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Language Computation

𝑅𝑒𝑔 ⊊ 𝐶𝐹𝐿 ⊊ 𝑅 ⊊ 𝑅𝐸 ⊊ 𝐿 

 𝑎𝑛𝑏𝑛  𝑛 ≥ 0   𝑎𝑛𝑏𝑛𝑐𝑛  𝑛 ≥ 0  𝐻𝑎𝑙𝑡 



Alphabets/Languages Properties

 𝐴 = 𝐴𝑙𝑝𝑎𝑏𝑒𝑡 

 𝐴∗ =  𝑤 𝑤𝜖𝐴  

 Countable Set: 

o ∃𝑓, 𝑓: 𝑆 → ℕ,𝑓 is bijective 

 𝐴∗ is countable 

  𝐴∗ = ℵ0 

 Lemma1:  

o  𝑋 = ℵ0 

o 𝑌 ⊆ 𝑋 

 𝑌 is finite, or countable 



Alphabets/Languages Properties

 Cantor’s Theorem: 

o  𝑃(𝑋) ≔  2𝑋 >  𝑋  

 Let 𝑍 =  𝐿 𝐿 ⊆ 𝐴∗  

  𝑍 >  𝐴∗ = ℵ0 

  𝑍 = 2ℵ0 = ℵ 



Turing Machine

 𝑀 =  𝑄, Γ, 𝑏, Σ, δ, q0, F  

 𝑄- Finite set of states 

 Γ- Finite set of the tape alphabet 

 𝑏 ∈ Γ – blank symbol 

 Σ ⊆ Γ ∖  𝑏  – set of input symbols 

 δ ∶ 𝑄 × Γ → 𝑄 × Γ ×  𝐿,𝑅,𝑁  - 

transition function 

 𝑞0 ∈ 𝑄 – initial state 

 𝐹 ⊆ 𝑄 – set of accepting states 



Turing Machine

 𝑀 =  𝑄, Γ, 𝑏, Σ, δ, q0, F  

 𝑀𝐴 – Turing Machine Alphabet 

 𝐿 - is the language accepted by 𝑀 

 We denote: 

o 𝐿 = 𝐿 𝑀  

 ℳ =  𝐿 𝐿 = 𝐿(𝑀)   

o Set of all Turing Machines 

o ℳ ⊆  𝑀𝐴 ∗ 

 From Lemma1: 

  ℳ =   𝑀𝐴 ∗ = ℵ0 

 



Undecidable Languages
Existence Proof

 𝑍 =  𝐿 𝐿 ⊆ 𝐴∗  

  𝑍 = 2ℵ0 = ℵ 

  ℳ = ℵ0 

 ∃𝐿 ∈ 𝐴∗,∀𝑀     𝐿 ≠ 𝐿 𝑀   



Recursively Enumerable Set

• Definition:

• S – Recursively Enumerable, Computabely
Enumerable

𝑆 ∈ ℕ,∃𝑓 𝑥 =  
0, 𝑥 ∈ 𝑆

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑥 ∉ 𝑆
 
 



Halting Problem

Description of 
a program 

Finite input

The program 
finishes 

running or will 
run forever



Halting Problem

• Let f be a total computable function

• g is also computable

 There exists a program e which computes g

 𝑖, 𝑥 =  
1, 𝑝𝑟𝑜𝑔 𝑖 𝑎𝑙𝑡𝑠 𝑜𝑛 𝑥
0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 
 

𝑔 𝑖, 𝑥 =  
0,                            𝑓 𝑖, 𝑖 = 0
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 
 



Halting Problem

• Exactly one of the following cases holds:

• In either case f ≠ h

𝑔 𝑖, 𝑥 =  
0,                            𝑓 𝑖, 𝑖 = 0
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 
 

 𝑔 𝑒 = 𝑓 𝑒, 𝑒 = 0  

  𝑒, 𝑒 = 1 

 𝑔 𝑒  is undefined, and 𝑓 𝑒, 𝑒 ≠ 0 

  𝑒, 𝑒 = 0 



Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

ℳ𝑖  

𝑤𝑖𝜖Σ
∗

 



Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1



Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

𝑔 𝑒 = 𝑓 𝑒, 𝑒 = 0 



Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

𝑔 𝑒 = 𝑓 𝑒, 𝑒 = 0 

 𝑒, 𝑒 = 1 



Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1



Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

𝑔 𝑒  𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑      𝑓 𝑒, 𝑒 = 1 



Halting Problem

1 0 0 1 0 0

0 0 1 1 0 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 1

e

 𝑒, 𝑒 = 0 

𝑔 𝑒  𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑      𝑓 𝑒, 𝑒 = 1 



Halting Problem – Alt. Proof

𝑔′ 𝑥 =  

1, 𝑓 𝑖, 𝑖 = 0

0, 𝑓 𝑖, 𝑖 = 1

𝑓 𝑖, 𝑗            𝑖 ≠ 𝑗

 
 

 No ℳ𝑖  corresponds to 𝑔′  

 𝑔′ ≠ 𝐿𝑛     ∀𝑛 ∈ ℕ  

 𝑔′ is not RE 



Halting Problem – Alt. Proof

Lemma 2 – Let 𝐿 ⊆ Σ∗.  

L is Recursive ⟺ L is RE and co-L is RE 

 𝑔′ is not RE 

 𝑐𝑜_𝑔′ = 𝐻𝑎𝑙𝑡′ 

 𝐻𝑎𝑙𝑡′ is not R 



Rice’s Theorem

• The question of whether a given algorithm 
computes a partial function with a non-trivial 
property is undecidable.

