Types, Type Inference and Unification

Mooly Sagiv

Slides by Kathleen Fisher and John Mitchell
Cornell CS 6110
Summary (Functional Programming)

• Lambda Calculus
• Basic ML
• Advanced ML: Modules, References, Side-effects
• Closures and Scopes
• Type Inference and Type Checking
Outline

• General discussion of types
 – What is a type?
 – Compile-time versus run-time checking
 – Conservative program analysis

• Type inference
 – Discuss algorithm and examples
 – Illustrative example of static analysis algorithm

• Polymorphism
 – Uniform versus non-uniform implementations
Language Goals and Trade-offs

• Thoughts to keep in mind
 – What features are convenient for programmer?
 – What other features do they prevent?
 – What are design tradeoffs?
 • Easy to write but harder to read?
 • Easy to write but poorer error messages?
 – What are the implementation costs?
What is a type?

- A type is a collection of computable values that share some structural property.

Examples

- `int`
- `string`
- `int -> bool`
- `(int -> int) -> bool`
- `[a] -> a`
- `[a] * a -> [a]`

Non-examples

- `{3, True, \x->x}`
- Even integers
- `{f:int -> int | x>3 => f(x) > x *(x+1)}`

Distinction between sets of values that are types and sets that are not types is *language dependent*
Advantages of Types

• Program organization and documentation
 – Separate types for separate concepts
 • Represent concepts from problem domain
 – Document intended use of declared identifiers
 • Types can be checked, unlike program comments

• Identify and prevent errors
 – Compile-time or run-time checking can prevent meaningless computations such as \(3 + \text{true} \) – “Bill”

• Support optimization
 – Example: short integers require fewer bits
 – Access components of structures by known offset
What is a type error?

• Whatever the compiler/interpreter says it is?
• Something to do with bad bit sequences?
 – Floating point representation has specific form
 – An integer may not be a valid float
• Something about programmer intent and use?
 – A type error occurs when a value is used in a way that is inconsistent with its definition
 • Example: declare as character, use as integer
Type errors are language dependent

• Array out of bounds access
 – C/C++: run-time errors
 – OCaml/Java: dynamic type errors

• Null pointer dereference
 – C/C++: run-time errors
 – OCaml: pointers are hidden inside datatypes
 • Null pointer dereferences would be incorrect use of these datatypes, therefore static type errors
Compile-time vs Run-time Checking

- JavaScript and Lisp use run-time type checking
 - \(f(x) \) Make sure \(f \) is a function before calling \(f \)

- OCaml and Java use compile-time type checking
 - \(f(x) \) Must have \(f : A \rightarrow B \) and \(x : A \)

- Basic tradeoff
 - Both kinds of checking prevent type errors
 - Run-time checking slows down execution
 - Compile-time checking restricts program flexibility
 - JavaScript array: elements can have different types
 - OCaml list: all elements must have same type
 - Which gives better programmer diagnostics?
Expressiveness

• In JavaScript, we can write a function like

```javascript
function f(x) { return x < 10 ? x : x(); }
```

Some uses will produce type error, some will not

• Static typing always conservative

```javascript
if  (complicated-boolean-expression)
    then  f(5);
else  f(15);
```
Type Safety

- Type safe programming languages protect its own abstractions
- Type safe programs cannot go wrong
- No run-time errors
- But exceptions are fine
- The small step semantics cannot get stuck
- Type safety is proven at language design time
Relative Type-Safety of Languages

• **Not safe:** BCPL family, including C and C++
 – Casts, unions, pointer arithmetic

• **Almost safe:** Algol family, Pascal, Ada
 – Dangling pointers
 • Allocate a pointer p to an integer, deallocate the memory referenced by p, then later use the value pointed to by p
 • Hard to make languages with explicit deallocation of memory fully type-safe

• **Safe:** Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 – Dynamically typed: Lisp, Smalltalk, JavaScript
 – Statically typed: OCaml, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data
Type Checking vs Type Inference

• Standard type checking:

```c
int f(int x) { return x+1; }
int g(int y) { return f(y+1)*2; }
```

– Examine body of each function
– Use declared types to check agreement

• Type inference:

```c
int f(int x) { return x+1; }
int g(int y) { return f(y+1)*2; }
```

– Examine code without type information
– Infer the most general types that could have been declared

ML and Haskell are designed to make type inference feasible
The Type Inference Problem

• Input: A program without types (e.g., Lambda calculus)

