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* Floodlight SDN controller

Please ask
questions

* Indigo OpenFlow Switch

during my talk

* Problems in controller development

e Real-life SDN applications



* Ph.D. student at the Hebrew University

e Advisers:

— Prof. Anat Bremler-Barr (IDC)
— Dr. David Hay (HUJI)

e Research areas: networking, middlebox
performance, SDN, network security

e Spent last summer at Big Switch Networks
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Floodlight

General Architecture
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Controller Architecture

REST Applications
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Indigo

Open source OpenFlow switch

For software and hardware
implementations



Indigo Architecture
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Problems

Problems in controller (and switch)
development



Testing and Verification

* Unit tests — every class has its own unit test.
All tests are executed before code is merged
into main branch

* External tests — these tests are more
comprehensive and use mininet and physical
switches to test that functionality is
maintained (runs after merge and rebuild)

OQA
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Vendor Extensions
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OpenFlow is not enough

Extensions should be supported by the data
plane

Data plane is manufactured separately

Possible solution: extend both controller and
switch software



Protocol Evolvement

 The OpenFlow protocol evolves quickly and
has dramatic changes between some of the
versions (e.g. 1.0 and 1.2, 1.3)

Open:lo

* This requires adaptations in controller,
applications, and the switches (virtual or
physical)

* Backward compatibility is a major concern as
well (e.g. new controller, old switches...)
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LoxiGen is a tool that generates OpenFlow protocol libraries
for a number of languages

Frontend parses wire protocol descriptions
(Currently, for versions 1.0, 1.1, 1.2, 1.3.1)

Backend for each supported language (currently C, Python,
and Java, with an auto-generated wireshark dissector in Lua
on the way)

Results with code for floodlight controller libraries, indigo
switch libraries

Written in python, open-source



LoxiGen

35 package ${msg.package};
37 A include(”_imports.java”, msg=msg)

39 class ${impl_class} implements ${msg.interface.inherited_declaration()} {

48 | Jff:: if genopts.instrument:

41 private static final Logger logger = LoggerFactory.getLogger(${impl_class}.class);
42 | ff:: #endif

43 /f version: E{version}

oL final static byte WIRE_WERSION = ${version.int_version};
45 Jf:r if msg.is_fixed_Llength:

46 final static dint LENGTH = ${msg.length};

47 | ff:: else:

48 final static int MINIMUM_LENGTH = ${msg.min_length};

43 | Jf:: #endif

58

Af:: for prep in msg.data_members:
ffr: if prop.java_type.public_type I= msg.interface.member_by_name(prop.name).java_type.public_type:
fr raise Exception{“Interface and Class types do not match up: C: {} <-> I: {}".format({prop.Jjava_type.public_type, msg.int

r

I S R

ur
[

4 f/r: #endif

55 ff: if prop.defoult_value:

56 private final static ${prop.java_type.public_type} ${prop.default_name} = ${prop.default_value};
57 Ff i #endif

58 | J/:r #end

68 // OF message fields

61 | //:: for prop in msg.dota_members:

62 private final ${prop.java_type.public_type} ${prop.name};

63 | //:: #endfor

64 | S/

65 | /A if all(prop.defoult_value for prop in msg.data_members):

66 // Immutable defoult instance

67 final static ${impl_class} DEFAULT = new ${impl_class}(

68 ${", ".join{prop.default_name for prop in msg.data_members)}

63 )i

8 S #endif

72 A if msg.dota_members:

i3 // package private constructor - used by readers, builders, and factory
74 ${impl_class}(%{

75 ", ".join("¥%s %s" ¥(prop.java_type.public_type, prop.name) for prop in msg.data_members) }) {

/6 S for prop in msg.dota_members:
14 ol e #En;;i:'“"”‘”'”a"“} = #{prop.name}; Source: github.com/floodlight/loxigen
79 }



Applications (“Northbound”) API

* Currently —

Thin API, mainly exposes OpenFlow protocol
directly and event handler registration for
OpenFlow events

e Future —
Rich API with:

— Sophisticated flow table management and caching

— Virtualization and encapsulation of underlying
network

— More... (on next slides)
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Multiple Applications

* Simple example:
— 2 applications

— First application sets:
(IP_DST =192.168.1.* -> forward to port 3)

— Second application sets:
(TCP_DST = 80 -> forward to port 4)

 What will happen with a TCP packet to IP 192.168.1.1 port 807

* Is expansion of all possible combinations a valid solution?

— Add higher priority rule:
(IP_DST=192.168.1.*, TCP_DST=80 -> forward to ports 3,4)

— Exponential growth in number of rules
 What if rules contradict?

— Third application: (TCP_DST=80 -> drop)
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Fault Tolerance

* Application fault:

— Wrong logic

— Malicious logic

— Misconfiguration (e.g. creating loops)
* Controller fault
* Switch fault

— If switch went down or rebooted and “forgot” its flow
table —who is responsible?

* No good answers as of today...
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(can be viewed as part of "fault tolerance")
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Prevent redundant flow_mod messages from
applications to the switches

Allow recovery for applications and switches

Cache results of queries to the switches

Relates also to high availability issues,
replication, etc.



Transactional Models

* Allow rollback of previous
operations of the same
transaction in case of failure

— Controller-Switch channel

— Application-Controller-Switch
path

19

ApplicationTier

App J App J App J App J App J
Virtual Circuit | |
Switch Pusher More FloodlightiApplications
Northbound API

Control Flane lier

Floodlight

OpenFlow Centroller

Indigo Data Plane Interface

e Tier
1 . 1
peror B4 o
yperdsor i ]

OpenFlow OpenFlow
Hypervisor Physical
Switches Switches

Source: projectfloodlight.org



Interesting SDN Architectures

and Applications

What's going on out there?



Overlay Networks

 Aim: inside a data center, have the flexibility of
SDN for hosted VMs

— Easily create tunnels
— Control endpoint routing
— Services: NAT, filtering, ACL, etc.

* Problem: hypervisor machines are connected on
a non-SDN network

— Would not like to replace the network equipment of
the whole data center

— Might not fully trust the new SDN technology
e Solution: virtualize the network as well!
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Overlay Networks

* Overlay SDN:

— Put a virtual (software) switch as the gateway of each
hypervisor

— Central control manages all virtual switches

— Virtual switches

are conn ected . VIRTUAL ROUTER -
through the Pke, M
legacy fabric Virtual

Hypervisor % Fabric Switches

___________________________

( Controller Cluster )

22 From Teemu Koponen (Nicira/VMWare)



Monitoring Networks

 Monitoring is a big deal for network operators

e So far: tapped selected points in network and
sent data to adjacent monitoring devices

— Requires lots of monitoring devices

— Each tapping and monitoring point is managed
separately

— Multiple moderators must cooperate in order to
use the same equipment together
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Monitoring Networks

Big Switch Networks — Big Tap
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