Types, Type Inference and Unification

Mooly Sagiv

Slides by Kathleen Fisher and John Mitchell

Cornell CS 6110
Summary (Functional Programming)

- Lambda Calculus
- Basic ML
- Advanced ML: Modules, References, Side-effects
- Closures and Scopes
- Type Inference and Type Checking
Outline

• General discussion of types
 – What is a type?
 – Compile-time versus run-time checking
 – Conservative program analysis

• Type inference
 – Discuss algorithm and examples
 – Illustrative example of static analysis algorithm

• Polymorphism
 – Uniform versus non-uniform implementations
Language Goals and Trade-offs

• Thoughts to keep in mind
 – What features are convenient for programmer?
 – What other features do they prevent?
 – What are design tradeoffs?
 • Easy to write but harder to read?
 • Easy to write but poorer error messages?
 – What are the implementation costs?
What is a type?

- A type is a collection of computable values that share some structural property.

Examples

- `int`
- `string`
- `int → bool`
- `(int → int) → bool`
- `[a] → a`
- `[a] × a → [a]`

Non-examples

- `{3, True, \x→x}`
- `{f:int → int | x>3 => f(x) > x *(x+1)}`

Distinction between sets of values that are types and sets that are not types is *language dependent*
Advantages of Types

• Program organization and documentation
 – Separate types for separate concepts
 • Represent concepts from problem domain
 – Document intended use of declared identifiers
 • Types can be checked, unlike program comments

• Identify and prevent errors
 – Compile-time or run-time checking can prevent meaningless computations such as 3 + true – “Bill”

• Support optimization
 – Example: short integers require fewer bits
 – Access components of structures by known offset
What is a type error?

• Whatever the compiler/interpreter says it is?
• Something to do with bad bit sequences?
 – Floating point representation has specific form
 – An integer may not be a valid float
• Something about programmer intent and use?
 – A type error occurs when a value is used in a way that is inconsistent with its definition
 • Example: declare as character, use as integer
Type errors are language dependent

• Array out of bounds access
 – C/C++: run-time errors
 – OCaml/Java: dynamic type errors

• Null pointer dereference
 – C/C++: run-time errors
 – OCaml: pointers are hidden inside datatypes
 • Null pointer dereferences would be incorrect use of these datatypes, therefore static type errors
Compile-time vs Run-time Checking

• JavaScript and Lisp use run-time type checking
 – \(f(x) \) Make sure \(f \) is a function before calling \(f \)

• OCaml and Java use compile-time type checking
 – \(f(x) \) Must have \(f: A \rightarrow B \) and \(x : A \)

• Basic tradeoff
 – Both kinds of checking prevent type errors
 – Run-time checking slows down execution
 – Compile-time checking restricts program flexibility
 • JavaScript array: elements can have different types
 • OCaml list: all elements must have same type
 – Which gives better programmer diagnostics?
Expressiveness

• In JavaScript, we can write a function like

```javascript
function f(x) { return x < 10 ? x : x(); }
```

Some uses will produce type error, some will not

• Static typing always conservative

```javascript
if (complicated_boolean_expression) 
    then f(5);
else f(15);
```
Type Safety

• Type safe programming languages protect its own abstractions
• Type safe programs cannot go wrong
• No run-time errors
• But exceptions are fine
• The small step semantics cannot get stuck
• Type safety is proven at language design time
Relative Type-Safety of Languages

• **Not safe:** BCPL family, including C and C++
 – Casts, unions, pointer arithmetic

• **Almost safe:** Algol family, Pascal, Ada
 – Dangling pointers
 • Allocate a pointer p to an integer, deallocate the memory referenced by p, then later use the value pointed to by p
 • Hard to make languages with explicit deallocation of memory fully type-safe

• **Safe:** Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 – Dynamically typed: Lisp, Smalltalk, JavaScript
 – Statically typed: OCaml, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data.
Type Checking vs Type Inference

- **Standard type checking:**
  ```c
  int f(int x) { return x+1; }
  int g(int y) { return f(y+1)*2; }
  ```
 - Examine body of each function
 - Use declared types to check agreement

- **Type inference:**
  ```c
  int f(int x) { return x+1; }
  int g(int y) { return f(y+1)*2; }
  ```
 - Examine code without type information
 - Infer the most general types that could have been declared

ML and Haskell are *designed* to make type inference feasible
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 • Eliminated sources of unsoundness
 • Become substantially more expressive
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types
 – Guaranteed to produce most general type
 – Widely regarded as important language innovation
 – Illustrative example of a flow-insensitive static analysis algorithm
History

• Original type inference algorithm
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958

• In 1969, Hindley
 – extended the algorithm to a richer language and proved it always produced the most general type

• In 1978, Milner
 – independently developed equivalent algorithm, called algorithm W, during his work designing ML

• In 1982, Damas proved the algorithm was complete.
 – Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic.Net 9.0. Have been plans for Fortress, Perl 6, C++0x,...
Type Inference: Basic Idea

• Example

\[\text{fun } x \rightarrow 2 + x \]
\[\rightarrow: \text{int} \rightarrow \text{int} = \langle \text{fun} \rangle \]

• What is the type of the expression?