• Output: A program with type for every expression (e.g., typed Lambda calculus)
 – Every expression is annotated with its most general type
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 • Eliminated sources of unsoundness
 • Become substantially more expressive
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types
 – Guaranteed to produce most general type
 – Widely regarded as important language innovation
 – Illustrative example of a flow-insensitive static analysis algorithm
History

• **Original type inference algorithm**
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958

• **In 1969, Hindley**
 – extended the algorithm to a richer language and proved it always produced the most general type

• **In 1978, Milner**
 – independently developed equivalent algorithm, called algorithm W, during his work designing ML

• **In 1982, Damas proved the algorithm was complete.**
 – Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, C++0x,...
Type Inference: Basic Idea

• Example

\[
\text{fun } x \rightarrow 2 + x \\
\quad : \text{int } \rightarrow \text{int} = \langle \text{fun} \rangle
\]

• What is the type of the expression?

 • \(+\) has type: \(\text{int } \rightarrow \text{int } \rightarrow \text{int}\)
 • \(2\) has type: \(\text{int}\)
 • Since we are applying \(+\) to \(x\) we need \(x : \text{int}\)
 • Therefore \(\text{fun } x \rightarrow 2 + x\) has type \(\text{int } \rightarrow \text{int}\)
Imperative Example

\[x := b[z] \]
\[a [b[y]] := x \]
Type Inference: Basic Idea

• Example

\[\text{fun } f \Rightarrow f \ 3 \]
\[(\text{int} \rightarrow a) \rightarrow a = \text{<fun>} \]

• What is the type of the expression?
 – 3 has type: int
 – Since we are applying f to 3 we need f : int \rightarrow a and the result is of type a
 – Therefore \textbf{fun } f \Rightarrow f \ 3 \ has type \ (\text{int} \rightarrow a) \rightarrow a \]
Type Inference: Basic Idea

• Example

fun f => f (f 3) :: (int -> int) -> int = <fun>

• What is the type of the expression?
Type Inference: Basic Idea

• Example

```plaintext
fun f => f (f "hi")
(string -> string) -> string = <fun>
```

• What is the type of the expression?
Type Inference: Basic Idea

• Example

```haskell
fun f => f (f 3, f 4)
```

• What is the type of the expression?
Type Inference: Complex Example

let square = \(z\). \(z \times z\)
in
\(f.\lambda x. \lambda y.\)
if \((f \times y)\)
then \((f (\text{square } x) \times y)\)
else \((f \times (f \times y))\)

* : int → (int → int)

\(z\) : int

\(\text{square}\) : int → int

\(f\) : \(a → (b → \text{bool})\), \(x\): \(a\), \(y\): \(b\)

\(a\) : int

\(b\) : bool

(int → bool → bool) → int → bool → bool
Unification

• Unifies two terms
• Used for pattern matching and type inference
• Simple examples
 – int * x and y * (bool * bool) are unifiable for y = int and x = (bool * bool)
 – int * int and int * bool are not unifiable
Substitution

Types:
\[\langle \text{type} \rangle ::= \text{int} | \text{float} | \text{bool} | \ldots \]
\[\quad | \langle \text{type} \rangle \rightarrow \langle \text{type} \rangle \]
\[\quad | \langle \text{type} \rangle \ast \langle \text{type} \rangle \]
\[\quad | \text{variable} \]

Terms:
\[\langle \text{term} \rangle ::= \text{constant} \]
\[\quad | \text{variable} \]
\[\quad | f(\langle \text{term} \rangle, \ldots, \langle \text{term} \rangle) \]

- The essential task of unification is to find a substitution that makes the two terms equal
 \[f(x, h(x, y)) \{ x \mapsto g(y), y \mapsto z \} = f(g(y), \ h(g(y), z) \]

- The terms \(t_1 \) and \(t_2 \) are unifiable if there exists a substitution \(S \) such that \(t_1 S = t_2 S \)
- Example: \(t_1 = f(x, g(y)), t_2 = f(g(z), w) \)
Most General Unifiers (mgu)

• It is possible that no unifier for given two terms exist
 – For example x and f(x) cannot be unified

• There may be several unifiers
 – Example: \(t_1 = f(x, g(y)), t_2 = f(g(z), w) \)
 • \(S = \{ x \mapsto g(z), y \mapsto w, w \mapsto g(w) \} \)
 • \(S' = \{ x \mapsto g(f(a, b)), y \mapsto f(b, a), z \mapsto f(a, b), w \mapsto g(f(b, a)) \} \)

