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The While Programming Language

• Abstract syntax
S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S

• Use parenthesizes for precedence

• Informal Semantics

– skip behaves like no-operation

– Import meaning of arithmetic and Boolean 
operations



<S1 , s>  s’, <S2, s’>  s’’

<S1; S2, s>  s’’ 

Natural Semantics for While
[assns] <x := a, s>  s[x Aas]

[skipns] <skip, s>  s

<S1 , s>  s’

<if b then S1 else S2, s>  s’ 
if Bbs=tt

<S2 , s>  s’

<if b then S1 else S2, s>  s’ 
if Bbs=ff

axioms

rules

[whileff
ns] <while b do S, s>  s if Bbs=ff

<S , s>  s’, <while b do S, s’>  s’’

<while b do S, s>  s’’ if Bbs=tt

[compns]

[iftt
ns]

[ifff
ns]

[whilett
ns]



An Example Derivation Tree

<(x :=x+1; y :=x+1) ;  z := y), s0> s0[x 1][y 2][z 2]

<x :=x+1; y :=x+1, s0> s0[x 1][y 2] <z :=y,s0[x 1][y 2]>s0[x1][y2][z 2]

<x :=x+1; s0> s0[x 1] <y :=x+1, s0[x 1]> s0[x 1][y 2]

compns

compns

assns assns

assns



Top Down Evaluation of Derivation Trees

• Given a program S and an input state s

• Find an output state s’ such that
<S, s> s’

• Start with the root and repeatedly apply rules 
until the axioms are reached

• Inspect different alternatives in order

• In While s’ and the derivation tree is unique



Semantic Equivalence

• S1 and S2 are semantically equivalent if
for all s and s’
<S1, s>  s’ if and only if <S2, s>  s’ 

• Simple example
“while b do S”
is semantically equivalent to:
“if b then (S ; while b do S) else skip”



Deterministic Semantics for While

• If <S, s>  s1 and <S, s>  s2 then s1=s2

• The proof uses induction on the shape of 
derivation trees
– Prove that the property holds for all simple 

derivation trees by showing it holds for axioms

– Prove that the property holds for all composite 
trees: 
• For each rule assume that the property holds for its 

premises (induction hypothesis) and prove it holds for 
the conclusion of the rule



The Semantic Function Sns

• The meaning of a statement S is defined as a 
partial function from State to State

• Sns: Stm (State  State)

• Sns Ss =  s’ if <S, s> s’ and otherwise
Sns Ss is undefined

• Examples
– Sns skips =s

– Sns x :=1s = s [x 1]

– Sns while true do skips = undefined



Structural Operational Semantics
• Emphasizes the individual execution steps

• <S, i>  

– If the “first” step of executing the statement S on  an input state i
leads to 

• Two possibilities for 

–  = <S’, s’> 
• The execution of S is not completed, S’ is the remaining 

computation which need to be performed on s’ 

–  = o 
• The execution of S has terminated with a final state o 

•  is a stuck configuration when there are no 
transitions

• The meaning of a program P on an input state s is the set of 
final states that can be executed in arbitrary finite steps



Structural Semantics for While
[asssos] <x := a, s>  s[x Aas]

[skipsos] <skip, s>  s

[comp1
sos] <S1 , s>  <S’1, s’>

<S1; S2, s>  < S’1; S2, s’> 

axioms

rules

[comp2
sos] <S1 , s>  s’

<S1; S2, s>  < S2, s’> 



Structural Semantics for While
if construct

[iftt
sos]  <if b then S1 else S2, s> <S1, s> if Bbs=tt

[ifff
os]  <if b then S1 else S2, s> <S2, s> if Bbs=ff



Structural Semantics for While
while construct

[whilesos]  <while b do S, s> 

<if b then (S; while b do S) else skip, s>                   



Structural Semantics for While (Summary)

[asssos] <x := a, s>  s[x Aas]

[skipsos] <skip, s>  s

[comp1
sos] <S1 , s>  <S’1, s’>

<S1; S2, s>  < S’1; S2, s’> 

axioms

rules

[comp2
sos] <S1 , s>  s’

<S1; S2, s>  < S2, s’> 

[iftt
sos]  <if b then S1 else S2, s> <S1, s> if Bbs=tt

[ifff
sos]  <if b then S1 else S2, s> <S2, s> if Bbs=ff

[whilesos]  <while b do S, s> 

<if b then (S; while b do S) else skip, s>                   



Example
• S=[x  5 , y  7]

• S = (z:=x; x := y);  y := z

(z:=x; x := y);  y := z, [x5, y 7] =>   x := y ; y := z, [x5, y 7, z  5]

z:= x; x := y , [x5, y 7] => x := y ; y := z, [x5, y 7, z  5]
comp1

sos

z:= x , [x5, y 7] =>  [x5, y 7, z  5]

comp2
sos

asssos



Example (2nd step)
• S=[x  5 , y  7]

