Types, Type Inference and Unification

Mooly Sagiv
Slides by Kathleen Fisher and John Mitchell
Cornell CS 6110
Summary (Functional Programming)

• Lambda Calculus
• Basic ML
• Advanced ML: Modules, References, Side-effects
• Closures and Scopes
• Type Inference and Type Checking
Outline

• General discussion of types
 – What is a type?
 – Compile-time versus run-time checking
 – Conservative program analysis

• Type inference
 – Discuss algorithm and examples
 – Illustrative example of static analysis algorithm

• Polymorphism
 – Uniform versus non-uniform implementations
Language Goals and Trade-offs

• Thoughts to keep in mind
 – What features are convenient for programmer?
 – What other features do they prevent?
 – What are design tradeoffs?
 • Easy to write but harder to read?
 • Easy to write but poorer error messages?
 – What are the implementation costs?
What is a type?

A type is a collection of computable values that share some structural property.

Examples

- `int`
- `string`
- `int → bool`
- `(int → int) → bool`
- `[a] → a`
- `[a] * a → [a]`

Non-examples

- `{3, True, \x->x}`
- Even integers
- `{f:int → int | x>3 => f(x) > x * (x+1)}`

Distinction between sets of values that are types and sets that are not types is language dependent.
Advantages of Types

• Program organization and documentation
 – Separate types for separate concepts
 • Represent concepts from problem domain
 – Document intended use of declared identifiers
 • Types can be checked, unlike program comments

• Identify and prevent errors
 – Compile-time or run-time checking can prevent meaningless computations such as \(3 + \text{true} \) – “Bill”

• Support optimization
 – Example: short integers require fewer bits
 – Access components of structures by known offset
What is a type error?

• Whatever the compiler/interpreter says it is?
• Something to do with bad bit sequences?
 – Floating point representation has specific form
 – An integer may not be a valid float
• Something about programmer intent and use?
 – A type error occurs when a value is used in a way that is inconsistent with its definition
 • Example: declare as character, use as integer
Type errors are language dependent

- Array out of bounds access
 - C/C++: run-time errors
 - OCaml/Java: dynamic type errors

- Null pointer dereference
 - C/C++: run-time errors
 - OCaml: pointers are hidden inside datatypes
 - Null pointer dereferences would be incorrect use of these datatypes, therefore static type errors
Compile-time vs Run-time Checking

- JavaScript and Lisp use run-time type checking
 - f(x) Make sure f is a function before calling f

- OCaml and Java use compile-time type checking
 - f(x) Must have f: A → B and x : A

- Basic tradeoff
 - Both kinds of checking prevent type errors
 - Run-time checking slows down execution
 - Compile-time checking restricts program flexibility
 - JavaScript array: elements can have different types
 - OCaml list: all elements must have same type
 - Which gives better programmer diagnostics?
Expressiveness

- In JavaScript, we can write a function like:

```javascript
function f(x) { return x < 10 ? x : x(); }
```

Some uses will produce type error, some will not.

- Static typing is always conservative.

```javascript
if (complicated-boolean-expression)
    then  f(5);
else  f(15);
```
Type Safety

• Type safe programming languages protect its own abstractions
• Type safe programs cannot go wrong
• No run-time errors
• But exceptions are fine
• The small step semantics cannot get stuck
• Type safety is proven at language design time
Relative Type-Safety of Languages

• **Not safe:** BCPL family, including C and C++
 – Casts, unions, pointer arithmetic

• **Almost safe:** Algol family, Pascal, Ada
 – Dangling pointers
 • Allocate a pointer \(p \) to an integer, deallocate the memory referenced by \(p \), then later use the value pointed to by \(p \)
 • Hard to make languages with explicit deallocation of memory fully type-safe

• **Safe:** Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 – Dynamically typed: Lisp, Smalltalk, JavaScript
 – Statically typed: OCaml, Haskell, Java, Rust

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data
Type Checking vs Type Inference

• Standard type checking:
  ```c
  int f(int x) { return x+1; }
  int g(int y) { return f(y+1)*2; }
  ```
 – Examine body of each function
 – Use declared types to check agreement

• Type inference:
  ```c
  int f(int x) { return x+1; }
  int g(int y) { return f(y+1)*2; }
  ```
 – Examine code without type information
 – Infer the most general types that could have been declared

ML and Haskell are *designed* to make type inference feasible
The Type Inference Problem

- **Input:** A program without types (e.g., Lambda calculus)
- **Output:** A program with type for every expression (e.g., typed Lambda calculus)
 - Every expression is annotated with its most general type
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 • Eliminated sources of unsoundness
 • Become substantially more expressive
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types
 – Guaranteed to produce most general type
 – Widely regarded as important language innovation
 – Illustrative example of a flow-insensitive static analysis algorithm
History

