Types, Type Inference and Unification

Mooly Sagiv
Slides by Kathleen Fisher and John Mitchell
Cornell CS 6110
Outline

• General discussion of types
 – What is a type?
 – Compile-time versus run-time checking
 – Conservative program analysis

• Type inference
 – Discuss algorithm and examples
 – Illustrative example of static analysis algorithm

• Polymorphism
 – Uniform versus non-uniform implementations
Language Goals and Trade-offs

- Thoughts to keep in mind
 - What features are convenient for programmer?
 - What other features do they prevent?
 - What are design tradeoffs?
 - Easy to write but harder to read?
 - Easy to write but poorer error messages?
 - What are the implementation costs?
What is a type?

• A type is a collection of computable values that share some structural property.

Examples

int
string
int → bool
(int → int) → bool
[a] → a
[a] × a → [a]

Non-examples

{3, True, \x→x}
Even integers
{f:int → int | x>3 => f(x) > x *(x+1)}

Distinction between sets of values that are types and sets that are not types is language dependent
Advantages of Types

• Program organization and documentation
 – Separate types for separate concepts
 • Represent concepts from problem domain
 – Document intended use of declared identifiers
 • Types can be checked, unlike program comments

• Identify and prevent errors
 – Compile-time or run-time checking can prevent meaningless computations such as 3 + true – “Bill”

• Support optimization
 – Example: short integers require fewer bits
 – Access components of structures by known offset
What is a type error?

• Whatever the compiler/interpreter says it is?
• Something to do with bad bit sequences?
 – Floating point representation has specific form
 – An integer may not be a valid float
• Something about programmer intent and use?
 – A type error occurs when a value is used in a way that is inconsistent with its definition
 • Example: declare as character, use as integer
Type errors are language dependent

- Array out of bounds access
 - C/C++: run-time errors
 - OCaml/Java: dynamic type errors

- Null pointer dereference
 - C/C++: run-time errors
 - OCaml: pointers are hidden inside datatypes
 - Null pointer dereferences would be incorrect use of these datatypes, therefore static type errors
Compile-time vs Run-time Checking

• JavaScript and Lisp use run-time type checking
 – f(x) Make sure f is a function before calling f

 ![JavaScript example]

• OCaml and Java use compile-time type checking
 – f(x) Must have f: A → B and x : A

• Basic tradeoff
 – Both kinds of checking prevent type errors
 – Run-time checking slows down execution
 – Compile-time checking restricts program flexibility
 • JavaScript array: elements can have different types
 • OCaml list: all elements must have same type
 – Which gives better programmer diagnostics?
Expressiveness

• In JavaScript, we can write a function like

```javascript
function f(x) { return x < 10 ? x : x(); }
```

Some uses will produce type error, some will not

• Static typing always conservative

```javascript
if (complicated-boolean-expression)
    then  f(5);
else    f(15);
```
Type Safety

- Type safe programming languages protect its own abstractions
- Type safe programs cannot go wrong
- No run-time errors
- But exceptions are fine
- The small step semantics cannot get stuck
- Type safety is proven at language design time
Relative Type-Safety of Languages

• **Not safe**: BCPL family, including C and C++
 – Casts, unions, pointer arithmetic

• **Almost safe**: Algol family, Pascal, Ada
 – Dangling pointers
 • Allocate a pointer \(p \) to an integer, deallocate the memory referenced by \(p \), then later use the value pointed to by \(p \)
 • Hard to make languages with explicit deallocation of memory fully type-safe

• **Safe**: Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 – Dynamically typed: Lisp, Smalltalk, JavaScript
 – Statically typed: OCaml, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data
Type Checking vs Type Inference

• Standard type checking:

```c
int f(int x) { return x+1; }
int g(int y) { return f(y+1)*2; }
```
– Examine body of each function
– Use declared types to check agreement

• Type inference:

```c
int f(int x) { return x+1; }
int g(int y) { return f(y+1)*2; }
```
– Examine code without type information
– Infer the most general types that could have been declared

ML and Haskell are designed to make type inference feasible
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 • Eliminated sources of unsoundness
 • Become substantially more expressive
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types
 – Guaranteed to produce most general type
 – Widely regarded as important language innovation
 – Illustrative example of a flow-insensitive static analysis algorithm
History

• Original type inference algorithm
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958

• In 1969, Hindley
 – extended the algorithm to a richer language and proved it always produced the most general type

• In 1978, Milner
 – independently developed equivalent algorithm, called algorithm W, during his work designing ML

• In 1982, Damas proved the algorithm was complete.
 – Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, C++0x,...
Type Inference: Basic Idea