• S = (z:=x; x := y);  y := z

x := y;  y := z, [x5, y 7, z  5] =>   y := z, [x7, y 7, z  5]

x := y , [x5, y 7, z  5] => x := y ; y := z, [x7, y 7, z  5]
comp2

sos

asssos



Example (3rd step)
• S=[x  5 , y  7]

• S = (z:=x; x := y);  y := z

y := z [x7, y 7, z  5] =>   y := z, [x7, y 5, z  5]

asssos



Factorial Program

• Input  state s such that s x   = 3

y := 1; while (x=1) do (y := y * x; x := x - 1)
<y :=1 ; W, s>

 <W, s[y 1]>

 <if  (x =1) then (y := y * x ; x := x – 1 else skip); W), s[y 1]>

 < ((y := y * x ; x := x – 1); W), s[y 1]>

 <(x := x – 1 ; W), s[y  3]>

 < W , s[y  3][x  2]>

 <if  (x =1) then ((y := y * x ; x := x – 1); W) else skip, s[y 3][x  2]>

 < ((y := y * x ; x := x – 1); W), s[y 3] [x  2] >

 <(x := x – 1 ; W) , s[y  6] [x  2] >

 < W, s[y  6][x  1]>

 <if  (x =1) then (y := y * x ; x := x – 1); W) else skip, s[y 6][x  1]>

 <skip, s[y 6][x  1]>  s[y 6][x  1] 



Finite Derivation Sequences 
• finite derivation sequence starting at <S, i>
0, 1, 2 …, k such that

– 0=<S, i> 

– i  i+1

– k is either stuck configuration or a final state

• For each step there is a derivation tree

• 0 
k k in k steps

• 0 
*  in finite number of steps



Infinite Derivation Sequences 
• An infinite derivation sequence  starting at 

<S, i>
0, 1, 2 …  such that

– 0=<S, i> 

– i  i+1

• Example

– S = while true do skip

– s0 x = 0



Program Termination

• Given a statement S and input s

– S terminates on s if there exists a finite derivation 
sequence starting at <S, s>

– S terminates successfully on s if there exists a 
finite derivation sequence starting at <S, s> 
leading to a final state

– S loops on s if there exists an infinite derivation 
sequence starting at <S, s>



Properties of the Semantics
• S1 and S2 are semantically equivalent if:

– for all s and  which is either final or stuck
<S1, s> *  if and only if <S2, s> *  

– there is an infinite derivation sequence starting at 
<S1, s> if and only if there is an infinite derivation 
sequence starting at <S2, s> 

• Deterministic
– If <S, s> * s1 and <S, s> * s2 then s1=s2

• The execution of S1; S2 on an input can be 
split into two parts:
– execute S1 on s yielding a state s’

– execute S2 on s’ 



Sequential Composition
• If <S1; S2, s>  k s’’ then there exists a state s’ 

and numbers k1 and k2  such that
– <S1, s>  k1 s’

– <S2, s’>  k2 s’’

– and  k = k1 + k2

• The proof uses induction on the length of 
derivation sequences
– Prove that the property holds for all derivation 

sequences of length 0

– Prove that the property holds for all other 
derivation sequences: 
• Show that the property holds for sequences of length 

k+1 using the fact it holds on all sequences of length k 
(induction hypothesis)



The Semantic Function Ssos

• The meaning of a statement S is defined as a 
partial function from State to State

• Ssos: Stm (State  State)

• SsosSs =  s’ if <S, s> *s’ and otherwise
Ssos Ss  is undefined



An Equivalence Result

• For every statement S of the While language

– SnatS = SsosS



Extensions to While

• Abort statement (like C exit w/o return value)

• Non determinism

• Parallelism

• Local Variables

• Procedures

– Static Scope

– Dynamic scope



The While Programming Language with 
Abort

• Abstract syntax
S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| abort
• Abort terminates the execution
• No new rules are needed  in natural and 

structural operational semantics
• Statements

– if x = 0 then abort else y := y / x
– skip
– abort
– while true do skip 



Examples

• <if x = 0 then abort else y := y / x, s> s 

if s x = 0 then undefined else s [y  s y / sx]

• <skip, s>  s 

• For no s: <abort, s> s 

• For no s: <while b do skip, s> s 



Undefined semantics in C

• Pointer dereferences
x = *p; “” if (p !=NULL)  x = *p; else abort;

• Pointer arithmetic
x = a[i]; “” if (i <alloc(a)) x = *(a+i); else abort;

• Structure boundaries



Undefined semantics in Java?

• What about exceptions?



