Software Defined

Networking

SDN Controller
Building and Programming

Yotam Harchol
December 2013

* Floodlight SDN controller

Please ask
questions

* Indigo OpenFlow Switch

during my talk

* Problems in controller development

e Real-life SDN applications

* Ph.D. student at the Hebrew University

e Advisers:

— Prof. Anat Bremler-Barr (IDC)
— Dr. David Hay (HUJI)

e Research areas: networking, middlebox
performance, SDN, network security

e Spent last summer at Big Switch Networks

3

Floodlight

General Architecture

System Architecture

ApplicationTier

Virtual Circuit | |

Switch Pusher Mere FloodlightApplications
Northbound API

Control Flana Ner

Floodlight o

OpenFow Controller

Indigo Data Plane Interface

Data Plane Tier
Hypervisor --‘ i -
w
OpenFlow OpenFlow
5 Hypervisor Physical

Switches Switches Source: projectfloodlight.org

Controller Architecture

REST Applications

IEimr:jit DDE"St;fk | Applications in any language leveraging services via REST
e Quantum Plugin APl exposed by controller modules and module applications
(python) (python)

REST API

Floodlight Controller

Module Applications
R Statil R
VNF _J Flulw_j

Entry
Firewall_ﬁj Pusher |

R R
l'n-‘lu:m[iule-j Thread Packet Iython WeB_J Unit
Manager Pool Streamer Server Ul Tests

" R R R
PortDown ., varding| | G Sevicamd | Topology R ik (i Flow | | Storage
Reconciliation qI Manager/ _ b
4 Manager R Discovery Cache* | Memory l
Learnin _Hl g g y i -’
Hub o hg = , NoSgl*
witc — Open Flc:w Services

Applications with
higher bandwidth
communication
with controller
such as Packetln's

Switc hES C;ntrnller Pe rfMan Trace Coun te
emaory Store

Core services of common interest to SON applications

* Interfaces defined only & not implemented: FlowCache, NoSq|

Source: projectfloodlight.org

Indigo

Open source OpenFlow switch

For software and hardware
implementations

Indigo Architecture

Floodlight o

OpenFlow Controller

OpenfFlow Control Channel

Indigo Agent § o
\ 4

!

-

Console Controller Instances

OF Socket Manager

120] / S13peaH 40

OF Config OF Connection Manager

Config Abstraction

OF State Machine

Data Path Abstraction

Forwarding Engine

Linux or ASIC

x86 Server or Switch

Source: projectfloodlight.org

IVS
Indigo Virtual Switch

”

SwitchLight
Open source physical switch

Problems

Problems in controller (and switch)
development

Testing and Verification

* Unit tests — every class has its own unit test.
All tests are executed before code is merged
into main branch

* External tests — these tests are more
comprehensive and use mininet and physical
switches to test that functionality is
maintained (runs after merge and rebuild)

OQA

10

Vendor Extensions

11

OpenFlow is not enough

Extensions should be supported by the data
plane

Data plane is manufactured separately

Possible solution: extend both controller and
switch software

Protocol Evolvement

 The OpenFlow protocol evolves quickly and
has dramatic changes between some of the
versions (e.g. 1.0 and 1.2, 1.3)

Open:lo

* This requires adaptations in controller,
applications, and the switches (virtual or
physical)

* Backward compatibility is a major concern as
well (e.g. new controller, old switches...)

12

13

LoxiGen is a tool that generates OpenFlow protocol libraries
for a number of languages

Frontend parses wire protocol descriptions
(Currently, for versions 1.0, 1.1, 1.2, 1.3.1)

Backend for each supported language (currently C, Python,
and Java, with an auto-generated wireshark dissector in Lua
on the way)

Results with code for floodlight controller libraries, indigo
switch libraries

Written in python, open-source

LoxiGen

35 package ${msg.package};
37 A include(”_imports.java”, msg=msg)

39 class ${impl_class} implements ${msg.interface.inherited_declaration()} {

48 | Jff:: if genopts.instrument:

41 private static final Logger logger = LoggerFactory.getLogger(${impl_class}.class);
42 | ff:: #endif

43 /f version: E{version}

oL final static byte WIRE_WERSION = ${version.int_version};
45 Jf:r if msg.is_fixed_Llength:

46 final static dint LENGTH = ${msg.length};

47 | ff:: else:

48 final static int MINIMUM_LENGTH = ${msg.min_length};