• + has type: \(\text{int} \rightarrow \text{int} \rightarrow \text{int} \)
• 2 has type: \(\text{int} \)
• Since we are applying + to \(x \) we need \(x : \text{int} \)
• Therefore \(\text{fun } x \rightarrow 2 + x \) has type \(\text{int} \rightarrow \text{int} \)
Imperative Example

\[
x := b[z] \\
a \left[b[y] \right] := x
\]
Type Inference: Basic Idea

• Example

\[
\text{fun } \ f \rightarrow \ f \ x \\
(\text{int} \rightarrow \ a) \rightarrow \ a = <\text{fun}>
\]

• What is the type of the expression?

– 3 has type: \text{int}
– Since we are applying \text{f} to 3 we need \text{f} : \text{int} \rightarrow a and the result is of type a
– Therefore \text{fun } \ f \rightarrow \ f \ 3 \ has type \ (\text{int} \rightarrow a) \rightarrow a
Type Inference: Basic Idea

• Example

```plaintext
fun f -> f (f 3)  
(int -> int) -> int = <fun>
```

• What is the type of the expression?
Type Inference: Basic Idea

• Example

fun f -> f (f "hi")
 (string -> string) -> string = <fun>

• What is the type of the expression?
Type Inference: Basic Idea

• Example

\[
\text{fun } f \rightarrow f (f 3, f 4)
\]

• What is the type of the expression?
let square = \(z . z \times z \)
 in
 \(\lambda f . \lambda x . \lambda y . \)

if \((f \times y)\)
 then \((f (\text{square } x) y)\)
 else \((f x (f \times y))\)

\(\star \) : \text{int} \to \text{int} \to \text{int}

\(z\) : \text{int}

\(\text{square}\) : \text{int} \to \text{int}

\(f\) : \text{a} \to \text{b} \to \text{bool}, \text{x: a, y: b}

\(\text{a}\) : \text{int}

\(\text{b}\) : \text{bool}

\((\text{int} \to \text{bool} \to \text{bool}) \to \text{int} \to \text{bool} \to \text{bool}\)
Unification

• Unifies two terms
• Used for pattern matching and type inference
• Simple examples
 – `int * x` and `y * (bool * bool)` are **unifiable** for `y = int` and `x = (bool * bool)`
 – `int * int` and `int * bool` are **not unifiable**
Substitution

Types:

<type> ::= int | float | bool |...
 | <type> → <type>
 | <type> * <type>
 | variable

Terms:

<term> ::= constant
 | variable
 | f(<term>, ..., <term>)

• The essential task of unification is to find a substitution that makes the two terms equal

 \[
 f(x, h(x, y)) \{x \mapsto g(y), \ y \mapsto z\} = f(g(y), h(g(y), z)
 \]

• The terms t_1 and t_2 are unifiable if there exists a substitution S such that $t_1 S = t_2 S$

• Example: $t_1 = f(x, g(y)), \ t_2 = f(g(z), w)$
Most General Unifiers (mgu)

• It is possible that no unifier for given two terms exist
 – For example x and f(x) cannot be unified

• There may be several unifiers
 – Example: \(t_1 = f(x, g(y)), t_2 = f(g(z), w) \)
 • \(S = \{x \mapsto g(z), w \mapsto g(w)\} \)
 • \(S' = \{x \mapsto g(f(a, b)), y \mapsto f(b, a), z \mapsto f(a, b), w \mapsto g(f(b, a))\} \)

• When a unifier exists, there is always a most general unifier (mgu) that is unique up to renaming

• S is the most general unifier of \(t_1 \) and \(t_2 \) if
 – It is a unifier of \(t_1 \) and \(t_2 \)
 – For every other unifier \(S' \) of \(t_1 \) and \(t_2 \) there exists a refinement of \(S \) to give \(S' \)

• mguS can be efficiently computed
Type Inference with mgu

• Example

fun f -> f (f "hi")
 (string -> string) -> string = <fun>

• What is the type of the expression?