Pros and Cons of PLs with
Undefined Semantics

Benefits

• Performance

• Expressive power

• Simplicity of the 
programming language

Disadvantages

• Security

• Portability

• Predictability

• Programmer productivity



Formulating Undefined semantics

• A programming language is type safe if correct 
programs cannot go wrong

• No undefined semantics 
– But runtime exceptions are fine

• For every program P
– For every input state s one of the following holds:

• <P, s> * s’ for some final state s’

• <P, s> i  for all i 

• While is type safe and  while+abort is not



Conclusion

• The natural semantics cannot distinguish 
between looping and abnormal termination 
(unless the states are modified) 

• In the structural operational semantics 
looping is reflected by infinite derivations and 
abnormal termination is reflected by stuck 
configuration



The While Programming Language with 
Non-Determinism

• Abstract syntax
S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| S1 or S2

• Either S1 or S2 is executed

• Example

– x := 1 or (x :=2 ; x := x+2)



[or1
ns] <S1 , s>  s’

<S1 or S2, s>  s’

The While Programming Language 
with Non-Determinism

Natural Semantics

[or2
ns] <S2 , s>  s’

<S1 or S2, s>  s’



The While Programming 
Language with Non-Determinism

Structural Semantics



The While Programming 
Language with Non-Determinism

Examples

• x := 1 or (x :=2 ; x := x+2)

• (while true do skip) or (x :=2 ; x := x+2)



Conclusion

• In the natural semantics non-determinism will 
suppress looping if possible (mnemonic) 

• In the structural operational semantics non-
determinism does not suppress not 
termination configuration



The While Programming Language with 
Parallel Constructs

• Abstract syntax
S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| S1 par S2

• All the interleaving of S1 or S2 are executed

• Examples

– x := 1 par (x :=2 ; x := x+2)

– (x := 1; a :=y) par (y := 1; b :=x) 



The While Programming Language with 
Parallel Constructs

Structural Semantics

[par1
sos] <S1 , s>  <S’1, s’>

<S1 par S2, s>  < S’1par S2, s’> 

[par2
sos] <S1 , s>  s’

<S1 par S2, s>  < S2, s’> 

[par3
sos] <S2 , s>  <S’2, s’>

<S1 par S2, s>  < S1par S’2, s’> 

[par4
sos] <S2 , s>  s’

<S1 par S2, s>  < S1, s’> 



The While Programming Language with 
Parallel Constructs
Natural Semantics



Conclusion

• In the natural semantics immediate 
constituent is an atomic entity so we cannot 
express interleaving of computations 

• In the structural operational semantics we 
concentrate on small steps so interleaving of 
computations can be easily expressed



The While Programming Language with 
local variables

• Abstract syntax
S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| { L S }
L ::= var x := a ; L | 



Simple Example

{

var y := 1;

(var x := 2 ;

{

var x := 3 ;

y :=  x + y // 4

}

x := y + x   // 6

)

}



Another Example

while (y > 0) (

{

var x := y ;

y :=  x + y;

y : = y -1 

}

x := y + x 



<L , s>  s’, <S, s’>  s’’

<{ L S }, s>  s’’[LHS(L) s]
[blockns]

Natural Semantics

LHS(var x := a ; L) = {x}  LHS(L)

LHS() = 

LHS : L  2Var

s0[X  s] = 
s0 x  if  x  X

s x  if  x  X

[nonens] < , s>  s

<L , s[x Aas]>  s’

<var x := a; L, s>  s’

[varns]



[varns]

<var x := y +1; , [x 8, y 5] > 

[y 5, x 6] 

Simple Example
if (y > 0) 

then  

{

var x := y  +1;

y :=  x + y 

}

else skip ;

y := y +x 

<if  (y > 0) …;  y := y +x), [x8, y 5] > 

<if (y>0) …, [x 8,  y 5] >  <y := y +x,    



compns

[y 5, x 6]

[y 11, x 6] 

[y 11, x6] 

[y 17, x6] [y 11, x6] 

[y 11, x6] 

<{ var x := y +1; y := x+ y } , [x 8, y 5]<

[iftt
ns]

<var x := y +1;, [x 8, y 5] >

[blockns]

<y := x+y,                       >[y 5, x 6]

[nonens] 

[y 17, x6] 



Structural Semantics

?

<begin Dv S end, s>  s’ 
[blocksos]



Conclusions Local Variables

• The natural semantics can “remember” local 
states

• Need to introduce stack or heap into state of 
the structural semantics



The While Programming Language with 
local variables and procedures

• Abstract syntax
S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| 
{ L P S } | call p

L ::= var x := a ; L | 
P ::= proc p is S ; P | 



Summary

• SOS is powerful enough to describe imperative 
programs
– Can define the set of traces
– Can represent program counter implicitly
– Handle gotos

• Natural operational semantics is an abstraction
• Different semantics may be used to justify 

different behaviors
• Thinking in concrete semantics is essential for 

language designer/compiler writer/…