• When a unifier exists, there is always a most general unifier (mgu) that is unique up to renaming

• S is the most general unifier of \(t_1 \) and \(t_2 \) if
 – It is a unifier of \(t_1 \) and \(t_2 \)
 – For every other unifier \(S' \) of \(t_1 \) and \(t_2 \) there exists a refinement of \(S \) to give \(S' \)

• mgu can be efficiently computed
 – \(mgu(f(x, g(y)), f(g(z), w)) = \{ x \mapsto g(z), y \mapsto w, w \mapsto g(w) \} \)
 – \(mgu(\{ y \mapsto g(w) \}, f(x, g(y)), f(g(z), w)) = \{ y \mapsto g(w), x \mapsto g(z), w \mapsto g(g(w)) \} \)
Type Inference with mgu

• Example

```
fun f => f (f "hi")
(string -> string) -> string = <fun>
```

• What is the type of the expression?

\[
\lambda f:T_1.\text{apply}(f:T_1,\text{apply}(f:T_1,"hi":\text{string}):T_2):T_3
\]

\[
\text{mgu}(T_1,\text{string} \rightarrow T_2) = \{T_1 \mapsto \text{string} \rightarrow T_2\} = S
\]

\[
\text{mgu}(S, T_1, T_2 \rightarrow T_3) = \\
\{T_1 \mapsto \text{string} \rightarrow T_2, T_2 \mapsto \text{string}, T_3 \mapsto \text{string}\}
\]
Type Inference Algorithm

• Parse program to build parse tree
• Assign type variables to nodes in tree
• Generate constraints:
 – From environment: literals (2), built-in operators (+), known functions (tail)
 – From form of parse tree: e.g., application and abstraction nodes
• Solve constraints using unification
• Determine types of top-level declarations
Step 1: Parse Program

- Parse program text to construct parse tree

```plaintext
let f x = 2 + x
```

Infix operators are converted to Curried function application during parsing: (not necessary)

```plaintext
2 + x → (+) 2 x
```
Step 2: Assign type variables to nodes

\(f(x) = 2 + x \)

Variables are given same type as binding occurrence
Step 3: Add Constraints

\[t_0 = t_1 \rightarrow t_6 \]
\[t_4 = t_1 \rightarrow t_6 \]
\[t_2 = t_3 \rightarrow t_4 \]
\[t_2 = \text{int} \rightarrow (\text{int} \rightarrow \text{int}) \]
\[t_3 = \text{int} \]

\begin{align*}
\text{let } f \ x &= 2 + x
\end{align*}
Step 4: Solve Constraints

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_6 \\
t_4 &= t_1 \rightarrow t_6 \\
t_2 &= t_3 \rightarrow t_4 \\
t_2 &= \text{int} \rightarrow (\text{int} \rightarrow \text{int}) \\
t_3 &= \text{int} \\
\end{align*}
\]
Step 5:
Determine type of declaration

\[
\begin{align*}
t_0 &= \text{int} \rightarrow \text{int} \\
t_1 &= \text{int} \\
t_6 &= \text{int} \rightarrow \text{int} \\
t_4 &= \text{int} \rightarrow \text{int} \\
t_2 &= \text{int} \rightarrow \text{int}
ightarrow \text{int} \\
t_3 &= \text{int}
\end{align*}
\]

\[
\begin{align*}
\text{let } f x &= 2 + x \\
\text{val } f : \text{int} \rightarrow \text{int} &= \text{<fun>}
\end{align*}
\]
Constraints from Application Nodes

- Function application (apply f to x)
 - Type of f (t_0 in figure) must be domain → range
 - Domain of f must be type of argument x (t_1 in fig)
 - Range of f must be result of application (t_2 in fig)
 - Constraint: t_0 = t_1 -> t_2
Constraints from Abstractions

- Function declaration:
 - Type of f (t_0 in figure) must domain → range
 - Domain is type of abstracted variable x (t_1 in fig)
 - Range is type of function body e (t_2 in fig)
 - Constraint: t_0 = t_1 -> t_2
Inferring Polymorphic Types

- Example:
  ```ocaml
text
  let f g = g 2
  val f : (int -> t_4) -> t_4 = <fun>
  ```

- Step 1:
 Build Parse Tree

```
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```
Inferring Polymorphic Types

Example:

Step 2:
Assign type variables

```
let f g = g 2
val f : (int -> t_4) -> t_4 = fun
```
Inferring Polymorphic Types

- Example:

```ocaml
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

- Step 3:
 Generate constraints

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_4 \\
t_1 &= t_3 \rightarrow t_4 \\
t_3 &= \text{int}
\end{align*}
\]
Inferring Polymorphic Types

• Example:

let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>

• Step 4:
Solve constraints

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_4 \\
t_1 &= t_3 \rightarrow t_4 \\
t_3 &= \text{int}
\end{align*}
\]

\[
\begin{align*}
t_0 &= \text{(int -> t_4) -> t_4} \\
t_1 &= \text{int -> t_4} \\
t_3 &= \text{int}
\end{align*}
\]
Inferring Polymorphic Types

• Example:

```plaintext
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Step 5:

Determine type of top-level declaration

Unconstrained type variables become polymorphic types

\[
\begin{align*}
t_0 &= (\text{int} \to t_4) \to t_4 \\
t_1 &= \text{int} \to t_4 \\
t_3 &= \text{int}
\end{align*}
\]
Using Polymorphic Functions

- Function:
  ```ocaml
define f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

- Possible applications:
  ```ocaml
let add x = 2 + x
val add : int -> int = <fun>
f add
:- int = 4

let isEven x = mod (x, 2) == 0
val isEven: int -> bool = <fun>
f isEven
:- bool= true
```
Recognizing Type Errors

• Function:

```haskell
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Incorrect use

```haskell
let not x = if x then true else false
val not : bool -> bool = <fun>
f not
> Error: operator and operand don't agree
  operator domain: int -> a
  operand: bool -> bool
```

• Type error:

cannot unify bool → bool and int → t
Another Example

• Example:
• Step 1:
 Build Parse Tree

\[
\text{let } f \ (g,x) = g \ (g \ x) \\
\text{val } f : ((t_8 \rightarrow t_8) \times t_8) \rightarrow t_8
\]
Another Example

• Example:

```ml
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

• Step 2:
Assign type variables
Another Example

Example:

Step 3:
Generate constraints

\[
\begin{align*}
\text{let } & f \ (g,x) = g \ (g \ x) \\
\text{val } & f : ((t_8 \to t_8) \to t_8) 	o t_8
\end{align*}
\]
Another Example

- Example:

- Step 4:
 Solve constraints

\[
\begin{align*}
 t_0 &= t_3 \rightarrow t_8 \\
 t_3 &= (t_1, t_2) \\
 t_1 &= t_7 \rightarrow t_8 \\
 t_1 &= t_2 \rightarrow t_7
\end{align*}
\]

\[
\begin{align*}
 \text{let } f (g, x) &= g (g x) \\
 \text{val } f : ((t_8 \rightarrow t_8) \times t_8) \rightarrow t_8
\end{align*}
\]

\[
\begin{align*}
 t_0 &= (t_8 \rightarrow t_8, t_8) \rightarrow t_8
\end{align*}
\]
Another Example

• Example:
• Step 5:
 Determine type of \(f \)

```ocaml
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

```
t_0 = t_3 -> t_8
t_3 = (t_1 * t_2)
t_1 = t_7 -> t_8
t_1 = t_2 -> t_7
```

```
t_0 = (t_8 -> t_8 * t_8) -> t_8
```
Pattern Matching

• Matching with multiple cases

  ```
  let isempty l = match l with
    | [] -> true
    | _  -> false
  ```

• Infer type of each case
 – First case:
    ```
    [t_1] -> bool
    ```
 – Second case:
    ```
    t_2  -> bool
    ```

• Combine by unification of the types of the cases

  ```
  val isempty : [t_1] -> bool = <fun>
  ```
Bad Pattern Matching

• Matching with multiple cases

```ocaml
let isempty l = match l with
  | [] -> true
  | _  -> 0
```

• Infer type of each case
 – First case:
    ```ocaml
    [t_1] -> bool
    ```
 – Second case:
    ```ocaml
    t_2 -> int
    ```

• Combine by unification of the types of the cases
  ```plaintext
  Type Error: cannot unify bool and int
  ```
Recursion

```ocaml
let rec concat a b = match a with
  | []  -> b
  | x::xs -> x :: concat xs b
```

- To handle recursion, introduce type variables for the function:
  ```
  concat : t_1 -> t_2 -> t_3
  ```

- Use these types to conclude the type of the body:
 - Pattern matching first case:
    ```
    [t_4] -> t_5 -> t_5
    unify [t_4] with t_1, t_5 with t_2,
    t_5 with t_3
    t_1 =[t_4] and t_2 = t_3 = t_5
    ```
 - Pattern matching second case:
    ```
    [t_6] -> t_7 -> [t_6]
    unify [t_6] with t_1, t_7 with t_2,
    [t_6] with t_3
    ```

unify [t_6] with t_1, t_7 with t_2,
 t_3 with [t_6]
Recursion

let rec concat a b = match a with
 | [] -> b
 | x::xs -> x :: concat xs b

- To handle recursion, introduce type variables for the function:

 concat : t_1 -> t_2 -> t_3

- Conclude the type of the function:

Most General Type

• Type inference produces the most general type

