
Software Defined 
Networking 

SDN Controller  
Building and Programming 

 
Yotam Harchol 

December 2013 



Outline 

• Floodlight SDN controller 

 

• Indigo OpenFlow Switch 

 

• Problems in controller development 

 

• Real-life SDN applications 

2 

Please ask 
questions 

during my talk 



About Me 

• Ph.D. student at the Hebrew University 

• Advisers:  

– Prof. Anat Bremler-Barr (IDC) 

– Dr. David Hay (HUJI) 

 

• Research areas: networking, middlebox 
performance, SDN, network security 

• Spent last summer at Big Switch Networks 

3 



Floodlight 

General Architecture 

4 



System Architecture 

5 Source: projectfloodlight.org 



Controller Architecture 

6 Source: projectfloodlight.org 



Indigo 

Open source OpenFlow switch 

For software and hardware 
implementations 

7 



Indigo Architecture 

8 

IVS 

Indigo Virtual Switch 

SwitchLight 

Open source physical switch 

Source: projectfloodlight.org 



Problems 

Problems in controller (and switch) 
development 

9 



Testing and Verification 

• Unit tests – every class has its own unit test. 
All tests are executed before code is merged 
into main branch 

 

• External tests – these tests are more 
comprehensive and use mininet and physical 
switches to test that functionality is 
maintained (runs after merge and rebuild) 

 

• QA 

10 



Vendor Extensions 

• OpenFlow is not enough 

• Extensions should be supported by the data 
plane 

• Data plane is manufactured separately 

 

• Possible solution: extend both controller and 
switch software 

11 



Protocol Evolvement 

• The OpenFlow protocol evolves quickly and 
has dramatic changes between some of the 
versions (e.g. 1.0 and 1.2, 1.3) 

 

• This requires adaptations in controller, 
applications, and the switches (virtual or 
physical) 

 

• Backward compatibility is a major concern as 
well (e.g. new controller, old switches…) 

12 



LoxiGen 

• LoxiGen is a tool that generates OpenFlow protocol libraries 
for a number of languages 

• Frontend parses wire protocol descriptions  
(Currently, for versions 1.0, 1.1, 1.2, 1.3.1) 

• Backend for each supported language (currently C, Python, 
and Java, with an auto-generated wireshark dissector in Lua 
on the way) 

• Results with code for floodlight controller libraries, indigo 
switch libraries 

 

• Written in python, open-source 

13 



LoxiGen 

14 Source: github.com/floodlight/loxigen 



Applications (“Northbound”) API 

• Currently – 
Thin API, mainly exposes OpenFlow protocol 
directly and event handler registration for 
OpenFlow events 

• Future – 
Rich API with: 

– Sophisticated flow table management and caching 

– Virtualization and encapsulation of underlying 
network 

– More… (on next slides) 

15 



Multiple Applications 

• Simple example: 

– 2 applications 

– First application sets: 
(IP_DST = 192.168.1.* -> forward to port 3) 

– Second application sets: 
(TCP_DST = 80 -> forward to port 4) 

• What will happen with a TCP packet to IP 192.168.1.1 port 80? 

• Is expansion of all possible combinations a valid solution? 

– Add higher priority rule:  
(IP_DST=192.168.1.*, TCP_DST=80 -> forward to ports 3,4) 

– Exponential growth in number of rules 

• What if rules contradict? 

– Third application: (TCP_DST=80 -> drop) 

16 



Fault Tolerance 

• Application fault: 

– Wrong logic 

– Malicious logic 

– Misconfiguration (e.g. creating loops) 

• Controller fault 

• Switch fault 

– If switch went down or rebooted and “forgot” its flow 
table – who is responsible? 

 

• No good answers as of today… 

17 



Caching 

(can be viewed as part of "fault tolerance") 

 

• Prevent redundant flow_mod messages from 
applications to the switches 

• Allow recovery for applications and switches 

• Cache results of queries to the switches 

 

• Relates also to high availability issues, 
replication, etc. 

18 



Transactional Models 

• Allow rollback of previous 
operations of the same  
transaction in case of failure 

– Controller-Switch channel 

– Application-Controller-Switch  
path 

19 

Source: projectfloodlight.org 



Interesting SDN Architectures 
and Applications 

What's going on out there? 



Overlay Networks 

• Aim: inside a data center, have the flexibility of 
SDN for hosted VMs 

– Easily create tunnels 

– Control endpoint routing 

– Services: NAT, filtering, ACL, etc. 

• Problem: hypervisor machines are connected on 
a non-SDN network 

– Would not like to replace the network equipment of 
the whole data center 

– Might not fully trust the new SDN technology 

• Solution: virtualize the network as well! 

21 



Overlay Networks 

• Overlay SDN: 

– Put a virtual (software) switch as the gateway of each 
hypervisor 

– Central control manages all virtual switches 

– Virtual switches  
are connected  
through the  
legacy fabric 

22 

VMware Approach

SWITCH SWITCH SWITCH

VIRTUAL SWITCH

VIRTUAL ROUTER

SWITCHSWITCH

Virtual

Physical

VIRTUAL SWITCH

Fabric SwitchesHypervisor

VM VM
Pkt

Hypervisor

VM

VM

VM

Pkt

Pkt Tunneled Pkt

Controller Cluster
42

From Teemu Koponen (Nicira/VMWare) 



Monitoring Networks 

• Monitoring is a big deal for network operators 

• So far: tapped selected points in network and 
sent data to adjacent monitoring devices 

– Requires lots of monitoring devices 

– Each tapping and monitoring point is managed 
separately 

– Multiple moderators must cooperate in order to 
use the same equipment together 

23 



Monitoring Networks 

24 

Big Switch Networks – Big Tap 

Source: bigswitch.com 


