Formal Syntax and Semantics of Programming Languages

Mooly Sagiv Reference: Semantics with Applications Chapter 2 H. Nielson and F. Nielson http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

The While Programming Language

• Abstract syntax

S::= x := a | skip | S_1 ; S_2 | if b then S_1 else S_2 | while b do S

- Use parenthesizes for precedence
- Informal Semantics
 - skip behaves like no-operation
 - Import meaning of arithmetic and Boolean operations

An Example Derivation Tree

assns

Top Down Evaluation of Derivation Trees

- Given a program S and an input state s
- Find an output state s' such that $\langle S, s \rangle \rightarrow s'$
- Start with the root and repeatedly apply rules until the axioms are reached
- Inspect different alternatives in order
- In While s' and the derivation tree is unique

Semantic Equivalence

- S₁ and S₂ are semantically equivalent if for all s and s'
 <S₁, s> → s' if and only if <S₂, s> → s'
- Simple example
 "while b do S"
 is semantically equivalent to:
 "if b then (S : while b do S) also skip"
 - "if b then (S; while b do S) else skip"

Deterministic Semantics for While

- If $\langle S, s \rangle \rightarrow s_1$ and $\langle S, s \rangle \rightarrow s_2$ then $s_1 = s_2$
- The proof uses induction on the shape of derivation trees
 - Prove that the property holds for all simple derivation trees by showing it holds for axioms
 - Prove that the property holds for all composite trees:
 - For each rule assume that the property holds for its premises (induction hypothesis) and prove it holds for the conclusion of the rule

The Semantic Function S_{ns}

- The meaning of a statement S is defined as a partial function from State to State
- S_{ns} : Stm \rightarrow (State \hookrightarrow State)
- S_{ns} [S]s = s' if <S, s>→s' and otherwise
 S_{ns} [S]s is undefined
- Examples

$$\begin{split} &-S_{ns} \llbracket skip \rrbracket s = s \\ &-S_{ns} \llbracket x := 1 \rrbracket s = s \ [x \mapsto 1] \\ &-S_{ns} \llbracket while \ true \ do \ skip \rrbracket s = undefined \end{split}$$

Structural Operational Semantics

- Emphasizes the individual execution steps
- <S, $i > \Rightarrow \gamma$
 - If the "first" step of executing the statement S on an input state i leads to γ
- Two possibilities for γ
 - γ = <S', s'>
 - The execution of S is not completed, S' is the remaining computation which need to be performed on s'

 $-\gamma = \mathbf{0}$

- The execution of S has terminated with a final state o
- γ is a stuck configuration when there are no transitions
- The meaning of a program P on an input state s is the set of final states that can be executed in arbitrary finite steps

Structural Semantics for While
$$[ass_{sos}] < x := a, s > \Rightarrow s[x \mapsto A[[a]]s]$$
axioms $[skip_{sos}] < skip, s > \Rightarrow s$ $[comp^{1}_{sos}] < S_{1}, s > \Rightarrow < S'_{1}, s' >$ rules $\Rightarrow < S'_{1}; S_{2}, s' >$

$$[\operatorname{comp}_{sos}^{2}] < S_{1}, s > \Rightarrow s'$$
$$< S_{1}; S_{2}, s > \Rightarrow < S_{2}, s' >$$

Structural Semantics for While if construct

 $[if_{sos}^{tt}] < if b then S_1 else S_2, s \ge < S_1, s \ge if B[[b]]s = tt$

 $[if_{os}^{ff}] < if b then S_1 else S_2, s > \Rightarrow < S_2, s > if B[[b]]s = ff$

Structural Semantics for While while construct

[while_{sos}] <while b do S, s> \Rightarrow <if b then (S; while b do S) else skip, s>

Structural Semantics for While (Summary)

axioms

$$\begin{split} & [ass_{sos}] < x := a, s > \Rightarrow s[x \mapsto A[[a]]s] \\ & [skip_{sos}] < skip, s > \Rightarrow s \\ & [if^{tt}_{sos}] < if b then S_1 else S_2, s > \Rightarrow < S_1, s > if B[[b]]s=tt \\ & [if^{ff}_{sos}] < if b then S_1 else S_2, s > \Rightarrow < S_2, s > if B[[b]]s=ff \\ & [while_{sos}] < while b do S, s > \Rightarrow \\ & < if b then (S; while b do S) else skip, s > \end{split}$$

rules

 $[\operatorname{comp}_{sos}^{1}] < S_{1}, s > \Rightarrow < S'_{1}, s' >$ $< S_{1}; S_{2}, s > \Rightarrow < S'_{1}; S_{2}, s' >$

 $[\text{comp}^2_{\text{sos}}] < S_1, s > \Rightarrow s'$

 $\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle$

Example

Example (2nd step)

- $S=[x \mapsto 5, y \mapsto 7]$
- S = (z:=x; x := y); y := z

 $x := y; \ y := z, [x \mapsto 5, y \mapsto 7, z \mapsto 5] \Longrightarrow \ y := z, [x \mapsto 7, y \mapsto 7, z \mapsto 5]$

comp²_{sos}-

sos x := y, $[x \mapsto 5, y \mapsto 7, z \mapsto 5] => x := y$; y := z, $[x \mapsto 7, y \mapsto 7, z \mapsto 5]$

ass_{sos}

Example (3rd step)

