
Formal Syntax and
Semantics of Programming

Languages

Mooly Sagiv

Reference: Semantics with Applications

Chapter 2

H. Nielson and F. Nielson
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

The While Programming Language

• Abstract syntax
S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S

• Use parenthesizes for precedence

• Informal Semantics

– skip behaves like no-operation

– Import meaning of arithmetic and Boolean
operations

<S1 , s> s’, <S2, s’> s’’

<S1; S2, s> s’’

Natural Semantics for While
[assns] <x := a, s> s[x Aas]

[skipns] <skip, s> s

<S1 , s> s’

<if b then S1 else S2, s> s’
if Bbs=tt

<S2 , s> s’

<if b then S1 else S2, s> s’
if Bbs=ff

axioms

rules

[whileff
ns] <while b do S, s> s if Bbs=ff

<S , s> s’, <while b do S, s’> s’’

<while b do S, s> s’’ if Bbs=tt

[compns]

[iftt
ns]

[ifff
ns]

[whilett
ns]

An Example Derivation Tree

<(x :=x+1; y :=x+1) ; z := y), s0> s0[x 1][y 2][z 2]

<x :=x+1; y :=x+1, s0> s0[x 1][y 2] <z :=y,s0[x 1][y 2]>s0[x1][y2][z 2]

<x :=x+1; s0> s0[x 1] <y :=x+1, s0[x 1]> s0[x 1][y 2]

compns

compns

assns assns

assns

Top Down Evaluation of Derivation Trees

• Given a program S and an input state s

• Find an output state s’ such that
<S, s> s’

• Start with the root and repeatedly apply rules
until the axioms are reached

• Inspect different alternatives in order

• In While s’ and the derivation tree is unique

Semantic Equivalence

• S1 and S2 are semantically equivalent if
for all s and s’
<S1, s> s’ if and only if <S2, s> s’

• Simple example
“while b do S”
is semantically equivalent to:
“if b then (S ; while b do S) else skip”

Deterministic Semantics for While

• If <S, s> s1 and <S, s> s2 then s1=s2

• The proof uses induction on the shape of
derivation trees
– Prove that the property holds for all simple

derivation trees by showing it holds for axioms

– Prove that the property holds for all composite
trees:
• For each rule assume that the property holds for its

premises (induction hypothesis) and prove it holds for
the conclusion of the rule

The Semantic Function Sns

• The meaning of a statement S is defined as a
partial function from State to State

• Sns: Stm (State State)

• Sns Ss = s’ if <S, s> s’ and otherwise
Sns Ss is undefined

• Examples
– Sns skips =s

– Sns x :=1s = s [x 1]

– Sns while true do skips = undefined

Structural Operational Semantics
• Emphasizes the individual execution steps

• <S, i>

– If the “first” step of executing the statement S on an input state i
leads to

• Two possibilities for

– = <S’, s’>
• The execution of S is not completed, S’ is the remaining

computation which need to be performed on s’

– = o
• The execution of S has terminated with a final state o

• is a stuck configuration when there are no
transitions

• The meaning of a program P on an input state s is the set of
final states that can be executed in arbitrary finite steps

Structural Semantics for While
[asssos] <x := a, s> s[x Aas]

[skipsos] <skip, s> s

[comp1
sos] <S1 , s> <S’1, s’>

<S1; S2, s> < S’1; S2, s’>

axioms

rules

[comp2
sos] <S1 , s> s’

<S1; S2, s> < S2, s’>

Structural Semantics for While
if construct

[iftt
sos] <if b then S1 else S2, s> <S1, s> if Bbs=tt

[ifff
os] <if b then S1 else S2, s> <S2, s> if Bbs=ff

Structural Semantics for While
while construct

[whilesos] <while b do S, s>

<if b then (S; while b do S) else skip, s>

Structural Semantics for While (Summary)

[asssos] <x := a, s> s[x Aas]

[skipsos] <skip, s> s

[comp1
sos] <S1 , s> <S’1, s’>

<S1; S2, s> < S’1; S2, s’>

axioms

rules

[comp2
sos] <S1 , s> s’

<S1; S2, s> < S2, s’>

[iftt
sos] <if b then S1 else S2, s> <S1, s> if Bbs=tt

[ifff
sos] <if b then S1 else S2, s> <S2, s> if Bbs=ff

[whilesos] <while b do S, s>

<if b then (S; while b do S) else skip, s>

Example
• S=[x 5 , y 7]

• S = (z:=x; x := y); y := z

(z:=x; x := y); y := z, [x5, y 7] => x := y ; y := z, [x5, y 7, z 5]

z:= x; x := y , [x5, y 7] => x := y ; y := z, [x5, y 7, z 5]
comp1

sos

z:= x , [x5, y 7] => [x5, y 7, z 5]

comp2
sos

asssos

Example (2nd step)
• S=[x 5 , y 7]