• Original type inference algorithm
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958
• In 1969, Hindley
 – extended the algorithm to a richer language and proved it always produced the most general type
• In 1978, Milner
 – independently developed equivalent algorithm, called algorithm W, during his work designing ML
• In 1982, Damas proved the algorithm was complete.
 – Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, C++0x,...
Type Inference: Basic Idea

• Example

\[
\text{fun } x \rightarrow 2 + x \\
\rightarrow: \text{int } \rightarrow \text{int } = \langle \text{fun} \rangle
\]

• What is the type of the expression?

 • + has type: \(\text{int } \rightarrow \text{int } \rightarrow \text{int} \)
 • 2 has type: \(\text{int} \)
 • Since we are applying + to \(x\) we need \(x : \text{int} \)
 • Therefore \(\text{fun } x \rightarrow 2 + x\) has type \(\text{int } \rightarrow \text{int} \)
Imperative Example

\[
x := b[z] \\
a [b[y]] := x
\]
Type Inference: Basic Idea

• Example

\[
\text{fun } f \Rightarrow f \ 3 \\
(int \rightarrow a) \rightarrow a = \text{<fun>}
\]

• What is the type of the expression?
 – 3 has type: int
 – Since we are applying f to 3 we need \(f : \text{int} \rightarrow a \) and the result is of type a
 – Therefore \(\text{fun } f \Rightarrow f \ 3 \) has type \((\text{int} \rightarrow a) \rightarrow a \)
Type Inference: Basic Idea

• Example

```
fun f => f (f 3)
(int -> int) -> int = <fun>
```

• What is the type of the expression?
Type Inference: Basic Idea

• Example

```haskell
fun f => f (f "hi")
  (string -> string) -> string = <fun>
```

• What is the type of the expression?
Type Inference: Basic Idea

• Example

\[
\text{fun } f \Rightarrow f (f\ 3,\ f\ 4)
\]

• What is the type of the expression?
Type Inference: Complex Example

let square = λz. z * z in
λf. λx. λy.
if (f x y)
 then (f (square x) y)
else (f x (f x y))
Unification

• Unifies two terms
• Used for pattern matching and type inference
• Simple examples
 – `int * x` and `y * (bool * bool)` are unifiable for `y = int` and `x = (bool * bool)`
 – `int * int` and `int * bool` are not unifiable
Substitution

Types:

\[\text{<type>} ::= \text{int} | \text{float} | \text{bool} | \ldots\]
\[| \text{<type>} \rightarrow \text{<type>}\]
\[| \text{<type>} \times \text{<type>}\]
\[| \text{variable}\]

Terms:

\[\text{<term>} ::= \text{constant}\]
\[| \text{variable}\]
\[| f(\text{<term>}, \ldots, \text{<term>})\]

- The essential task of unification is to find a substitution that makes the two terms equal

\[f(x, h(x, y)) \{x \mapsto g(y), y \mapsto z\} = f(g(y), h(g(y), z)\]

- The terms \(t_1\) and \(t_2\) are unifiable if there exists a substitution \(S\) such that \(t_1 S = t_2 S\)

- Example: \(t_1 = f(x, g(y))\), \(t_2 = f(g(z), w)\)
Most General Unifiers (mgu)

• It is possible that no unifier for given two terms exist
 – For example x and f(x) cannot be unified

• There may be several unifiers
 – Example: \(t_1 = f(x, g(y)), t_2 = f(g(z), w) \)
 • \(S = \{ x \mapsto g(z), w \mapsto g(y) \} \)
 • \(S' = \{ x \mapsto g(f(a, b)), y \mapsto f(b, a), z \mapsto f(a, b), w \mapsto g(f(b, a)) \} \)

• When a unifier exists, there is always a **most general unifier** (mgu) that is unique up to renaming

• S is the most general unifier of \(t_1 \) and \(t_2 \) if
 – It is a unifier of \(t_1 \) and \(t_2 \)
 – For every other unifier \(S' \) of \(t_1 \) and \(t_2 \) there exists a refinement of \(S \) to give \(S' \)

• mgu can be efficiently computed
 – \(\text{mgu}(f(x, g(y)), f(g(z), w)) = \{ x \mapsto g(z), w \mapsto g(y) \} \)
 – \(\text{mgu}({y \mapsto g(w)}, f(x, g(y)), f(g(z), w)) = \{ y \mapsto g(w), x \mapsto g(z), w \mapsto g(g(w)) \} \)
Type Inference with mgu