```ocaml
let rec map f arg = function
   [] -> []
   | hd :: tl -> f hd :: (map f tl)

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```

• Functions may have many less general types

```ocaml
val map : (t_1 -> int, [t_1]) -> [int]
val map : (bool -> t_2, [bool]) -> [t_2]
val map : (char -> int, [cChar]) -> [int]
```

• Less general types are all instances of most general type, also called the principal type
Information from Type Inference

• Consider this function...

```ml
let reverse ls = match ls with
  [] -> []
  | x :: xs -> reverse xs
```

... and its most general type:

```ml
:- reverse :: list 't_1 -> list 't_2
```

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of `reverse`!
Complexity of Type Inference Algorithm

• When Hindley/Milner type inference algorithm was developed, its complexity was unknown

• In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete

• Usually linear in practice though...
 – Running time is exponential in the depth of polymorphic declarations
Type Inference: Key Points

• Type inference computes the types of expressions
 – Does not require type declarations for variables
 – Finds the most general type by solving constraints
 – Leads to polymorphism

• Sometimes better error detection than type checking
 – Type may indicate a programming error even if no type error

• Some costs
 – More difficult to identify program line that causes error
 – Natural implementation requires uniform representation sizes
 – Complications regarding assignment took years to work out

• Idea can be applied to other program properties
 – Discover properties of program using same kind of analysis
Parametric Polymorphism: OCaml vs C++

• OCaml polymorphic function
 – Declarations (generally) require no type information
 – Type inference uses type variables to type expressions
 – Type inference substitutes for type variables as needed to instantiate polymorphic code

• C++ function template
 – Programmer must declare the argument and result types of functions
 – Programmers must use explicit type parameters to express polymorphism
 – Function application: type checker does instantiation
Example: Swap Two Values

• OCaml

```ocaml
let swap (x, y) =
    let temp = !x in
    (x := !y; y := temp)
val swap : 'a ref * 'a ref -> unit = <fun>
```

• C++

```cpp
template <typename T>
void swap(T& x, T& y){
    T tmp = x; x=y; y=tmp;
}
```

Declarations both swap two values polymorphically, but they are compiled very differently.
Implementation

• OCaml
 – `swap` is compiled into one function
 – Typechecker determines how function can be used

• C++
 – `swap` is compiled differently for each instance
 (details beyond scope of this course ...)

• Why the difference?
 – OCaml ref cell is passed by pointer. The local `x` is a pointer to value on heap, so its size is constant
 – C++ arguments passed by reference (pointer), but local `x` is on the stack, so its size depends on the type
Polymorphism vs Overloading

• Parametric polymorphism
 – Single algorithm may be given many types
 – Type variable may be replaced by any type
 – if \(f : t \rightarrow t \) then \(f : \text{int} \rightarrow \text{int}, f : \text{bool} \rightarrow \text{bool}, \ldots \)

• Overloading
 – A single symbol may refer to more than one algorithm
 – Each algorithm may have different type
 – Choice of algorithm determined by type context
 – Types of symbol may be arbitrarily different
 – In ML, \(+ \) has types \(\text{int} \times \text{int} \rightarrow \text{int}, \text{real} \times \text{real} \rightarrow \text{real} \), no others
 – Haskel permits more general overloading and requires user assistance
Varieties of Polymorphism

• **Parametric polymorphism** A single piece of code is typed generically
 – Imperative or first-class polymorphism
 – ML-style or let-polymorphism

• **Ad-hoc polymorphism** The same expression exhibit different behaviors when viewed in different types
 – Overloading
 – Multi-method dispatch
 – intentional polymorphism

• **Subtype polymorphism** A single term may have many types using the rule of subsumption allowing to selectively forget information
Summary

• Types are important in modern languages
 – Program organization and documentation
 – Prevent program errors
 – Provide important information to compiler

• Type inference
 – Determine best type for an expression, based on known information about symbols in the expression

• Polymorphism
 – Single algorithm (function) can have many types