• S = (z:=x; x := y); y := z

x := y; y := z, [x5, y 7, z 5] => y := z, [x7, y 7, z 5]

x := y , [x5, y 7, z 5] => x := y ; y := z, [x7, y 7, z 5]
comp2

sos

asssos

Example (3rd step)
• S=[x 5 , y 7]

• S = (z:=x; x := y); y := z

y := z [x7, y 7, z 5] => y := z, [x7, y 5, z 5]

asssos

Factorial Program

• Input state s such that s x = 3

y := 1; while (x=1) do (y := y * x; x := x - 1)
<y :=1 ; W, s>

 <W, s[y 1]>

 <if (x =1) then (y := y * x ; x := x – 1 else skip); W), s[y 1]>

 < ((y := y * x ; x := x – 1); W), s[y 1]>

 <(x := x – 1 ; W), s[y 3]>

 < W , s[y 3][x 2]>

 <if (x =1) then ((y := y * x ; x := x – 1); W) else skip, s[y 3][x 2]>

 < ((y := y * x ; x := x – 1); W), s[y 3] [x 2] >

 <(x := x – 1 ; W) , s[y 6] [x 2] >

 < W, s[y 6][x 1]>

 <if (x =1) then (y := y * x ; x := x – 1); W) else skip, s[y 6][x 1]>

 <skip, s[y 6][x 1]> s[y 6][x 1]

Finite Derivation Sequences
• finite derivation sequence starting at <S, i>
0, 1, 2 …, k such that

– 0=<S, i>

– i i+1

– k is either stuck configuration or a final state

• For each step there is a derivation tree

• 0
k k in k steps

• 0
* in finite number of steps

Infinite Derivation Sequences
• An infinite derivation sequence starting at

<S, i>
0, 1, 2 … such that

– 0=<S, i>

– i i+1

• Example

– S = while true do skip

– s0 x = 0

Program Termination

• Given a statement S and input s

– S terminates on s if there exists a finite derivation
sequence starting at <S, s>

– S terminates successfully on s if there exists a
finite derivation sequence starting at <S, s>
leading to a final state

– S loops on s if there exists an infinite derivation
sequence starting at <S, s>

Properties of the Semantics
• S1 and S2 are semantically equivalent if:

– for all s and which is either final or stuck
<S1, s> * if and only if <S2, s> *

– there is an infinite derivation sequence starting at
<S1, s> if and only if there is an infinite derivation
sequence starting at <S2, s>

• Deterministic
– If <S, s> * s1 and <S, s> * s2 then s1=s2

• The execution of S1; S2 on an input can be
split into two parts:
– execute S1 on s yielding a state s’

– execute S2 on s’

Sequential Composition
• If <S1; S2, s> k s’’ then there exists a state s’

and numbers k1 and k2 such that
– <S1, s> k1 s’

– <S2, s’> k2 s’’

– and k = k1 + k2

• The proof uses induction on the length of
derivation sequences
– Prove that the property holds for all derivation

sequences of length 0

– Prove that the property holds for all other
derivation sequences:
• Show that the property holds for sequences of length

k+1 using the fact it holds on all sequences of length k
(induction hypothesis)

The Semantic Function Ssos

• The meaning of a statement S is defined as a
partial function from State to State

• Ssos: Stm (State State)

• SsosSs = s’ if <S, s> *s’ and otherwise
Ssos Ss is undefined

An Equivalence Result

• For every statement S of the While language

– SnatS = SsosS

Extensions to While

• Abort statement (like C exit w/o return value)

• Non determinism

• Parallelism

• Local Variables

• Procedures

– Static Scope

– Dynamic scope

The While Programming Language with
Abort

• Abstract syntax
S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| abort
• Abort terminates the execution
• No new rules are needed in natural and

structural operational semantics
• Statements

– if x = 0 then abort else y := y / x
– skip
– abort
– while true do skip

Examples

• <if x = 0 then abort else y := y / x, s> s

if s x = 0 then undefined else s [y s y / sx]

• <skip, s> s

• For no s: <abort, s> s

• For no s: <while b do skip, s> s

Undefined semantics in C

• Pointer dereferences
x = *p; “” if (p !=NULL) x = *p; else abort;

• Pointer arithmetic
x = a[i]; “” if (i <alloc(a)) x = *(a+i); else abort;

• Structure boundaries

Undefined semantics in Java?

• What about exceptions?

