
Closures

Mooly Sagiv

Michael Clarkson, Cornell CS 3110 Data Structures and Functional

Programming

Formal Semantics of Functional
Programs

• Compile into typed lambda calculus

• Small step operational semantics

– Environment  Expression  Environment 
Expression

Essential OCcaml sublanguage

e ::= c

| x

| (e1, …, en)

| e1 e2

| fun x -> e

| let x = e1 in e2

| match e0 with pi -> ei

Evaluation of Expression

• Expressions evaluate to values in a dynamic
environment

– env :: e - - > v

• Evaluation is meaningless if expression does
not type check

• Values are a syntactic subset of expressions:

v ::= c | (v1, …, vn)

| fun x -> e

Dealing with Functions as Values

• Anonymous functions fun x-> e are values

– env :: (fun x -> e) --> (fun x -> e)

Evaluating “let expressions”

• To evaluate let x = e1 in e2 in environment env:
1. Evaluate the binding expression e1 to a value v1 in

environment env
env :: e1 --> v

2. Extend the environment to bind x to v1
env’ = env [x v1]
(newer bindings temporarily shadow older bindings)

3. Evaluate the body expression e2 to a value v2 in
environment env’
env’ :: e2 --> v2

4. Return v2

Evaluating Function Application take 1

• To evaluate e1 e2 in environment env
1. Evaluate e2 to a value v2 in environment env

env :: e2 --> v2
Note: right to left order, like tuples, which matters in the
presence of side effects

2. Evaluate e1 to a value v1 in environment env
env :: e1 --> v1
Note that v1 must be a function value fun x -> e

3. Extend environment to bind formal parameter x to actual
value v2
env’ = env [xv2]

4. Evaluate body e to a value v in environment env’
env’ :: e --> v

5. Return v

Evaluating Function Application take 1

if env :: e2 --> v2

and env :: e1 --> (fun x -> e)
and env[xv2] :: e --> v

then env :: e1 e2 --> v

Evaluating Function Application Simple Example

1. Evaluate binding expression fun x->x to a value in empty
environment env0

2. Extend environment to bind f to fun x->x

3. Evaluate let-body expression f 0 in environment env1
env1 :: f 0 --> v1

1. Evaluate 0 to a value 0 in environment env1

2. Evaluate f to fun x -> x
3. Extend environment to bind formal parameter x to actual value 0

4. Evaluate the function body x in environment env2
env2 :: x--> 0

4. Return 0

let f = fun x -> x in f 0

env1=env0[f  fun x -> x] = [f  fun x -> x]

env2= env1[x 0] = [f …, x 0]

env2 :: x--> 0

env0 =[]

Hard Example

let x = 1 in

let f = fun y -> x in

let x = 2 in

f 0

1. What is the result of the

expression?

2. What does OCaml say?

3. What do you say?

Hard Example Ocaml

let x = 1 in

let f = fun y -> x in

let x = 2 in

f 0

warning 26: x unused variable

:- int 1

Hard Example “C”

}
int x = 1

{ int f(int y)

{

return x ;

}

{

int x = 2;

printf(“%d”, f(0)) ;

}

}

Why different answers?

• Two different rules for variable scope

– Rule of dynamic scope (lisp)

– Rule of lexical (static) scope (Ocaml, Javascript,
Scheme, …)

Dynamic Scope

• Rule of dynamic scope: The body of a
function is evaluated in the current dynamic
environment at the time the function is called,
not the old dynamic environment that existed
at the time the function was defined

• Use latest binding of x

• Thus return 2

Lexical Scope

• Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment
that existed at the time the function was
defined, not the current environment when
the function is called

• Causes OCaml to use earlier binding of x

• Thus return 1

Scope

• Rule of dynamic scope: The body of a function is
evaluated in the current dynamic environment at the
time the function is called, not the old dynamic
environment that existed at the time the function was
defined

• Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment that existed
at the time the function was defined, not the current
environment when the function is called

• In both, environment is extended to map formal
parameter to actual value

• Why would you want one vs. the other?

Lexical vs. dynamic scope

• Consensus after decades of programming language
design is that lexical scope is the right choice

• Dynamic scope is convenient in some situations

• Some languages use it as the norm (e.g., Emacs LISP,
LaTeX)

• Some languages have special ways to do it (e.g., Perl,
Racket)

• But most languages just don’t have it

Why Lexical Scope (1)

• Programmer can freely change names of local
variables

(* 1 *) let x = 1

(* 2 *) let f y =

let x = y + 1 in

fun z -> x+y+z

(* 3 *) let x = 3

(* 4 *) let w = (f 4) 6

(* 1 *) let x = 0

(* 2 *) let f y =

let q = y + 1 in

fun z -> q+y+z

(* 3 *) let x = 3

(* 4 *) let w = (f 4) 6

Why Lexical Scope (2)

• Type checker can prevent run-time errors

(* 1 *) let x = 1

(* 2 *) let f y =

let x = y + 1 in

fun z -> x+y+z

(* 3 *) let x = 3

(* 4 *) let w = (f 4) 6

(* 1 *) let x = 0

(* 2 *) let f y =

let x = y + 1 in

fun z -> x+y+z

(* 3 *) let x = “hi”

(* 4 *) let w = (f 4) 6

Exception Handling

• Resembles dynamic scope:

• raise e transfers control to the “most recent”
exception handler

• like how dynamic scope uses “most recent”
binding of variable

Where is an exception caught?

• Dynamic scoping of handlers

– Throw to most recent catch on run-time stack

• Dynamic scoping is not an accident

– User knows how to handler error

– Author of library function does not

Implementing time travel (lexical)
Q How can functions be evaluated in old environments?

