Formal Syntax and
Semantics of Programming
Languages

Mooly Sagiv
Reference: Semantics with Applications
Chapter 2

H. Nielson and F. Nielson
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

The While Programming Language

e Abstract syntax
Si:z=x :=a|skip|S;;S, | ifbthenS, elseS, |
while b do S

e Use parenthesizes for precedence
* Informal Semantics

— skip behaves like no-operation

— Import meaning of arithmetic and Boolean
operations

Natural Semantics for While
[ass,] <x :=a, s> — s[x »A[a]s]

axioms [skip,¢] <skip, s> — s
[while™] <whilebdo S, s> —»s if B[b]s=ff

<S5,,8>—>¢5,<S,,>—>5”
[comp,]

<S;; S,, 8> —>S”

rules |
<S§,,5> >S5S
ift | |]
[IT] <if b then S,else S,, s> —> ¢’ if B[b]s=tt
- <S,,s>—>¢
] ' if B[b]s=ff
<if bthen S;else S,, s> —> ¢’
- <S,s>—>¢ <whilebdo S, s> —s” |
[whilet] <while b do S,s> —> S~ if B[I:b]]S:tt

An Example Derivation Tree

<(X:=x+1;y :=x+1); z:=Y), s0> —>s0[x »1][y »2][z »2]

COMPns
<X :=x+1;y :=x+1, s0> —>s0[x ~1][y ~2] <z :=y,S0[x »1][y »2]>—>s0[x~1][y~2][z »2]
- L0MPns———— aSSws
<X :=x+1; s0> —s0[x »1] <y :=x+1, sO[x »1]> —s0[x ~1][y ~2]

dSSns dSSns

Top Down Evaluation of Derivation Trees

Given a program S and an input state s

Find an output state s’ such that
<S§, s> —¢’

Start with the root and repeatedly apply rules
until the axioms are reached

Inspect different alternatives in order
In While s” and the derivation tree is unique

Semantic Equivalence

* S, and S, are semantically equivalent if
for all sand s’

<S,,s>—>¢s"ifandonlyif<S,, s> —> ¢

* Simple example
“while b do S”
is semantically equivalent to:
“if b then (S ; while b do S) else skip”

Deterministic Semantics for While

* If<S,s>—s,and<S, s> — s, then s, =s,

* The proof uses induction on the shape of
derivation trees

— Prove that the property holds for all simple
derivation trees by showing it holds for axioms

— Prove that the property holds for all composite
trees:
* For each rule assume that the property holds for its

premises (induction hypothesis) and prove it holds for
the conclusion of the rule

The Semantic Function S

The meaning of a statement S is defined as a
partial function from State to State

S,.: Stm — (State — State)

S . [[S]s = §"if <S, s> —s’" and otherwise
S..[S]s is undefined

Examples
— S5 Lskip]s =s
— S, [x:=1]s =s [x »1]

[while true do skip]ls = undefined

Structural Operational Semantics

Emphasizes the individual execution steps

<SS, >=y
— If the “first” step of executing the statement S on an input state i
leads to ¥

Two possibilities for ¥
— y=<§,s'>
* The execution of S is not completed, S’ is the remaining
computation which need to be performed on s’

* The execution of S has terminated with a final state o

v is a stuck configuration when there are no
transitions

The meaning of a program P on an input state s is the set of
final states that can be executed in arbitrary finite steps

Structural Semantics for While
ass..] <X := a, s> = s[x »A[a]s]

axioms [skip,,] <skip, s> = s

comply, <5, 5> = <5°;, 8°>

rules <S,.;S, s> =<5:S,, >

comp?.]<S,,s>=¢’
psos 1

<Sp; Sy, 8> =<5, 87>

Structural Semantics for While
if construct

[ift,] <ifbthenS,elseS,, s>=<S,,s> if B[[b]s=tt

[iff] <ifbthen S else S,, s>=<S,,s> if B[b]s=ff

Structural Semantics for While
while construct

[while..] <whilebdo S, s> =
<if b then (S; while b do S) else skip, s>

Structural Semantics for While (Summary)

[ass..] <x :=a, s> = s[x »A[a]s]
[skip..] <skip, s> =5
[ift,] <if bthenS,elseS,, s>=<S;,s> if B[b]s=tt
rules [iff,] <ifbthen S elseS,, s>=<S,,s> if B[b]s=ff
[while,.] <whilebdo S, s>=

<if b then (S; while b do S) else skip, s>

axioms

[Complsos] <Sl , $2 = <S’1’ 5>

<S;; S,, 8> =<5°;S,, 5>

comps...]<S,,s>=¢
psos 1

<Sy; S, 8> = <S5, 87>

Example
* S=[x— 5,y—7]

e S=(z:=x;X:=Vy), y:=12

(=X, X :=Y), V=2, [x—=5y—T7]=> X=y,;y:.=2 [X>5y—T7, 22— 5]

com plsos

Z=X; X =Y, [X—=5,y—T7]=>x:=y,;y =2 [x—5y—7,2— 5]