\[\lambda f : T_1. \]
\[\text{apply}(f : T_1, \text{apply}(f : T_1, "hi" : string) : T_2) : T_3 \]

\[- \text{mgu}(T_1, \text{string} \rightarrow T_2) = \{ T_1 \mapsto \text{string} \rightarrow T_2 \} = S \]

\[- \text{mgu}(T_1, T_2 \rightarrow T_3)(S) = \]
\[\{ T_1 \mapsto \text{string} \rightarrow T_2, T_2 \mapsto \text{string}, T_3 \mapsto \text{string} \} \]
Type Inference Algorithm

• Parse program to build parse tree
• Assign type variables to nodes in tree
• Generate constraints:
 – From environment: literals (2), built-in operators (+), known functions (tail)
 – From form of parse tree: e.g., application and abstraction nodes
• Solve constraints using unification
• Determine types of top-level declarations
Step 1: Parse Program

- Parse program text to construct parse tree

\[
\text{let } f \ x = 2 + x
\]

Infix operators are converted to Curied function application during parsing: (not necessary)

\[
2 + x \Rightarrow (+) 2 x
\]
Step 2: Assign type variables to nodes

\[f \ x = 2 + x \]

Variables are given same type as binding occurrence
Step 3: Add Constraints

\[
\begin{align*}
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_2 &= t_3 \rightarrow t_4 \\
 t_2 &= \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
 t_3 &= \text{int}
\end{align*}
\]

\[
\text{let } f \ x = 2 + x
\]
Step 4: Solve Constraints

\[
\begin{align*}
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_2 &= t_3 \rightarrow t_4 \\
 t_2 &= \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
 t_3 &= \text{int} \\
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_4 &= \text{int} \rightarrow \text{int} \\
 t_2 &= \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
 t_3 &= \text{int} \\
 t_0 &= \text{int} \\
 t_1 &= \text{int} \\
 t_6 &= \text{int} \\
 t_4 &= \text{int} \rightarrow \text{int} \\
 t_2 &= \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
 t_3 &= \text{int} \\
\end{align*}
\]
Step 5:
Determine type of declaration

\[t_0 = \text{int} \rightarrow \text{int} \]
\[t_1 = \text{int} \]
\[t_6 = \text{int} \rightarrow \text{int} \]
\[t_4 = \text{int} \rightarrow \text{int} \]
\[t_2 = \text{int} \rightarrow \text{int} \rightarrow \text{int} \]
\[t_3 = \text{int} \]

\[
\text{let } f \ x = 2 + x \\
\text{val } f : \text{int} \rightarrow \text{int} = \langle \text{fun} \rangle
\]
• Function application (apply f to x)
 – Type of f (t_0 in figure) must be domain → range
 – Domain of f must be type of argument x (t_1 in fig)
 – Range of f must be result of application (t_2 in fig)
 – Constraint: $t_0 = t_1 \rightarrow t_2$

:: \equiv :
Constraints from Abstractions

- Function declaration:
 - Type of f (t_0 in figure) must domain \(\rightarrow \) range
 - Domain is type of abstracted variable x (t_1 in fig)
 - Range is type of function body e (t_2 in fig)
 - Constraint: \(t_0 = t_1 \rightarrow t_2 \)
Inferring Polymorphic Types

• Example:

```ocaml
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Step 1:
 Build Parse Tree
Inferring Polymorphic Types

• Example:
  ```
  let f g = g 2
  val f : (int -> t_4) -> t_4 = fun
  ```

• Step 2:
 Assign type variables
Inferring Polymorphic Types

• Example:

```ocaml
define f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Step 3:
Generate constraints

```
t_0 = t_1 -> t_4

\( t_1 = t_3 \rightarrow t_4 \)

\( t_3 = \text{int} \)
```
Inferring Polymorphic Types

- Example:

- Step 4:
 Solve constraints

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_4 \\
t_1 &= t_3 \rightarrow t_4 \\
t_3 &= \text{int}
\end{align*}
\]

\[
\begin{align*}
\text{let } f \ g &= g 2 \\
\text{val } f : (\text{int} \rightarrow t_4) \rightarrow t_4 &= \langle \text{fun} \rangle
\end{align*}
\]

\[
\begin{align*}
t_0 &= (\text{int} \rightarrow t_4) \rightarrow t_4 \\
t_1 &= \text{int} \rightarrow t_4 \\
t_3 &= \text{int}
\end{align*}
\]
Inferring Polymorphic Types

