The undecidability of Aliasing

G. Ramalingam

Presented by:
Ory Samorodnitzky

Language Computation

$R e g \subsetneq C F L \subsetneq R \subsetneq R E \subsetneq L$

$\left\{a^{n} b^{n} \mid n \geq 0\right\} \quad\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\} \quad$ Halt

Alphabets/Languages Properties

- $A=$ Alphabet
- $A^{*}=\{w \mid w \epsilon A\}$
- Countable Set:
$\circ \exists f, f: S \rightarrow \mathbb{N}, f$ is bijective
- A^{*} is countable
- $\left|A^{*}\right|=\aleph_{0}$
- Lemma1:
- $|X|=\aleph_{0}$
$\bigcirc Y \subseteq X$
$\Rightarrow Y$ is finite, or countable

Alphabets/Languages Properties

- Cantor's Theorem:

$$
\begin{aligned}
& \circ|P(X)|:=\left|2^{X}\right|>|X| \\
& \Rightarrow \text { Let } Z=\left\{L \mid L \subseteq A^{*}\right\} \\
& \Rightarrow|Z|>\left|A^{*}\right|=\aleph_{0} \\
& \Rightarrow|Z|=2^{\aleph_{0}}=\aleph
\end{aligned}
$$

Turing Machine

- $M=\left\langle Q, \Gamma, b, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right\rangle$
- Q - Finite set of states
- Γ - Finite set of the tape alphabet
- $b \in \Gamma$ - blank symbol
- $\Sigma \subseteq \Gamma \backslash\{b\}$ - set of input symbols
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, N\}$ transition function
- $q_{0} \in Q$ - initial state
- $F \subseteq Q$ - set of accepting states

Turing Machine

- $M=\left\langle Q, \Gamma, b, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right\rangle$
- $M A$ - Turing Machine Alphabet
- L - is the language accepted by M
- We denote:

$$
\circ L=L(M)
$$

- $\mathcal{M}=\{L \mid L=L(M)\}$
- Set of all Turing Machines
- $\mathcal{M} \subseteq(M A)^{*}$
- From Lemma1:
- $|\mathcal{M}|=\left|(M A)^{*}\right|=\aleph_{0}$

Undecidable Languages Existence Proof

$$
\begin{aligned}
& \bullet Z=\left\{L \mid L \subseteq A^{*}\right\} \\
& \bullet|Z|=2^{\aleph_{0}}=\aleph \\
& \bullet|\mathcal{M}|=\aleph_{0} \\
& \Rightarrow \quad \exists L \in A^{*}, \forall M \quad L \neq L(M)
\end{aligned}
$$

Recursively Enumerable Set

- Definition:

$$
S \in \mathbb{N}, \exists f(x)=\left\{\begin{aligned}
0, & x \in S \\
\text { undefined, } & x \notin S
\end{aligned}\right.
$$

- S - Recursively Enumerable, Computabely Enumerable

Halting Problem

Halting Problem

$$
h(i, x)= \begin{cases}1, & \text { prog i halts on } x \\ 0, & \text { otherwise }\end{cases}
$$

- Let f be a total computable function

$$
g(i, x)= \begin{cases}0, & f(i, i)=0 \\ \text { undefined, }, & \text { otherwise }\end{cases}
$$

- g is also computable
\rightarrow There exists a program e which computes g

Halting Problem

$$
g(i, x)= \begin{cases}0, & f(i, i)=0 \\ \text { undefined, }, & \text { otherwise }\end{cases}
$$

- Exactly one of the following cases holds:
- $g(e)=f(e, e)=0$

$$
\Rightarrow \quad h(e, e)=1
$$

- $g(e)$ is undefined, and $f(e, e) \neq 0$

$$
\Rightarrow \quad h(e, e)=0
$$

- In either case $f \neq h$

Halting Problem

$w_{i} \in \Sigma^{*}$

Halting Problem

Halting Problem - Alt. Proof

\Rightarrow No \mathcal{M}_{i} corresponds to g^{\prime}
$\Rightarrow g^{\prime} \neq L_{n} \quad \forall n \in \mathbb{N}$
$\Rightarrow g^{\prime}$ is not RE

Halting Problem - Alt. Proof

Lemma 2 - Let $L \subseteq \Sigma^{*}$.
L is Recursive $\Leftrightarrow L$ is RE and co- L is RE

- g^{\prime} is not RE
$-c o o_{-} g^{\prime}=H a l t^{\prime}$
\Rightarrow Halt ${ }^{\prime}$ is not R

Rice's Theorem

- The question of whether a given algorithm computes a partial function with a non-trivial property is undecidable.
- May/Must-alias problem is not-trivial.
- Rice's Theorem says nothing about properties of machines.
- May/Must-alias is not a property of an algorithm/Language.

