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Outline 

• Floodlight SDN controller 

 

• Indigo OpenFlow Switch 

 

• Problems in controller development 

 

• Real-life SDN applications 
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About Me 

• Ph.D. student at the Hebrew University 

• Advisers:  

– Prof. Anat Bremler-Barr (IDC) 

– Dr. David Hay (HUJI) 

 

• Research areas: networking, middlebox 
performance, SDN, network security 

• Spent last summer at Big Switch Networks 
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Floodlight 

General Architecture 
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System Architecture 

5 Source: projectfloodlight.org 



Controller Architecture 

6 Source: projectfloodlight.org 



Indigo 

Open source OpenFlow switch 

For software and hardware 
implementations 
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Indigo Architecture 
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IVS 

Indigo Virtual Switch 

SwitchLight 

Open source physical switch 

Source: projectfloodlight.org 



Problems 

Problems in controller (and switch) 
development 
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Testing and Verification 

• Unit tests – every class has its own unit test. 
All tests are executed before code is merged 
into main branch 

 

• External tests – these tests are more 
comprehensive and use mininet and physical 
switches to test that functionality is 
maintained (runs after merge and rebuild) 

 

• QA 
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Vendor Extensions 

• OpenFlow is not enough 

• Extensions should be supported by the data 
plane 

• Data plane is manufactured separately 

 

• Possible solution: extend both controller and 
switch software 
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Protocol Evolvement 

• The OpenFlow protocol evolves quickly and 
has dramatic changes between some of the 
versions (e.g. 1.0 and 1.2, 1.3) 

 

• This requires adaptations in controller, 
applications, and the switches (virtual or 
physical) 

 

• Backward compatibility is a major concern as 
well (e.g. new controller, old switches…) 
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LoxiGen 

• LoxiGen is a tool that generates OpenFlow protocol libraries 
for a number of languages 

• Frontend parses wire protocol descriptions  
(Currently, for versions 1.0, 1.1, 1.2, 1.3.1) 

• Backend for each supported language (currently C, Python, 
and Java, with an auto-generated wireshark dissector in Lua 
on the way) 

• Results with code for floodlight controller libraries, indigo 
switch libraries 

 

• Written in python, open-source 
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LoxiGen 

14 Source: github.com/floodlight/loxigen 



Applications (“Northbound”) API 

• Currently – 
Thin API, mainly exposes OpenFlow protocol 
directly and event handler registration for 
OpenFlow events 

• Future – 
Rich API with: 

– Sophisticated flow table management and caching 

– Virtualization and encapsulation of underlying 
network 

– More… (on next slides) 
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Multiple Applications 

• Simple example: 

– 2 applications 

– First application sets: 
(IP_DST = 192.168.1.* -> forward to port 3) 

– Second application sets: 
(TCP_DST = 80 -> forward to port 4) 

• What will happen with a TCP packet to IP 192.168.1.1 port 80? 

• Is expansion of all possible combinations a valid solution? 

– Add higher priority rule:  
(IP_DST=192.168.1.*, TCP_DST=80 -> forward to ports 3,4) 

– Exponential growth in number of rules 

• What if rules contradict? 

– Third application: (TCP_DST=80 -> drop) 
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Fault Tolerance 

• Application fault: 

– Wrong logic 

– Malicious logic 

– Misconfiguration (e.g. creating loops) 

• Controller fault 

• Switch fault 

– If switch went down or rebooted and “forgot” its flow 
table – who is responsible? 

 

• No good answers as of today… 
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Caching 

(can be viewed as part of "fault tolerance") 

 

• Prevent redundant flow_mod messages from 
applications to the switches 

• Allow recovery for applications and switches 

• Cache results of queries to the switches 

 

• Relates also to high availability issues, 
replication, etc. 
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Transactional Models 

• Allow rollback of previous 
operations of the same  
transaction in case of failure 

– Controller-Switch channel 

– Application-Controller-Switch  
path 
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Source: projectfloodlight.org 



Interesting SDN Architectures 
and Applications 

What's going on out there? 



Overlay Networks 

• Aim: inside a data center, have the flexibility of 
SDN for hosted VMs 

– Easily create tunnels 

– Control endpoint routing 

– Services: NAT, filtering, ACL, etc. 

• Problem: hypervisor machines are connected on 
a non-SDN network 

– Would not like to replace the network equipment of 
the whole data center 

– Might not fully trust the new SDN technology 

• Solution: virtualize the network as well! 
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Overlay Networks 

• Overlay SDN: 

– Put a virtual (software) switch as the gateway of each 
hypervisor 

– Central control manages all virtual switches 

– Virtual switches  
are connected  
through the  
legacy fabric 
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From Teemu Koponen (Nicira/VMWare) 



Monitoring Networks 

• Monitoring is a big deal for network operators 

• So far: tapped selected points in network and 
sent data to adjacent monitoring devices 

– Requires lots of monitoring devices 

– Each tapping and monitoring point is managed 
separately 

– Multiple moderators must cooperate in order to 
use the same equipment together 
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Monitoring Networks 

24 

Big Switch Networks – Big Tap 

Source: bigswitch.com 


