Closures

Mooly Sagiv

Michael Clarkson, Cornell CS 3110 Data Structures and Functional
Programming



Formal Semantics of Functional
Programs

 Compile into typed lambda calculus
* Small step operational semantics

— Environment x Expression = Environment X
Expression



Essential OCcaml sublanguage

el=c
X
(e, ..., €,)
e, e,
funx->e
letx=e;Ine,
match e, with p, -> e




Evaluation of Expression

* Expressions evaluate to values in a dynamic
environment

—env:.:.e-->v
* Evaluation is meaningless if expression does
not type check

* Values are a syntactic subset of expressions:

vi=c| (Vq, ..., V)
| funx ->e




Dealing with Functions as Values

 Anonymous functions fun x-> e are values

—env :: (fun x -> e) --> (fun x -> e)



Evaluating “let expressions”

* To evaluate let x = e, in e, in environment env:

1. Evaluate the binding expression e, to a value v, in
environment env
env:e, -->V
2. Extend the environment to bind x to v,
env’ =env [x »v,]
(newer bindings temporarily shadow older bindings)

3. Evaluate the body expression e, to a value v, in
environment env’

’

4. Returnv,



Evaluating Function Application take 1

* To evaluate e, e, in environment env

1. Evaluate e, to a value v, in environment env
env:e,-->Vv,
Note: right to left order, like tuples, which matters in the
presence of side effects

2. Evaluate e, to a value v, in environment env
env:e, -->v,
Note that v, must be a function value fun x -> e
3. Extend environment to bind formal parameter x to actual

value v,
env’ = env [x~v,]

4. Evaluate body e to a value v in environment env’
env' ::e-->v

5. Returnv



Evaluating Function Application take 1

ifenv .. e2 -->v2

and env :: el --> (fun x ->e)
and env[x~v2] ;. e-->v
thenenv ::ele2-->v




Evaluating Function Application Simple Example

letf=funx->xinf0

env, =[]

1. Evaluate binding expression fun x->x to a value in empty
environment env,

2. Extend environment to bind f to fun x->x
env,=envy[f » fun x -> x ] = [f » fun x -> X]

3. Evaluate let-body expression f 0 in environment env,
env,::f0-->vl
1. Evaluate 0 to a value 0 in environment env,
2. Evaluatef to funx->x
3. Extend environment to bind formal parameter x to actual value O

env,= envy[x »0] = [f » ..., X »O]

4.  Evaluate the function body x in environment env,
env, :: x-->0

env, :: Xx-->0

4. ReturnO



Hard Example

letx=11In
letf=funy->Xxin
let X =2 In
fo

1. What is the result of the
expression?

What does OCaml say?
What do you say?

W N




Hard Example Ocaml|

letx=11n
letf=funy->xin
letx =2 1In
fo
warning 26: x unused variable
-int 1




Hard Example “C”

{

}

Intx=1
{int f(inty)
{
return X ;
}
{
Int X = 2;
printf(“%d”, f(0)) ;
}




Why different answers?

* Two different rules for variable scope
— Rule of dynamic scope (lisp)

— Rule of lexical (static) scope (Ocaml, Javascript,
Scheme, ...)



Dynamic Scope

* Rule of dynamic scope: The body of a
function is evaluated in the current dynamic
environment at the time the function is called,
not the old dynamic environment that existed
at the time the function was defined

e Use latest binding of x
* Thus return 2



Lexical Scope

* Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment
that existed at the time the function was
defined, not the current environment when

the function is called
e Causes OCaml to use earlier binding of x

* Thus return 1



Scope

Rule of dynamic scope: The body of a function is
evaluated in the current dynamic environment at the
time the function is called, not the old dynamic
environment that existed at the time the function was
defined

Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment that existed
at the time the function was defined, not the current
environment when the function is called

In both, environment is extended to map formal
parameter to actual value

Why would you want one vs. the other?



Lexical vs. dynamic scope

Consensus after decades of programming language
design is that lexical scope is the right choice

Dynamic scope is convenient in some situations

Some languages use it as the norm (e.g., Emacs LISP,
LaTeX)

Some languages have special ways to do it (e.g., Perl,
Racket)

But most languages just don’t have it



Why Lexical Scope (1)

* Programmer can freely change names of local
variables

*1%letx=1 *1*)letx=0
(*2*) letfy= (*2*) letfy=
letx=y+ 11in letg=y+1in
fun z -> x+y+z fun z -> g+y+z
(*3*)letx=3 (*3*)letx=3
(*4*)letw=(f4)6 *4*)letw=(f4)6




Why Lexical Scope (2)

* Type checker can prevent run-time errors

*1%letx=1 *1*)letx=0
(*2*%) letfy= *2%) letfy=
letx=y+1in letx=y+1in
fun z -> x+y+z fun z -> x+y+z
(*3*) letx=3 (* 3 *) let x = “hi”
(*4 ) letw=(f4)6 (*4*) letw = (f4) 6




Exception Handling

 Resembles dynamic scope:

* raise e transfers control to the “most recent”
exception handler

* like how dynamic scope uses “most recent”
binding of variable



Where is an exception caught?