2
COMP~5og

258 Z.=X, [X—5y—7]=> [x—b5,y—7,2+— 5]

SOS

Example (2"9 step)
e S=[x— 5,y—7]

e S=(z:=x;X:=Vy), y:=12

X:=Y, Y=z, [Xx—5Yy—7,2—5]=> y.=z [x>7,y—T7,2— 5]

Compzsos

X:=Vy,[x—by—7,2—5]=>x:=y;y:=2 [X—>7,y—7,2— 5]

ASS s

Example (3™ step)
e S=[x— 5,y—7]

e S=(z=x;x:=y); y:i=z
Yy =z [x—7,y—7,2—5]=> y:.=2 [X—7,y—5 22— 5]

ASSg s

Factorial Program

* [Input state ssuchthatsx =3
y:=1,while =(x=1)do (y .=y *X; X =X -1)

<y:=1;W,s>

= <W, s[y »1]>

= <if — (x =1) then (y :=y * x ; X := x — 1 else skip); W), s[y »1]>

= <((y =y *x;x:=x-1); W), s[y »1]>

=<(X:=x-1;W),s[y~ 3]>

= <W, s[y~ 3][x+~ 2]>

= <if = (X=1)then ((y .=y * X ; X:=x—-1); W) else skip, s[y »3][x » 2]>
= <((y=y*x;x:=x-1); W), s[y =»3] [x = 2] >
=<(X:=x-1;W),s[y~»6][x~2]>

= <W, sy~ 6][x~ 1]>

= <if = (x=1)then (y:=y*x;x:=x-1); W) else skip, s[y »6][x - 1]>
= <skip, s[y »6][x » 1]> = s[y »6][x ~ 1]

Finite Derivation Sequences

finite derivation sequence starting at <S, i>
Yor Y1, Yo - Y SUCh that

—Yo=<S, i>

—Yi = Yin

— v, Is either stuck configuration or a final state

For each step there is a derivation tree
Yo =" v, in k steps
Yo = v in finite number of steps

Infinite Derivation Sequences
* An infinite derivation sequence starting at
<§, 1>
Yor Y1, ¥, --- SUCh that
—Yo=<S, i>
— Y = Y
e Example
— S = while true do skip
—SgXx=0

Program Termination

* Given a statement S and input s

— S terminates on s if there exists a finite derivation
sequence starting at <S, s>

— S terminates successfully on s if there exists a
finite derivation sequence starting at <S, s>
leading to a final state

— S loops on s if there exists an infinite derivation
seguence starting at <§, s>

Properties of the Semantics

* S, and S, are semantically equivalent if:

— for all s and y which is either final or stuck
<S,, s> =" yifand onlyif<S,, s> ="y

— there is an infinite derivation sequence starting at
<S,, s> if and only if there is an infinite derivation
sequence starting at <S,, s>

* Deterministic
— If<S, s> =" s, and <S, s> =" s, then s,=s,

* The execution of S;; S, on an input can be
split into two parts:

— execute S, on s yielding a state s’
— execute S, on ¢’

Sequential Composition

« If<S;;S,, s> =Ks” then there exists a state s’
and numbers k; and k, such that
—<S,, s> =k¢
—<S,, s> =k g”
—and k=k, +k,

* The proof uses induction on the length of
derivation sequences

— Prove that the property holds for all derivation
sequences of length O

— Prove that the property holds for all other
derivation sequences:
e Show that the property holds for sequences of length

k+1 using the fact it holds on all sequences of length k
(induction hypothesis)

The Semantic Function S__,

* The meaning of a statement S is defined as a
partial function from State to State

* S,..: Stm — (State — State)

[[S]]s = ¢’ if <S, s> =5’ and otherwise
[S]s is undefined

SOS

SOS

An Equivalence Result

* For every statement S of the While language
_ Snat[[s:l] = SsoslIS]]

Extensions to While

Abort statement (like C exit w/o return value)
Non determinism

Parallelism

_Local Variables

Procedures
— Static Scope
— Dynamic scope

The While Programming Language with
Abort

Abstract syntax
Si:=x :=a | skip|S;;S, | ifbthenS, elseS, |
while b do S| abort

Abort terminates the execution

No new rules are needed in natural and
structural operational semantics

Statements

— if x=0then abort elsey :=y / x
— skip

— abort

— while true do skip

Examples

<if x=0thenabortelsey :=y/Xx,s>s—>
If s x = 0 then undefined else s [y — sy / sX]

<skip,s>—>s
For no s: <abort, s>— s
For no s: <while b do skip, s>— s

Undefined semantics in C

 Pointer dereferences
x =*p; “2” if (p '=NULL) x = *p; else abort;

e Pointer arithmetic
x = ali]; “&” if (i <alloc(a)) x = *(a+i); else abort;

e Structure boundaries

Undefined semantics in Java?

 What about exceptions?