43 | Jf:: #endif

58

Af:: for prep in msg.data_members:
ffr: if prop.java_type.public_type I= msg.interface.member_by_name(prop.name).java_type.public_type:
fr raise Exception{“Interface and Class types do not match up: C: {} <-> I: {}".format({prop.Jjava_type.public_type, msg.int

r

I S R

ur
[

4 f/r: #endif

55 ff: if prop.defoult_value:

56 private final static ${prop.java_type.public_type} ${prop.default_name} = ${prop.default_value};
57 Ff i #endif

58 | J/:r #end

68 // OF message fields

61 | //:: for prop in msg.dota_members:

62 private final ${prop.java_type.public_type} ${prop.name};

63 | //:: #endfor

64 | S/

65 | /A if all(prop.defoult_value for prop in msg.data_members):

66 // Immutable defoult instance

67 final static ${impl_class} DEFAULT = new ${impl_class}(

68 ${", ".join{prop.default_name for prop in msg.data_members)}

63)i

8 S #endif

72 A if msg.dota_members:

i3 // package private constructor - used by readers, builders, and factory
74 ${impl_class}(%{

75 ", ".join("¥%s %s" ¥(prop.java_type.public_type, prop.name) for prop in msg.data_members) }) {

/6 S for prop in msg.dota_members:
14 ol e #En;;i:'“"”‘”'”a"“} = #{prop.name}; Source: github.com/floodlight/loxigen
79 }

Applications (“Northbound”) API

* Currently —

Thin API, mainly exposes OpenFlow protocol
directly and event handler registration for
OpenFlow events

e Future —
Rich API with:

— Sophisticated flow table management and caching

— Virtualization and encapsulation of underlying
network

— More... (on next slides)

15

Multiple Applications

* Simple example:
— 2 applications

— First application sets:
(IP_DST =192.168.1.* -> forward to port 3)

— Second application sets:
(TCP_DST = 80 -> forward to port 4)

 What will happen with a TCP packet to IP 192.168.1.1 port 807

* Is expansion of all possible combinations a valid solution?

— Add higher priority rule:
(IP_DST=192.168.1.*, TCP_DST=80 -> forward to ports 3,4)

— Exponential growth in number of rules
 What if rules contradict?

— Third application: (TCP_DST=80 -> drop)

16

Fault Tolerance

* Application fault:

— Wrong logic

— Malicious logic

— Misconfiguration (e.g. creating loops)
* Controller fault
* Switch fault

— If switch went down or rebooted and “forgot” its flow
table —who is responsible?

* No good answers as of today...

17

(can be viewed as part of "fault tolerance")

18

Prevent redundant flow_mod messages from
applications to the switches

Allow recovery for applications and switches

Cache results of queries to the switches

Relates also to high availability issues,
replication, etc.

Transactional Models

* Allow rollback of previous
operations of the same
transaction in case of failure

— Controller-Switch channel

— Application-Controller-Switch
path

19

ApplicationTier

App J App J App J App J App J
Virtual Circuit | |
Switch Pusher More FloodlightiApplications
Northbound API

Control Flane lier

Floodlight

OpenFlow Centroller

Indigo Data Plane Interface

e Tier
1 . 1
peror B4 o
yperdsor i]

OpenFlow OpenFlow
Hypervisor Physical
Switches Switches

Source: projectfloodlight.org

Interesting SDN Architectures

and Applications

What's going on out there?

Overlay Networks

 Aim: inside a data center, have the flexibility of
SDN for hosted VMs

— Easily create tunnels
— Control endpoint routing
— Services: NAT, filtering, ACL, etc.

* Problem: hypervisor machines are connected on
a non-SDN network

— Would not like to replace the network equipment of
the whole data center

— Might not fully trust the new SDN technology
e Solution: virtualize the network as well!

21

Overlay Networks

* Overlay SDN:

— Put a virtual (software) switch as the gateway of each
hypervisor

— Central control manages all virtual switches

— Virtual switches

are conn ected . VIRTUAL ROUTER -
through the Pke, M
legacy fabric Virtual

Hypervisor % Fabric Switches

(Controller Cluster)

22 From Teemu Koponen (Nicira/VMWare)

Monitoring Networks

 Monitoring is a big deal for network operators

e So far: tapped selected points in network and
sent data to adjacent monitoring devices

— Requires lots of monitoring devices

— Each tapping and monitoring point is managed
separately

— Multiple moderators must cooperate in order to
use the same equipment together

23

Monitoring Networks

Big Switch Networks — Big Tap

24

