝑏1 → 𝑏𝑟𝑎𝑛𝑐 𝑏2 → ⋯ → 𝑏𝑟𝑎𝑛𝑐(𝑏𝑛)

S = 011

Alias Analysis

• Proof by reduction

• Reduction Buildup:

Let 𝛼,𝛽 be two binary strings

𝛼 = 𝛽 ⇔

𝑟𝑜𝑜𝑡 → 𝑝𝑎𝑡 𝛼 and 𝑟𝑜𝑜𝑡 → 𝑝𝑎𝑡 𝛽

refer to the same node in the tree

root

0

0

0 1

1

0 1

1

0

0 1

1

0 1

Reduction - Example

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

01
w1 00

w2 1
w3 0

w4

1
z1 010

z2 10
z3 0

z4

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

Reduction - Example

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

01
w1 00

w2 1
w3 0

w4

1
z1 010

z2 10
z3 0

z4

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

Reduction - Example

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

01
w1 00

w2 1
w3 0

w4

1
z1 010

z2 10
z3 0

z4

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

Reduction - Example

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

01
w1 00

w2 1
w3 0

w4

1
z1 010

z2 10
z3 0

z4

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

Reduction

• After finishing the loop

– p->left = &node ; undefined.left = &undefined

– The given PCP has an affirmative answer iff:
*(q->left) may-alias node

– PCP ≤ may-alias

– PCP is not Recursive

may-alias is not Recursive

Reduction

• may-alias is not Recursive. But is it RE?
• What about must-alias?
• Theorem 2: The intraprocedual must-alias

relation is not even RE
• Proof:

– We’ll use must-alias information to compute may-
alias information. (Line 40)

– not may-alias ≤ must-alias
– may-alias is RE but not R
(from Lemma2): co-may-alias is not RE
must-alias is not RE

Conclusion

• The intraprocedural may-alias problem is
undecidable for languages with if statmenets,
loops, dynamic storage, and recursive data
structures.

• The intraprocedural must-alias problem is not
even RE.

•

• In the absence of recursively defined data
structures, various versions of the aliasing
problems become decidable, but remain difficult.