• Example

```ml
fun f => f (f "hi")
(string -> string) -> string = <fun>
```

• What is the type of the expression?

\[
\lambda f:T_1.\text{apply}(f:T_1,\text{apply}(f:T_1,"hi":\text{string}):T_2):T_3
\]

\[
mgu(T_1,\text{string}\rightarrow T_2) =\{ T_1\mapsto \text{string}\rightarrow T_2 \} = S
\]

\[
mgu(S, T_1,T_2\rightarrow T_3) = \{ T_1\mapsto \text{string}\rightarrow T_2, T_2\mapsto \text{string}, T_3\mapsto \text{string} \}
\]
Type Inference Algorithm

• Parse program to build parse tree
• Assign type variables to nodes in tree
• Generate constraints:
 – From environment: literals (2), built-in operators (+), known functions (tail)
 – From form of parse tree: e.g., application and abstraction nodes
• Solve constraints using unification
• Determine types of top-level declarations
Step 1: Parse Program

- Parse program text to construct parse tree

```ocaml
code:
let f x = 2 + x
```

Infix operators are converted to Curried function application during parsing: (not necessary)

```
2 + x \rightarrow (+) 2 x
```
Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence

\[f(x) = 2 + x \]
Step 3: Add Constraints

\[t_0 = t_1 \rightarrow t_6 \]
\[t_4 = t_1 \rightarrow t_6 \]
\[t_2 = t_3 \rightarrow t_4 \]
\[t_2 = \text{int} \rightarrow (\text{int} \rightarrow \text{int}) \]
\[t_3 = \text{int} \]

\[\text{let } f \ x = 2 + x \]
Step 4: Solve Constraints

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_6 \\
t_4 &= t_1 \rightarrow t_6 \\
t_2 &= t_3 \rightarrow t_4 \\
t_2 &= \text{int} \rightarrow (\text{int} \rightarrow \text{int}) \\
t_3 &= \text{int} \\
\end{align*}
\]

\[
\begin{align*}
t_3 &= \text{int} \\
t_4 &= \text{int} \rightarrow \text{int} \\
t_1 &= \text{int} \rightarrow \text{int} \\
t_1 &= \text{int} \\
t_6 &= \text{int} \\
t_4 &= \text{int} \rightarrow \text{int} \\
t_2 &= \text{int} \rightarrow (\text{int} \rightarrow \text{int}) \\
t_3 &= \text{int} \\
\end{align*}
\]
Step 5: Determine type of declaration

\[
\begin{align*}
&t_0 = \text{int} \rightarrow \text{int} \\
&t_1 = \text{int} \\
&t_6 = \text{int} \rightarrow \text{int} \\
&t_4 = \text{int} \rightarrow \text{int} \\
&t_2 = \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
&t_3 = \text{int}
\end{align*}
\]

\[
\text{let } f \ x = 2 + x \\
\text{val } f : \text{int} \rightarrow \text{int} =<\text{fun}>
\]
Constraints from Application Nodes

• Function application (apply f to x)
 – Type of f (t_0 in figure) must be domain \(\rightarrow \) range
 – Domain of f must be type of argument x (t_1 in fig)
 – Range of f must be result of application (t_2 in fig)
 – Constraint: \(t_0 = t_1 \rightarrow t_2 \)
Constraints from Abstractions

- Function declaration:
 - Type of f (t_0 in figure) must domain \(\rightarrow\) range
 - Domain is type of abstracted variable x (t_1 in fig)
 - Range is type of function body e (t_2 in fig)
 - Constraint: \(t_0 = t_1 \rightarrow t_2\)
Inferring Polymorphic Types

• Example:

```plaintext
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Step 1:
 Build Parse Tree
Inferring Polymorphic Types

• Example:

```ocaml
define f g = g 2
val f : (int -> t_4) -> t_4 = fun
```

• Step 2:
 Assign type variables
Inferring Polymorphic Types

• Example:
  ```
  let f g = g 2
  val f : (int -> t_4) -> t_4 = <fun>
  ```

• Step 3:
 Generate constraints