- S=[x \mapsto 5, y \mapsto 7]
- S = (z:=x; x := y); y := z

 $y := z \ [x \mapsto 7, y \mapsto 7, z \mapsto 5] = > \ y := z, \ [x \mapsto 7, y \mapsto 5, z \mapsto 5]$

Factorial Program

• Input state s such that s x = 3

```
y := 1; while \neg(x=1) do (y := y * x; x := x - 1)
< y := 1 : W, s >
\Rightarrow \langle W, s[y \mapsto 1] \rangle
\Rightarrow \langle \text{if} \neg (x = 1) \text{ then } (y := y * x ; x := x - 1 \text{ else skip}); W), s[y \mapsto 1] \rangle
\Rightarrow \langle ((y := y * x ; x := x - 1); W), s[y \mapsto 1] \rangle
\Rightarrow \langle (x := x - 1 : W), s[y \mapsto 3] \rangle
\Rightarrow \langle W, s[v \mapsto 3][x \mapsto 2] \rangle
\Rightarrow \langle if \neg (x = 1) then ((y := y * x ; x := x - 1); W) else skip, s[y \mapsto 3][x \mapsto 2] \rangle
\Rightarrow \langle ((y := y * x ; x := x - 1); W), s[y \mapsto 3] [x \mapsto 2] \rangle
\Rightarrow \langle (x := x - 1; W), s[y \mapsto 6] [x \mapsto 2] \rangle
\Rightarrow \langle W, s[v \mapsto 6][x \mapsto 1] \rangle
\Rightarrow \langle \text{if } \neg (x = 1) \text{ then } (y := y * x ; x := x - 1); W \rangle else skip, s[y \mapsto 6][x \mapsto 1]>
\Rightarrow \langle skip, s[v \mapsto 6][x \mapsto 1] \rangle \Rightarrow s[v \mapsto 6][x \mapsto 1]
```

Finite Derivation Sequences

- finite derivation sequence starting at <S, i> $\gamma_0, \gamma_1, \gamma_2 ..., \gamma_k$ such that
 - $-\gamma_0$ =<S, i>
 - $-\gamma_i \Longrightarrow \gamma_{i+1}$

– γ_k is either stuck configuration or a final state

- For each step there is a derivation tree
- $\gamma_0 \Rightarrow^k \gamma_k$ in k steps
- $\gamma_0 \Rightarrow^* \gamma$ in finite number of steps

Infinite Derivation Sequences

- An infinite derivation sequence starting at <S, i>
 - $\gamma_0, \gamma_1, \gamma_2 \dots$ such that $-\gamma_0 = \langle S, i \rangle$

$$-\gamma_i \Longrightarrow \gamma_{i+1}$$

- Example
 - S = while true do skip

 $-s_0 x = 0$

Program Termination

- Given a statement S and input s
 - S terminates on s if there exists a finite derivation sequence starting at <S, s>
 - S terminates successfully on s if there exists a finite derivation sequence starting at <S, s> leading to a final state
 - S loops on s if there exists an infinite derivation sequence starting at <S, s>

Properties of the Semantics

- S₁ and S₂ are semantically equivalent if:
 - for all s and γ which is either final or stuck $\langle S_1, s \rangle \Longrightarrow^* \gamma$ if and only if $\langle S_2, s \rangle \Rightarrow^* \gamma$
 - there is an infinite derivation sequence starting at <S₁, s> if and only if there is an infinite derivation sequence starting at <S₂, s>
- Deterministic

- If <S, s> $\Rightarrow^* s_1$ and <S, s> $\Rightarrow^* s_2$ then $s_1 = s_2$

- The execution of S₁; S₂ on an input can be split into two parts:
 - execute S_1 on s yielding a state s'
 - execute S_2 on s'

Sequential Composition

If <S₁; S₂, s> ⇒^k s" then there exists a state s' and numbers k₁ and k₂ such that

$$-\langle S_1, s \rangle \Longrightarrow^{k_1} s'$$

$$- \Longrightarrow^{k_2} s''$$

- $\text{ and } \mathbf{k} = \mathbf{k}_1 + \mathbf{k}_2$
- The proof uses induction on the length of derivation sequences
 - Prove that the property holds for all derivation sequences of length 0
 - Prove that the property holds for all other derivation sequences:
 - Show that the property holds for sequences of length k+1 using the fact it holds on all sequences of length k (induction hypothesis)

The Semantic Function S_{sos}

- The meaning of a statement S is defined as a partial function from State to State
- S_{sos} : Stm \rightarrow (State \hookrightarrow State)
- S_{sos} [[S]]s = s' if <S, s> ⇒^{*}s' and otherwise
 S_{sos} [[S]]s is undefined

An Equivalence Result

• For every statement S of the While language

 $- S_{nat} \llbracket S \rrbracket = S_{sos} \llbracket S \rrbracket$

Extensions to While

- Abort statement (like C exit w/o return value)
- Non determinism
- Parallelism
- Local Variables
- Procedures
 - Static Scope
 - Dynamic scope