* Dynamic scoping of handlers

— Throw to most recent catch on run-time stack

* Dynamic scoping is not an accident
— User knows how to handler error
— Author of library function does not



Implementing time travel (lexical)

Q How can functions be evaluated in old environments?
A The language implementation keeps them around as necessary

A function value is really a data structure that has two parts:

1. The code
2. The environment that was current when the function was defined

1. Gives meaning to all the free variables of the function body
— Like a “pair”

» But you cannot access the pieces, or directly write one down
In the language syntax

* All you can do is call it

— This data structure is called a function closure

A function application:
— evaluates the code part of the closure
— in the environment part of the closure extended to bind the function

argument



Hard Example Revisited

1] letx=11In

2] letf=funy->xin
3] letx=21In

4] letz=f01Inz

With lexical scope:

» Line 2 creates a closure and binds f to it:

— Code: funy ->x

— Environment: [x~1]

* Line 4 calls that closure with 0 as argument
— In function body, y maps to O and x maps to 1
*Sozisboundtol



Another Example

1] letx=11In

2] letf y =x+yin

3] letx=3In

4] lety=4in

5] letz=f(x+y)inz

With lexical scope:

1. Creates a closure and binds f to it:

— Code: funy ->x +vy

— Environment: [x~1]

2. Line5env=[x~3,y+~ 4]

3. Line 5 calls that closure with x+y=7 as argument
— In function body, x mapsto 1

*Sozisboundto 8



Another Example

1] letx=11In

2] letf y =x+yin

3] letx=3In

4] lety=4in

5] letz=f(x+y)inz

With dynamic scope:

1. Line 5env =[x ~3,y 4]

2. Line 5 calls that closure with x+y=7 as argument

— In function body, x maps to 3, so x+y maps to 10
Note that argument y shadows y from line 4

* S0 zis boundto 10



Closure Notation

<<code, environment>>

<<funy -> x+y, [X»1>>

With lexical scoping, well-typed programs are
guaranteed never to have any variables in the code
body other than function argument and variables
bound by closure environment



Evaluating Function Application take 2

* To evaluate e, e, in environment env

1.

Evaluate e, to a value v, in environment env
env:e,-->Vv,

Note: right to left order, like tuples, which matters in the
presence of side effects

Evaluate e, to a value v, in environment env

env:e, -->v,

Note that v, must be a closure with function value fun x -> e
and environment env’

Extend environment to bind formal parameter x to actual
value v,

env”’ = env’ [x—v,]

Evaluate body e to a value v in environment env”’
env’:ie-->v

Return v



Evaluating Function Application take 2

If env :: e2 -->v?2

and env :: el -->

<<fun x -> e, env’>>
and env’[x»Vv2] e -->vV
thenenv ::ele2-->v




Evaluating Anonymous Function
Application take 2
Anonymous functions fun x-> e are closures

env :: (funx ->e) -->
<<fun X -> e, env>>



Why are Closure useful?

* Hides states in an elegant way

* Useful for
— Implementing objects
— Web programming
— Operated system programming
— Emulating control flow



Simple Example

let startAt x =
let incrementByy =x +y
In iIncrementBy
val startAt : int -> int -> int = <fun>

let closurel = startAt 3
val closurel : int -> int = <fun>

let closure2 = startAt 5
val closure? : int -> int = <fun>

closurel 7
- int =10

closure2 9
- int=14




Another Example

let derivative f dx =
fun x ->f (X + dx) — f x/ dx
val derivative : (int -> Int) -> Int -> Int -> Int = <fun>




Implementation Notes

* Duration of closure can be long
— Usually implemented with garbage collection

* |tis possible to support lexical scopes without
closure (using stack) if one of the following is
forbidden:

— Nested scopes (C, Java)
— Returning a function (Algol, Pascal)



Essential OCcaml sublanguage

e:l=c

X

e, e,

fun x ->e
letx=e;Ine,
match e, with p; -> e,




Essential OCcaml sublanguage+rec

e..=c
X
(€, «xy €))
e, e,
fun x ->e

letx = e, In e,
match e, with p; -> e,
letrecf x =eline2




let rec Evaluation

* How to handle
letrecfx=e,ine,



let rec Evaluation

* To evaluateletrecfx=e,ine,in
environment env

— don’t evaluate the binding expression e,
1. Extend the environment to bind f to a recursive closure
env’ = env [f »<<f, fun x -> e,, env>>]

2. Evaluate the body expression e, to a value v, in
environment env’
’

3. Returnv,



Closure in OCaml

Closure conversion is an important phase of
compiling many functional languages

Expands on ideas we’ve seen here
Many optimizations possible

Especially, better handling of recursive
functions



Closures in Java

Nested classes can simulate closures

Used everywhere for Swing GUI!
http://docs.oracle.com/javase/tutorial/uiswing/events/
generalrules.html#innerClasses

Java 8 adds higher-order functions and closures

Can even think of OCaml closures as resembling Java objects:

— closure has a single method, the code part, that can be Invoked
— closure has many fields, the environment part, that can be accessed



Closures in C

In C, a function pointer is just a code pointer,
period, No environment

To simulate closures, a common idiom:

— Define function pointers to take an extra, explicit
environment argument

— But without generics, no good choice for type of list
elements or the environment

Use void* and various type casts...

From Linux kernel:
— http://Ixr.free-electrons.com/source/include/linux/kthread.h#L13



Summary

Lexical scoping is natural

Permit general programming style
— Works well with higher order functions

Well understood

Implemented with closures
— But requires long lived objects

Integrated into many programming languages
Some surprises (javascript)



Summary (Ocaml)

Functional programs provide concise coding
Compiled code compares with C code

Successfully used in some commercial
applications

— F#, ERLANG, Jane Street

ldeas used in imperative programs
Good conceptual tool

Less popular than imperative programs