```
c0 = c1 -> c4
c1 = c3 -> c4
c3 = int
```
Inferring Polymorphic Types

• Example:

 Step 4:
 Solve constraints

 \[
 \begin{align*}
 t_0 &= t_1 \rightarrow t_4 \\
 t_1 &= t_3 \rightarrow t_4 \\
 t_3 &= \text{int}
 \end{align*}
 \]

 \[
 \begin{align*}
 t_0 &= (\text{int} \rightarrow t_4) \rightarrow t_4 \\
 t_1 &= \text{int} \rightarrow t_4 \\
 t_3 &= \text{int}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{let } f \ g &= g \ 2 \\
 \text{val } f : (\text{int} \rightarrow t_4) \rightarrow t_4 &= \langle \text{fun} \rangle
 \end{align*}
 \]
Inferring Polymorphic Types

• Example:
 let f g = g 2
 val f : (int -> t_4) -> t_4 = <fun>

• Step 5:
 Determine type of top-level declaration

Unconstrained type variables become polymorphic types

\[t_0 = (\text{int} \rightarrow t_4) \rightarrow t_4 \]
\[t_1 = \text{int} \rightarrow t_4 \]
\[t_3 = \text{int} \]

:: ≡ ::
Using Polymorphic Functions

• Function:

```plaintext
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Possible applications:

```plaintext
let add x = 2 + x
val add : int -> int = <fun>
f add
:- int = 4

let isEven x = mod (x, 2) == 0
val isEven: int -> bool = <fun>
f isEven
:- bool= true
```
Recognizing Type Errors

• Function:

```ml
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Incorrect use

```ml
let not x = if x then true else false
val not : bool -> bool = <fun>
f not
> Error: operator and operand don’t agree
  operator domain: int -> a
  operand:        bool-> bool
```

• Type error:
cannot unify bool → bool and int → t
Another Example

- Example:

- Step 1:
 Build Parse Tree

let f (g, x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
Another Example

- Example:
  ```plaintext
  let f (g,x) = g (g x)
  val f : (((_ : t_8 -> t_8) * t_8) -> t_8
  ```

- Step 2:
 Assign type variables
Another Example

- Example:
- Step 3:
 Generate constraints

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

```
t_0 = t_3 -> t_8
 t_3 = (t_1, t_2)
 t_1 = t_7 -> t_8
 t_1 = t_2 -> t_7
```
Another Example

- Example:
 \[
 \begin{align*}
 \text{let } f \ (g,x) &= g \ (g \ x) \\
 \text{val } f : \ ((t_8 \rightarrow t_8) \times t_8) \rightarrow t_8
 \end{align*}
 \]

- Step 4:
 Solve constraints

\[
\begin{align*}
 t_0 &= t_3 \rightarrow t_8 \\
 t_3 &= (t_1, t_2) \\
 t_1 &= t_7 \rightarrow t_8 \\
 t_1 &= t_2 \rightarrow t_7
\end{align*}
\]
Another Example

- Example:
- Step 5:
 Determine type of f

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

```
t_0 = t_3 -> t_8
t_3 = (t_1 * t_2)
t_1 = t_7 -> t_8
t_1 = t_2 -> t_7
```

```
t_0 = (t_8 -> t_8 * t_8) -> t_8
```

```
f :: t_0
Pair :: t_3
(g :: t_1)x :: t_2
Fun
(@) :: t_8
g :: t_1
(@) :: t_7
g :: t_1x :: t_2
```
Pattern Matching

• Matching with multiple cases

  ```
  let isempty l = match l with
  | [] -> true
  | _  -> false
  ```

• Infer type of each case

 – First case:
    ```
    [t_1] -> bool
    ```

 – Second case:
    ```
    t_2  -> bool
    ```

• Combine by unification of the types of the cases

  ```
  val isempty : [t_1] -> bool = <fun>
  ```
Bad Pattern Matching

• Matching with multiple cases

\[
\text{let isempty l = match l with}
\begin{align*}
|[] & \rightarrow \text{true} \\
|_ & \rightarrow 0
\end{align*}
\]

• Infer type of each case

 – First case:

\[
[t_1] \rightarrow \text{bool}
\]

 – Second case:

\[
t_2 \rightarrow \text{int}
\]

• Combine by unification of the types of the cases

Type Error: cannot unify bool and int
Recursion

let rec concat a b = match a with
 | [] -> b
 | x::xs -> x :: concat xs b

• To handle recursion, introduce type variables for the function:
 \[\text{concat : } t_1 \rightarrow t_2 \rightarrow t_3 \]

• Use these types to conclude the type of the body:
 - Pattern matching first case:
 \[[t_4] \rightarrow t_5 \rightarrow t_5 \]
 \[\text{unify } [t_4]\text{ with } t_1, t_5 \text{ with } t_2, \]
 \[t_5 \text{ with } t_3 \]
 \[t_1 = [t_4] \text{ and } t_2 = t_3 = t_5 \]
 - Pattern matching second case:
 \[[t_6] \rightarrow t_7 \rightarrow [t_6] \]
 \[\text{unify } [t_6]\text{ with } t_1, t_7 \text{ with } t_2, \]
 \[[t_6] \text{ with } t_3 \]
 \[\text{unify } [t_6]\text{ with } t_1, t_7 \text{ with } t_2, \]
 \[t_3 \text{ with } [t_6] \]
Recursion