The **While** Programming Language with Abort

- Abstract syntax
 S::= x := a | skip | S₁; S₂ | if b then S₁ else S₂ | while b do S | abort
- Abort terminates the execution
- No new rules are needed in natural and structural operational semantics
- Statements
 - if x = 0 then abort else y := y / x
 - skip
 - abort
 - while true do skip

Examples

- $\langle \text{if } x = 0 \text{ then abort else } y := y / x, s > s \rightarrow$ if s x = 0 then undefined else s [y \mapsto s y / sx]
- $\langle skip, s \rangle \rightarrow s$
- For no s: <abort, s $> \rightarrow$ s
- For no s: <while b do skip, s> \rightarrow s

Undefined semantics in C

• Pointer dereferences

x = *p; " \approx " if (p !=NULL) x = *p; else abort;

Pointer arithmetic
 x = a[i]; "≈" if (i <alloc(a)) x = *(a+i); else abort;

• Structure boundaries

Undefined semantics in Java?

• What about exceptions?

Pros and Cons of PLs with Undefined Semantics

Benefits

- Performance
- Expressive power
- Simplicity of the programming language

Disadvantages

- Security
- Portability
- Predictability
- Programmer productivity

Formulating Undefined semantics

- A programming language is type safe if correct programs cannot go wrong
- No undefined semantics
 But runtime exceptions are fine
- For every program P
 - For every input state s one of the following holds:
 - <P, s> \Rightarrow ^{*} s' for some final state s'
 - <P, s> $\Rightarrow^i \gamma$ for all i
- While is type safe and while+abort is not

Conclusion

- The natural semantics cannot distinguish between looping and abnormal termination (unless the states are modified)
- In the structural operational semantics looping is reflected by infinite derivations and abnormal termination is reflected by stuck configuration

The **While** Programming Language with Non-Determinism

• Abstract syntax

S::= x := a | skip | S_1 ; S_2 | if b then S_1 else S_2 | while b do S | S_1 or S_2

- Either S₁ or S₂ is executed
- Example

$$-x := 1 \text{ or } (x := 2 ; x := x+2)$$

The While Programming Language with Non-Determinism Natural Semantics

,

$$[\text{or}_{ns}^{1}] \xrightarrow{ \rightarrow s'} \\ \xrightarrow{ \rightarrow s}$$

$$[\text{or}_{ns}^2] \langle S_2, s \rangle \rightarrow s'$$

$$$$

The While Programming Language with Non-Determinism Structural Semantics

The While Programming Language with Non-Determinism Examples

- x := 1 or (x :=2 ; x := x+2)
- (while true do skip) or (x :=2 ; x := x+2)

Conclusion

- In the natural semantics non-determinism will suppress looping if possible (mnemonic)
- In the structural operational semantics nondeterminism does not suppress not termination configuration

The **While** Programming Language with Parallel Constructs

• Abstract syntax

S::= x := a | skip | S_1 ; S_2 | if b then S_1 else S_2 | while b do S | S_1 par S_2

- All the interleaving of S₁ or S₂ are executed
- Examples

The While Programming Language with Parallel Constructs Structural Semantics

$$[par_{sos}^{1}] \langle \underline{S}_{1}, s \rangle \Rightarrow \langle \underline{S}_{1}, s' \rangle$$

$$\langle \underline{S}_{1} par \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{1} par \underline{S}_{2}, s' \rangle$$

$$[par_{sos}^{2}] \langle \underline{S}_{1}, s \rangle \Rightarrow s'$$

$$\langle \underline{S}_{1} par \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{2}, s' \rangle$$

$$[par_{sos}^{3}] \langle \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{2}, s' \rangle$$

$$[par_{sos}^{4}] \langle \underline{S}_{2}, s \rangle \Rightarrow s'$$

$$\langle \underline{S}_{1} par \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{1}, s' \rangle$$

The While Programming Language with Parallel Constructs Natural Semantics

Conclusion

- In the natural semantics immediate constituent is an atomic entity so we cannot express interleaving of computations
- In the structural operational semantics we concentrate on small steps so interleaving of computations can be easily expressed

The **While** Programming Language with local variables

• Abstract syntax

S::= x := a | **skip** | S₁; S₂ | **if** b **then** S₁ **else** S₂ | **while** b do S| **{** L S **}**

L ::= **var** x := a ; L | ε

Simple Example

Another Example

Simple Example

Structural Semantics

Conclusions Local Variables

- The natural semantics can "remember" local states
- Need to introduce stack or heap into state of the structural semantics

The **While** Programming Language with local variables and procedures

• Abstract syntax

S::= x := a | skip | S₁; S₂ | if b then S₁ else S₂ | while b do S| {LPS} | call p L ::= var x := a; L | ε P ::= proc p is S; P | ε

Summary

- SOS is powerful enough to describe imperative programs
 - Can define the set of traces
 - Can represent program counter implicitly
 - Handle gotos
- Natural operational semantics is an abstraction
- Different semantics may be used to justify different behaviors
- Thinking in concrete semantics is essential for language designer/compiler writer/...