Pros and Cons of PLs with
Undefined Semantics

Benefits

Performance
Expressive power

Simplicity of the
programming language

Disadvantages

Security

Portability

Predictability
Programmer productivity

Formulating Undefined semantics

* A programming language is type safe if correct
programs cannot go wrong

* No undefined semantics
— But runtime exceptions are fine
* For every program P

— For every input state s one of the following holds:
e <P, s> ="¢" for some final state &’
* <P, s>=lyforalli

 While is type safe and while+abort is not

Conclusion

* The natural semantics cannot distinguish

between looping and abnormal termination
(unless the states are modified)

* |n the structural operational semantics

looping is reflected by infinite derivations and
abnormal termination is reflected by stuck
configuration

The While Programming Language with
Non-Determinism

e Abstract syntax
Si:z=x :=a|skip|S;;S, | ifbthenS, elseS, |
whilebdo S| S, or S,

* Either S, or S, is executed
* Example

—x:=1or(x:=2;x:=x+2)

The While Programming Language
with Non-Determinism
Natural Semantics

[ort]<S;,s>—>¢

<§;0rS,,s>—>¢

[or2] <S,,s>—> ¢

<S,0r S, 8> —>¢

The While Programming
Language with Non-Determinism
Structural Semantics

The While Programming
Language with Non-Determinism
Examples

e x:=1lor(x:=2;x:=x+2)

e (while true do skip) or (x :=2 ; x := x+2)

Conclusion

* |n the natural semantics non-determinism will
suppress looping if possible (mnemonic)

* |n the structural operational semantics non-
determinism does not suppress not
termination configuration

The While Programming Language with
Parallel Constructs

e Abstract syntax
Si:z=x :=a|skip|S;;S, | ifbthenS, elseS, |
whileb do S| S, par S,
* All the interleaving of S; or S, are executed
 Examples
—x:=1par(x:=2;x:=x+2)
—(x:=1;a:=y) par(y:=1; b :=x)

The While Programming Language with
Parallel Constructs
Structural Semantics

[parlsos] <Sl , 2 = <S,1’ §$'>

<§;parS,, s> = <S’par S, s’>
[parzsos] <Sl , 8> =8’

<§;parS,, s> =<S,, 8>
[pargsos] <SZ , S22 = <S,2’ s>

<§;parsS,, s> = < S;par S’°,, 7>
[par4sos] <SZ , > =¥

<S;parS,, s> =< §;,8>

The While Programming Language with
Parallel Constructs
Natural Semantics

Conclusion

* |n the natural semantics immediate
constituent is an atomic entity so we cannot
express interleaving of computations

* |n the structural operational semantics we
concentrate on small steps so interleaving of
computations can be easily expressed

The While Programming Language with
local variables

e Abstract syntax
Si:z=x :=a|skip|S;;S, | ifbthenS, elseS, |
whilebdo S| {LS}
L::=varx:=a;L]| ¢

Simple Example

{
vary =1,
(varx :=2;
{
var X :=3;
y.=Xx+yl/l4
}
X:=y+x /6

)

Another Example

while (y > 0) (
{
var X .=y ;
y:= X+Yy,
y:=y-1
}

X =y +X

Natural Semantics

LHS: L > 2\
LHS(e) = &
LHS(var x :=a; L) ={x} u LHS(L)

_] ospx if xeg X
S0l X S]_{sx if x e X

[none,] <&, S>—S

va rfsl]' ,s[x =A[a]s]> > ¢’

varx:=a,L,s>—>¢

<L,s>—>5",<§5 8>->5"

<{ LS} s>—>s”[LHS(L) ~s]

[block]

Simple Example

if (y > 0)
then
{ ;
varx =y +1; <if (y>0)...; y:=y+X), [X—8,y —5]> o[y —17, X —6]
yi= X+y COMPrs
1 <if (y>0) ..., [x —8, y+—5]>— <y :=y+x, [y —11, X —6
else skip ; [y —11, x —6] — [y —17,x—6]
y =Yy +X [ifttns]
<{varx:=y+l;y:=x+y}, [x—8,y—5]>—>[y—1l, X —6]
[block,]
var X =y +1;, [Xx =8, y =53] > [y =5, X —=6]| | <y := x+y,[y —5, x —6]>—
[var,] [y —11, X —6]
var X :=y +1; , [x —8, y —5] Jy»—5, X —6]

[none,]

Structural Semantics

[block

?

SOSJ

<beginD, Send, s> =¢’

Conclusions Local Variables

e The natural semantics can “remember” local
states

* Need to introduce stack or heap into state of
the structural semantics

The While Programming Language with
local variables and procedures

e Abstract syntax
Si:z=x :=a|skip|S;;S, | ifbthenS, elseS, |
while b do S|
{LPS}|callp
L::=varx:=a;L| ¢
P::=procpisS;P | ¢

Summary

SOS is powerful enough to describe imperative
programs

— Can define the set of traces
— Can represent program counter implicitly
— Handle gotos

Natural operational semantics is an abstraction

Different semantics may be used to justify
different behaviors

Thinking in concrete semantics is essential for
language designer/compiler writer/...