```haskell
let rec concat a b = match a with
    | [] -> b
    | x::xs -> x :: concat xs b
```

- To handle recursion, introduce type variables for the function:
  ```haskell
  concat : t_1 -> t_2 -> t_3
  ```

- Conclude the type of the function:
  ```haskell
  ```
Most General Type

• Type inference produces the *most general type*

```ocaml
let rec map f arg = function
  [] -> []
| hd :: tl -> f hd :: (map f tl)

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```

• Functions may have many less general types

```ocaml
val map : (t_1 -> int, [t_1]) -> [int]
val map : (bool -> t_2, [bool]) -> [t_2]
val map : (char -> int, [cChar]) -> [int]
```

• Less general types are all instances of most general type, also called the *principal type*
Information from Type Inference

• Consider this function…

```haskell
let reverse ls = match ls with
  [] -> []
| x :: xs -> reverse xs
```

… and its most general type:

```haskell
:- reverse :: list 't_1 -> list 't_2
```

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!
Complexity of Type Inference Algorithm

• When Hindley/Milner type inference algorithm was developed, its complexity was unknown
• In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete
• Usually linear in practice though...
 – Running time is exponential in the depth of polymorphic declarations
Type Inference: Key Points

• Type inference computes the types of expressions
 – Does not require type declarations for variables
 – Finds the most general type by solving constraints
 – Leads to polymorphism

• Sometimes better error detection than type checking
 – Type may indicate a programming error even if no type error

• Some costs
 – More difficult to identify program line that causes error
 – Natural implementation requires uniform representation sizes
 – Complications regarding assignment took years to work out

• Idea can be applied to other program properties
 – Discover properties of program using same kind of analysis
Parametric Polymorphism: OCaml vs C++

• OCaml polymorphic function
 – Declarations (generally) require no type information
 – Type inference uses type variables to type expressions
 – Type inference substitutes for type variables as needed to instantiate polymorphic code

• C++ function template
 – Programmer must declare the argument and result types of functions
 – Programmers must use explicit type parameters to express polymorphism
 – Function application: type checker does instantiation
Example: Swap Two Values

- OCaml

```ocaml
let swap (x, y) =
    let temp = !x in
    (x := !y; y := temp)
val swap : 'a ref * 'a ref -> unit = <fun>
```

- C++

```cpp
template <typename T>
void swap(T& x, T& y){
    T tmp = x;  x=y;  y=tmp;
}
```

Declarations both swap two values polymorphically, but they are compiled very differently
Implementation

• OCaml
 – `swap` is compiled into one function
 – Typechecker determines how function can be used

• C++
 – `swap` is compiled differently for each instance
 (details beyond scope of this course ...)

• Why the difference?
 – OCaml ref cell is passed by pointer. The local `x` is a pointer to value on heap, so its size is constant
 – C++ arguments passed by reference (pointer), but local `x` is on the stack, so its size depends on the type
Polymorphism vs Overloading

• Parametric polymorphism
 – Single algorithm may be given many types
 – Type variable may be replaced by any type
 – if $f: t \rightarrow t$ then $f: \text{int} \rightarrow \text{int}$, $f: \text{bool} \rightarrow \text{bool}$, ...

• Overloading
 – A single symbol may refer to more than one algorithm
 – Each algorithm may have different type
 – Choice of algorithm determined by type context
 – Types of symbol may be arbitrarily different
 – In ML, + has types $\text{int} \times \text{int} \rightarrow \text{int}$, $\text{real} \times \text{real} \rightarrow \text{real}$, no others
 – Haskel permits more general overloading and requires user assistance
Varieties of Polymorphism

- **Parametric polymorphism** A single piece of code is typed generically
 - Imperative or first-class polymorphism
 - ML-style or let-polymorphism
- **Ad-hoc polymorphism** The same expression exhibit different behaviors when viewed in different types
 - Overloading
 - Multi-method dispatch
 - intentional polymorphism
- **Subtype polymorphism** A single term may have many types using the rule of subsumption allowing to selectively forget information
Summary

• Types are important in modern languages
 – Program organization and documentation
 – Prevent program errors
 – Provide important information to compiler

• Type inference
 – Determine best type for an expression, based on known information about symbols in the expression

• Polymorphism
 – Single algorithm (function) can have many types