Pros and Cons of PLs with
Undefined Semantics

Benefits

• Performance

• Expressive power

• Simplicity of the
programming language

Disadvantages

• Security

• Portability

• Predictability

• Programmer productivity

Formulating Undefined semantics

• A programming language is type safe if correct
programs cannot go wrong

• No undefined semantics
– But runtime exceptions are fine

• For every program P
– For every input state s one of the following holds:

• <P, s> * s’ for some final state s’

• <P, s> i for all i

• While is type safe and while+abort is not

Conclusion

• The natural semantics cannot distinguish
between looping and abnormal termination
(unless the states are modified)

• In the structural operational semantics
looping is reflected by infinite derivations and
abnormal termination is reflected by stuck
configuration

The While Programming Language with
Non-Determinism

• Abstract syntax
S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| S1 or S2

• Either S1 or S2 is executed

• Example

– x := 1 or (x :=2 ; x := x+2)

[or1
ns] <S1 , s> s’

<S1 or S2, s> s’

The While Programming Language
with Non-Determinism

Natural Semantics

[or2
ns] <S2 , s> s’

<S1 or S2, s> s’

The While Programming
Language with Non-Determinism

Structural Semantics

The While Programming
Language with Non-Determinism

Examples

• x := 1 or (x :=2 ; x := x+2)

• (while true do skip) or (x :=2 ; x := x+2)

Conclusion

• In the natural semantics non-determinism will
suppress looping if possible (mnemonic)

• In the structural operational semantics non-
determinism does not suppress not
termination configuration

The While Programming Language with
Parallel Constructs

• Abstract syntax
S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| S1 par S2

• All the interleaving of S1 or S2 are executed

• Examples

– x := 1 par (x :=2 ; x := x+2)

– (x := 1; a :=y) par (y := 1; b :=x)

The While Programming Language with
Parallel Constructs

Structural Semantics

[par1
sos] <S1 , s> <S’1, s’>

<S1 par S2, s> < S’1par S2, s’>

[par2
sos] <S1 , s> s’

<S1 par S2, s> < S2, s’>

[par3
sos] <S2 , s> <S’2, s’>

<S1 par S2, s> < S1par S’2, s’>

[par4
sos] <S2 , s> s’

<S1 par S2, s> < S1, s’>

The While Programming Language with
Parallel Constructs
Natural Semantics

Conclusion

• In the natural semantics immediate
constituent is an atomic entity so we cannot
express interleaving of computations

• In the structural operational semantics we
concentrate on small steps so interleaving of
computations can be easily expressed

The While Programming Language with
local variables

• Abstract syntax
S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S| { L S }
L ::= var x := a ; L |

Simple Example

{

var y := 1;

(var x := 2 ;

{

var x := 3 ;

y := x + y // 4

}

x := y + x // 6

)

}

Another Example

while (y > 0) (

{

var x := y ;

y := x + y;

y : = y -1

}

x := y + x

<L , s> s’, <S, s’> s’’

<{ L S }, s> s’’[LHS(L) s]
[blockns]

Natural Semantics

LHS(var x := a ; L) = {x} LHS(L)

LHS() =

LHS : L 2Var

s0[X s] =
s0 x if x X

s x if x X

[nonens] < , s> s

<L , s[x Aas]> s’

<var x := a; L, s> s’

[varns]

[varns]

<var x := y +1; , [x 8, y 5] >

[y 5, x 6]

Simple Example
if (y > 0)

then

{

var x := y +1;

y := x + y

}

else skip ;

y := y +x

<if (y > 0) …; y := y +x), [x8, y 5] >

<if (y>0) …, [x 8, y 5] > <y := y +x,

compns

[y 5, x 6]

[y 11, x 6]

[y 11, x6]

[y 17, x6] [y 11, x6]

[y 11, x6]

<{ var x := y +1; y := x+ y } , [x 8, y 5]<

[iftt
ns]

<var x := y +1;, [x 8, y 5] >

[blockns]

<y := x+y, >[y 5, x 6]

[nonens]

[y 17, x6]

Structural Semantics

?

<begin Dv S end, s> s’
[blocksos]

Conclusions Local Variables

• The natural semantics can “remember” local
states

• Need to introduce stack or heap into state of
the structural semantics

The While Programming Language with
local variables and procedures

• Abstract syntax
S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

while b do S|
{ L P S } | call p

L ::= var x := a ; L |
P ::= proc p is S ; P |

Summary

• SOS is powerful enough to describe imperative
programs
– Can define the set of traces
– Can represent program counter implicitly
– Handle gotos

• Natural operational semantics is an abstraction
• Different semantics may be used to justify

different behaviors
• Thinking in concrete semantics is essential for

language designer/compiler writer/…