• Example:
  ```ml
  let f g = g 2
  val f : (int -> t_4) -> t_4 = <fun>
  ```

• Step 5:
 Determine type of top-level declaration

Unconstrained type variables become polymorphic types

```
t_0 = (int -> t_4) -> t_4
t_1 = int -> t_4
```
Using Polymorphic Functions

• Function:

```
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Possible applications:

```
let add x = 2 + x
val add : int -> int = <fun>
f add
:- int = 4
```

```
let isEven x = mod (x, 2) == 0
val isEven: int -> bool = <fun>
f isEven
:- bool= true
```
Recognizing Type Errors

• Function:

\[
\text{let } f \ g = g
\]
\[
\text{val } f : (\text{int} \rightarrow \text{t}_4) \rightarrow \text{t}_4 = <\text{fun}>
\]

• Incorrect use

\[
\text{let } \text{not } x = \text{if } x \text{ then true else false}
\]
\[
\text{val } \text{not} : \text{bool} \rightarrow \text{bool} = <\text{fun}>
\]
\[
f \ \text{not}
\]
\[
> \text{Error: operator and operand don’t agree}
\]
\[
\quad \text{operator domain: int} \rightarrow \text{a}
\]
\[
\quad \text{operand: bool} \rightarrow \text{bool}
\]

• Type error:

cannot unify bool → bool and int → t
Another Example

Example:

Step 1:
Build Parse Tree

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```
Another Example

Example:

Step 2:
Assign type variables

let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
Another Example

- Example:
 - Step 3:
 - Generate constraints

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

```
t_0 = t_3 -> t_8
  t_3 = (t_1, t_2)
  t_1 = t_7 -> t_8
  t_1 = t_2 -> t_7
```

:: ≡ ::
Another Example

- Example:
- Step 4:
 Solve constraints

\[
\begin{align*}
\text{let } f \ (g,x) &= g \ (g \ x) \\
\text{val } f : ((t_8 \to t_8) \times t_8) \to t_8 \\
\end{align*}
\]

\[
\begin{align*}
t_0 &= t_3 \to t_8 \\
t_3 &= (t_1, t_2) \\
t_1 &= t_7 \to t_8 \\
t_1 &= t_2 \to t_7 \\
\end{align*}
\]

\[
\begin{align*}
&f :: t_0 \\
&P\text{air} :: t_3 \\
&g :: t_1 \\
x :: t_2 \\
&\emptyset :: t_8 \\
&g :: t_1 \\
&\emptyset :: t_7 \\
g :: t_1 \\
x :: t_2 \\
\end{align*}
\]

\[
\begin{align*}
&t_0 = (t_8 \to t_8, t_8) \to t_8 \\
\end{align*}
\]
Another Example

Example:

Step 5: Determine type of f

let \(f \) (\(g, x \)) = \(g \) (\(g \) \(x \))

val \(f \) : ((\(t_8 \rightarrow t_8 \)) \times t_8) \rightarrow t_8

t_0 = t_3 \rightarrow t_8

\(t_3 = (t_1 \times t_2) \)

\(t_1 = t_7 \rightarrow t_8 \)

\(t_1 = t_2 \rightarrow t_7 \)

\(t_0 = (t_8 \rightarrow t_8 \times t_8) \rightarrow t_8 \)

:: \equiv ::

\(t_0 = (t_8 \rightarrow t_8 \times t_8) \rightarrow t_8 \)
Pattern Matching

• Matching with multiple cases

  ```
  let isempty l = match l with
   |[] -> true
   | _ -> false
  ```

• Infer type of each case

 – First case:

 `[t_1] -> bool`

 – Second case:

 `t_2 -> bool`

• Combine by unification of the types of the cases

  ```
  val isempty : [t_1] -> bool = <fun>
  ```
Bad Pattern Matching

• Matching with multiple cases

```ocaml
let isempty l = match l with
    | [] -> true
    | _  -> 0
```

• Infer type of each case
 – First case:

    ```ocaml
    [t_1] -> bool
    ```

 – Second case:

    ```ocaml
    t_2 -> int
    ```

• Combine by unification of the types of the cases

 `Type Error: cannot unify bool and int`
Recursion

let rec concat a b = match a with
 | [] -> b
 | x::xs -> x :: concat xs b

- To handle recursion, introduce type variables for the function:

  ```
  concat : t_1 -> t_2 -> t_3
  ```

- Use these types to conclude the type of the body:

 - Pattern matching first case:
    ```
    [t_4] -> t_5 -> t_5
    unify [t_4] with t_1, t_5 with t_2,
    t_5 with t_3
    t_1 = [t_4] and t_2 = t_3 = t_5
    ```

 - Pattern matching second case:
    ```
    [t_6] -> t_7 -> [t_6]
    unify [t_6] with t_1, t_7 with t_2,
    [t_6] with t_3
    ```

    ```
    unify [t_6] with t_1, t_7 with t_2,
    t_3 with [t_6]
    ```
Recursion

To handle recursion, introduce type variables for the function:

```plaintext
let rec concat a b = match a with
  | []  -> b
  | x::xs -> x :: concat xs b
```

Conclude the type of the function:

```plaintext
```
Most General Type

- Type inference produces the *most general type*

```ml
let rec map f arg = function
  | [] -> []
  | hd :: tl -> f hd :: (map f tl)
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```

- Functions may have many less general types

```ml
val map : (t_1 -> int, [t_1]) -> [int]
val map : (bool -> t_2, [bool]) -> [t_2]
val map : (char -> int, [cChar]) -> [int]
```

- Less general types are all instances of most general type, also called the *principal type*
Information from Type Inference

• Consider this function...

```ocaml
let reverse ls = match ls with
  [] -> []
| x :: xs -> reverse xs
```

... and its most general type:

```ocaml
:- reverse :: list 't_1 -> list 't_2
```

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of `reverse`!
Complexity of Type Inference Algorithm

• When Hindley/Milner type inference algorithm was developed, its complexity was unknown

• In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete

• Usually linear in practice though...
 – Running time is exponential in the depth of polymorphic declarations
Type Inference: Key Points

• Type inference computes the types of expressions
 – Does not require type declarations for variables
 – Finds the most general type by solving constraints
 – Leads to polymorphism

• Sometimes better error detection than type checking
 – Type may indicate a programming error even if no type error

• Some costs
 – More difficult to identify program line that causes error
 – Natural implementation requires uniform representation sizes
 – Complications regarding assignment took years to work out

• Idea can be applied to other program properties
 – Discover properties of program using same kind of analysis
Parametric Polymorphism: OCaml vs C++

• OCaml polymorphic function
 – Declarations (generally) require no type information
 – Type inference uses type variables to type expressions
 – Type inference substitutes for type variables as needed to instantiate polymorphic code

• C++ function template
 – Programmer must declare the argument and result types of functions
 – Programmers must use explicit type parameters to express polymorphism
 – Function application: type checker does instantiation
Example: Swap Two Values

• OCaml

```ocaml
let swap (x, y) =
  let temp = !x in
  (x := !y; y := temp)
val swap : 'a ref * 'a ref -> unit = <fun>
```

• C++

```cpp
template <typename T>
void swap(T& x, T& y){
    T tmp = x;  x=y;  y=tmp;
}
```

Declarations both swap two values polymorphically, but they are compiled very differently
Implementation

• OCaml
 – *swap* is compiled into one function
 – Typechecker determines how function can be used
• C++
 – *swap* is compiled differently for each instance
 (details beyond scope of this course …)
• Why the difference?
 – OCaml ref cell is passed by pointer. The local \(x \) is a pointer to value on heap, so its size is constant
 – C++ arguments passed by reference (pointer), but local \(x \) is on the stack, so its size depends on the type
Polymorphism vs Overloading

• Parametric polymorphism
 – Single algorithm may be given many types
 – Type variable may be replaced by any type
 – if $f: t \rightarrow t$ then $f: \text{int} \rightarrow \text{int}$, $f: \text{bool} \rightarrow \text{bool}$, ...

• Overloading
 – A single symbol may refer to more than one algorithm
 – Each algorithm may have different type
 – Choice of algorithm determined by type context
 – Types of symbol may be arbitrarily different
 – In ML, $+$ has types $\text{int} \times \text{int} \rightarrow \text{int}$, $\text{real} \times \text{real} \rightarrow \text{real}$, no others
 – Haskel permits more general overloading and requires user assistance
Varieties of Polymorphism

• **Parametric polymorphism** A single piece of code is typed generically
 – Imperative or first-class polymorphism
 – ML-style or let-polymorphism

• **Ad-hoc polymorphism** The same expression exhibit different behaviors when viewed in different types
 – Overloading
 – Multi-method dispatch
 – intentional polymorphism

• **Subtype polymorphism** A single term may have many types using the rule of subsumption allowing to selectively forget information
Summary

• Types are important in modern languages
 – Program organization and documentation
 – Prevent program errors
 – Provide important information to compiler

• Type inference
 – Determine best type for an expression, based on known information about symbols in the expression

• Polymorphism
 – Single algorithm (function) can have many types