A The language implementation keeps them around as necessary

A function value is really a data structure that has two parts:

1. The code

2. The environment that was current when the function was defined

1. Gives meaning to all the free variables of the function body

– Like a “pair”

• But you cannot access the pieces, or directly write one down

in the language syntax

• All you can do is call it

– This data structure is called a function closure

A function application:

– evaluates the code part of the closure

– in the environment part of the closure extended to bind the function

argument

Hard Example Revisited

[1] let x = 1 in

[2] let f = fun y -> x in

[3] let x = 2 in

[4] let z = f 0 in z

With lexical scope:

• Line 2 creates a closure and binds f to it:

– Code: fun y -> x
– Environment: [x1]

• Line 4 calls that closure with 0 as argument

– In function body, y maps to 0 and x maps to 1

• So z is bound to 1

Another Example

[1] let x = 1 in

[2] let f y = x + y in

[3] let x = 3 in

[4] let y = 4 in

[5] let z = f (x + y) in z

With lexical scope:

1. Creates a closure and binds f to it:

– Code: fun y -> x + y
– Environment: [x1]

2. Line 5 env =[x 3, y  4]

3. Line 5 calls that closure with x+y=7 as argument

– In function body, x maps to 1

• So z is bound to 8

Another Example

[1] let x = 1 in

[2] let f y = x + y in

[3] let x = 3 in

[4] let y = 4 in

[5] let z = f (x + y) in z

With dynamic scope:
1. Line 5 env =[x 3, y  4]

2. Line 5 calls that closure with x+y=7 as argument

– In function body, x maps to 3, so x+y maps to 10

Note that argument y shadows y from line 4

• So z is bound to 10

Closure Notation

<<code, environment>>

<<fun y -> x+y, [x1>>

With lexical scoping, well-typed programs are

guaranteed never to have any variables in the code

body other than function argument and variables

bound by closure environment

Evaluating Function Application take 2

• To evaluate e1 e2 in environment env
1. Evaluate e2 to a value v2 in environment env

env :: e2 --> v2
Note: right to left order, like tuples, which matters in the
presence of side effects

2. Evaluate e1 to a value v1 in environment env
env :: e1 --> v1
Note that v1 must be a closure with function value fun x -> e
and environment env’

3. Extend environment to bind formal parameter x to actual
value v2
env’’ = env’ [xv2]

4. Evaluate body e to a value v in environment env’’
env’’ :: e --> v

5. Return v

Evaluating Function Application take 2

if env :: e2 --> v2

and env :: e1 -->

<<fun x -> e, env’>>
and env’[xv2] :: e --> v

then env :: e1 e2 --> v

Evaluating Anonymous Function
Application take 2

Anonymous functions fun x-> e are closures

env :: (fun x -> e) -->

<<fun x -> e, env>>

Why are Closure useful?

• Hides states in an elegant way

• Useful for

– Implementing objects

– Web programming

– Operated system programming

– Emulating control flow

– …

Simple Example

let startAt x =

let incrementBy y = x + y

in incrementBy

val startAt : int -> int -> int = <fun>

let closure1 = startAt 3

val closure1 : int -> int = <fun>

let closure2 = startAt 5

val closure2 : int -> int = <fun>

closure1 7

:- int =10

closure2 9

:- int =14

Another Example

let derivative f dx =

fun x -> f (x + dx) – f x / dx

val derivative : (int -> int) -> int -> int -> int = <fun>

Implementation Notes

• Duration of closure can be long

– Usually implemented with garbage collection

• It is possible to support lexical scopes without
closure (using stack) if one of the following is
forbidden:

– Nested scopes (C, Java)

– Returning a function (Algol, Pascal)

Essential OCcaml sublanguage

e ::= c

| x

| e1 e2

| fun x -> e

| let x = e1 in e2

| match e0 with pi -> ei

Essential OCcaml sublanguage+rec

e ::= c

| x

| (e1, …, en)

| e1 e2

| fun x -> e

| let x = e1 in e2

| match e0 with pi -> ei

| let rec f x = e1 in e2

let rec Evaluation

• How to handle
let rec f x = e1 in e2

let rec Evaluation

• To evaluate let rec f x = e1 in e2 in
environment env
– don’t evaluate the binding expression e1

1. Extend the environment to bind f to a recursive closure
env’ = env [f <<f, fun x -> e1, env>>]

2. Evaluate the body expression e2 to a value v2 in
environment env’
env’ :: e2 --> v2

3. Return v2

Closure in OCaml

• Closure conversion is an important phase of
compiling many functional languages

• Expands on ideas we’ve seen here

• Many optimizations possible

• Especially, better handling of recursive
functions

Closures in Java

• Nested classes can simulate closures

• Used everywhere for Swing GUI!

• http://docs.oracle.com/javase/tutorial/uiswing/events/

• generalrules.html#innerClasses

• Java 8 adds higher-order functions and closures

• Can even think of OCaml closures as resembling Java objects:
– closure has a single method, the code part, that can be Invoked

– closure has many fields, the environment part, that can be accessed

Closures in C

• In C, a function pointer is just a code pointer,
period, No environment

• To simulate closures, a common idiom:
– Define function pointers to take an extra, explicit

environment argument

– But without generics, no good choice for type of list
elements or the environment

• Use void* and various type casts…

• From Linux kernel:
– http://lxr.free-electrons.com/source/include/linux/kthread.h#L13

Summary

• Lexical scoping is natural

• Permit general programming style
– Works well with higher order functions

• Well understood

• Implemented with closures
– But requires long lived objects

• Integrated into many programming languages

• Some surprises (javascript)

Summary (Ocaml)

• Functional programs provide concise coding

• Compiled code compares with C code

• Successfully used in some commercial
applications

– F#, ERLANG, Jane Street

• Ideas used in imperative programs

• Good conceptual tool

• Less popular than imperative programs