• May/Must-alias problem is not-trivial.

• Rice’s Theorem says nothing about properties 
of machines.

• May/Must-alias is not a property of an 
algorithm/Language.



Post correspondence problem -
Definition

given: 

𝐴,𝐵 ⊆ {0,1}+ 

 𝐴 =  𝐵 = 𝑟 

𝐴 = 𝑤1 ,𝑤2,𝑤3,… ,𝑤𝑟  

𝐵 = 𝑧1, 𝑧2, 𝑧3,… , 𝑧𝑟  

decide: 

∃𝐼 = 𝑖1 , 𝑖2, 𝑖3,… , 𝑖𝑘     𝑘 > 0  

s.t. 

𝑤𝑖1 ,𝑤𝑖2 ,𝑤𝑖3 ,⋯ ,𝑤𝑖𝑘 = 𝑧𝑖1 , 𝑧𝑖2 , 𝑧𝑖3 ,⋯ , 𝑧𝑖𝑘  



Post correspondence problem -
Example

aba
w1 bbb

w2 aab
w3 bb

w4

a
z1 aaa

z2 abab
z3 babba

z4



Post correspondence problem -
Example

aba
w1 bb

w4 aab
w3 aba

w1

a
z1 babba

z4 abab
z3 a

z1

ababbaababa𝐼 = 𝑖1, 𝑖4, 𝑖3, 𝑖1  



Post correspondence problem

• Undecidable

– Hopcroft and Ullman, 1979

– PCP is simpler than Halting problem

• Often used in proofs of undecidability



Alias Analysis

• Two pointers are said to be aliased if they point to the 
same location

• Aliasing scenarios:
– Two variables cannot alias
– Two variables must alias
– Two variables may alias. Cannot be determined at compile-

time.

• Applications
– More accurate (less conservative) memory dependence 

analysis
– More accurate data flow analysis
– Better optimizations and scheduling



Alias Analysis

• Decision Version:

– Given:

• Program point - P

• Two names – u,v

– Decide:

• The may-alias relation holds between u,v at P

• Theorem 1:

– The intraprocedural may-alias problem is undecidable
for languages with if statements, loops, dynamic 
storage, and recursive data structures



Alias Analysis

• Proof by reduction

• Reduction Buildup:

– Binary Tree

• branch(0) – Left

• branch(1) – Right

– Strings as Paths:

• For binary string 

root

0

0

0 1

1

0 1

1

0

0 1

1

0 1

𝑏1, 𝑏2, 𝑏3,⋯ , 𝑏𝑛  

𝑃𝑎𝑡 𝑏1, 𝑏2,𝑏3,⋯ , 𝑏𝑛 = 

𝑏𝑟𝑎𝑛𝑐 𝑏1 → 𝑏𝑟𝑎𝑛𝑐 𝑏2 → ⋯ → 𝑏𝑟𝑎𝑛𝑐(𝑏𝑛)  



Alias Analysis

• Proof by reduction

• Reduction Buildup:

– Binary Tree

• branch(0) – Left

• branch(1) – Right

– Strings as Paths:

• For binary string 

root

0

0

0 1

1

0 1

1

0

0 1

1

0 1

𝑏1, 𝑏2, 𝑏3,⋯ , 𝑏𝑛  

𝑃𝑎𝑡 𝑏1, 𝑏2,𝑏3,⋯ , 𝑏𝑛 = 

𝑏𝑟𝑎𝑛𝑐 𝑏1 → 𝑏𝑟𝑎𝑛𝑐 𝑏2 → ⋯ → 𝑏𝑟𝑎𝑛𝑐(𝑏𝑛)  

S = 011



Alias Analysis

• Proof by reduction

• Reduction Buildup:

Let 𝛼,𝛽 be two binary strings 

𝛼 = 𝛽 ⇔ 

𝑟𝑜𝑜𝑡 → 𝑝𝑎𝑡 𝛼  and 𝑟𝑜𝑜𝑡 → 𝑝𝑎𝑡 𝛽  

refer to the same node in the tree 

root

0

0

0 1

1

0 1

1

0

0 1

1

0 1



Reduction - Example

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

01
w1 00

w2 1
w3 0

w4

1
z1 010

z2 10
z3 0

z4

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1



Reduction - Example

root

0

0

0

0 1

1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1

01
w1 00

w2 1
w3 0

w4

1
z1 010

z2 10
z3 0

z4
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0

0

0
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1

0 1

1

0

0 1

1

0 1

1

0

0

0 1

1

0 1

1

0

0 1

1

0 1



Reduction - Example
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Reduction - Example
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0
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0 1

1

0
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1
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1

0

0
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1

0
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1
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0
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0 1



Reduction

• After finishing the loop

– p->left = &node ; undefined.left = &undefined

– The given PCP has an affirmative answer iff:
*(q->left) may-alias node

– PCP ≤ may-alias 

– PCP is not Recursive

may-alias is not Recursive



Reduction

• may-alias is not Recursive. But is it RE?
• What about must-alias?
• Theorem 2: The intraprocedual must-alias

relation is not even RE
• Proof:

– We’ll use must-alias information to compute may-
alias information. (Line 40)

– not may-alias ≤ must-alias
– may-alias is RE but not R 
(from Lemma2): co-may-alias is not RE
must-alias is not RE



Conclusion

• The intraprocedural may-alias problem is 
undecidable for languages with if statmenets, 
loops, dynamic storage, and recursive data 
structures.

• The intraprocedural must-alias problem is not
even RE.

• 

• In the absence of recursively defined data 
structures, various versions of the aliasing 
problems become decidable, but remain difficult.