Post correspondence problem Definition

given:

$$
\begin{aligned}
& A, B \subseteq\{0,1\}^{+} \\
& |A|=|B|=r \\
& A=w_{1}, w_{2}, w_{3}, \ldots, w_{r} \\
& B=z_{1}, z_{2}, z_{3}, \ldots, z_{r}
\end{aligned}
$$

decide:
$\exists I=i_{1}, i_{2}, i_{3}, \ldots, i_{k} \quad k>0$
s.t.
$w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, \cdots, w_{i_{k}}=z_{i_{1}}, z_{i_{2}}, z_{i_{3}}, \cdots, z_{i_{k}}$

Post correspondence problem Example

Post correspondence problem Example

Post correspondence problem

- Undecidable
- Hopcroft and Ullman, 1979
- PCP is simpler than Halting problem
- Often used in proofs of undecidability

Alias Analysis

- Two pointers are said to be aliased if they point to the same location
- Aliasing scenarios:
- Two variables cannot alias
- Two variables must alias
- Two variables may alias. Cannot be determined at compiletime.
- Applications
- More accurate (less conservative) memory dependence analysis
- More accurate data flow analysis
- Better optimizations and scheduling

Alias Analysis

- Decision Version:
- Given:
- Program point - P
- Two names - u, v
- Decide:
- The may-alias relation holds between u, v at P
- Theorem 1:
- The intraprocedural may-alias problem is undecidable for languages with if statements, loops, dynamic storage, and recursive data structures

Alias Analysis

- Proof by reduction
- Reduction Buildup:
- Binary Tree
- branch(0) - Left

- branch(1) - Right
- Strings as Paths:
- For binary string $b_{1}, b_{2}, b_{3}, \cdots, b_{n}$
$\operatorname{Path}\left(b_{1}, b_{2}, b_{3}, \cdots, b_{n}\right)=$ $\operatorname{branch}\left(b_{1}\right) \rightarrow \operatorname{branch}\left(b_{2}\right) \rightarrow \cdots \rightarrow \operatorname{branch}\left(b_{n}\right)$

Alias Analysis

- Proof by reduction
- Reduction Buildup:
- Binary Tree
- branch(0) - Left
- branch(1) - Right

$S=011$
- Strings as Paths:
- For binary string $b_{1}, b_{2}, b_{3}, \cdots, b_{n}$
$\operatorname{Path}\left(b_{1}, b_{2}, b_{3}, \cdots, b_{n}\right)=$ $\operatorname{branch}\left(b_{1}\right) \rightarrow \operatorname{branch}\left(b_{2}\right) \rightarrow \cdots \rightarrow \operatorname{branch}\left(b_{n}\right)$

Alias Analysis

- Proof by reduction
- Reduction Buildup:

Let α, β be two binary strings
$\alpha=\beta \Leftrightarrow$

root \rightarrow path (α) and root \rightarrow path (β)
refer to the same node in the tree

Reduction - Example

$\circlearrowleft_{01} \oplus_{\infty} \bigotimes_{1} \bigotimes_{0}$

$\begin{array}{llllllllll}z_{1} & 1 & z_{2} & 010 & z_{3} & 10 & z_{4} & 0\end{array}$

Reduction - Example

$\circlearrowleft_{01} \oplus_{\infty} \odot_{1} \circlearrowleft_{0}$

$\begin{array}{lllllllllll}z_{1} & 1 & z_{2} & 010 & z_{3} & 10 & z_{4} & 0\end{array}$

Reduction - Example

$\begin{array}{llllllll}z_{1} & 1 & z_{2} & 010 & z_{3} & 10 & z_{4} & 0\end{array}$

Reduction - Example

Reduction

- After finishing the loop
- p->left = \&node ; undefined.left = \&undefined
- The given PCP has an affirmative answer iff: * \boldsymbol{q}->left) may-alias node
- PCP \leq may-alias
- PCP is not Recursive
\rightarrow may-alias is not Recursive

Reduction

- may-alias is not Recursive. But is it RE?
- What about must-alias?
- Theorem 2: The intraprocedual must-alias relation is not even RE
- Proof:
- We'll use must-alias information to compute mayalias information. (Line 40)
- not may-alias \leq must-alias
- may-alias is RE but not R
\rightarrow (from Lemma2): co-may-alias is not RE
\rightarrow must-alias is not RE

Conclusion

- The intraprocedural may-alias problem is undecidable for languages with if statmenets, loops, dynamic storage, and recursive data structures.
- The intraprocedural must-alias problem is not even RE.
- In the absence of recursively defined data structures, various versions of the aliasing problems become decidable, but remain difficult.