• Example

\[
\text{fun } x \to 2 + x \\
\text{\(\vdash\text{ int } \to \text{ int }\) } = \langle \text{fun} \rangle
\]

• What is the type of the expression?
 • \(+\) has type: \(\text{int} \to \text{int} \to \text{int}\)
 • \(2\) has type: \(\text{int}\)
 • Since we are applying \(+\) to \(x\) we need \(x : \text{int}\)
 • Therefore \textbf{fun } x \to 2 + x \text{ has type } \text{int} \to \text{int}
Imperative Example

\[x := b[z] \]
\[a [b[y]] := x \]
Type Inference: Basic Idea

• Example

fun f -> f 3
(int -> a) -> a = <fun>

• What is the type of the expression?
 – 3 has type: int
 – Since we are applying f to 3 we need f : int → a and the result is of type a
 – Therefore fun f -> f 3 has type (int → a) → a
Type Inference: Basic Idea

• Example

\[
\text{fun } f \rightarrow f (f \ 3) \\
\text{(int} \rightarrow \text{int}) \rightarrow \text{int} = <\text{fun}>
\]

• What is the type of the expression?
Type Inference: Basic Idea

• Example

fun f → f (f "hi")
(string → string) → string = <fun>

• What is the type of the expression?
Type Inference: Basic Idea

• Example

 \[
 \text{fun } f \rightarrow f\ (f\ 3,\ f\ 4)
 \]

• What is the type of the expression?
Type Inference: Complex Example

let square = \(z\). z * z

in

\(f. (x. (y. \\
\text{if}\ (f\ x\ y) \\
\text{then}\ (f\ (\text{square}\ x)\ y) \\
\text{else}\ (f\ x\ (f\ x\ y))})\)

\(*:\ \text{int}\ \to\ \text{int}\ \to\ \text{int}\)

\(z:\ \text{int}\)

\(\text{square}:\ \text{int}\ \to\ \text{int}\)

\(f: a \to b \to \text{bool},\ x: a,\ y: b\)

\(a: \text{int}\)

\(b: \text{bool}\)

\((\text{int}\ \to\ \text{bool}\ \to\ \text{bool})\ \to\ \text{int}\ \to\ \text{bool}\ \to\ \text{bool}\)
Unification

- Unifies two terms
- Used for pattern matching and type inference
- Simple examples
 - \texttt{int * x} and \texttt{y * (bool * bool)} are \textbf{unifiable} for \(y = \texttt{int}\) and \(x = \texttt{(bool * bool)}\)
 - \texttt{int * int} and \texttt{int * bool} are \textbf{not unifiable}
The essential task of unification is to find a substitution that makes the two terms equal:

\[f(x, h(x, y)) \{x \mapsto g(y), y \mapsto z\} = f(g(y), h(g(y), z) \]

The terms \(t_1 \) and \(t_2 \) are unifiable if there exists a substitution \(S \) such that \(t_1 S = t_2 S \)

Example: \(t_1 = f(x, g(y)) \), \(t_2 = f(g(z), w) \)
Most General Unifiers (mgu)

• It is possible that no unifier for given two terms exist
 – For example, x and f(x) cannot be unified

• There may be several unifiers
 – Example: \(t_1 = f(x, g(y)) \), \(t_2 = f(g(z), w) \)
 • \(S = \{ x \mapsto g(z), w \mapsto g(w) \} \)
 • \(S' = \{ x \mapsto g(f(a, b)), y \mapsto f(b, a), z \mapsto f(a, b), w \mapsto g(f(b, a)) \} \)

• When a unifier exists, there is always a most general unifier (mgu) that is unique up to renaming

• S is the most general unifier of \(t_1 \) and \(t_2 \) if
 – It is a unifier of \(t_1 \) and \(t_2 \)
 – For every other unifier \(S' \) of \(t_1 \) and \(t_2 \) there exists a refinement of \(S \) to give \(S' \)

• \(mguS \) can be efficiently computed
Type Inference with mgu

• Example

```
fun f -> f (f "hi")
  (string -> string) -> string = <fun>
```

• What is the type of the expression?

\[
\lambda f: T_1. \\
anapply(f: T_1, \\
 anapply(f: T_1, "hi": string): T_2): T_3 \\
- mgu(T_1, string -> T_2) = \{ T_1 \mapsto \text{string} \to T_2 \} = S \\
- mgu(T_1, T_2 \to T_3) (S) = \\
 \{ T_1 \mapsto \text{string} \to T_2, T_2 \mapsto \text{string}, T_3 \mapsto \text{string} \}
\]
Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
 - From environment: literals (2), built-in operators (+), known functions (tail)
 - From form of parse tree: e.g., application and abstraction nodes
- Solve constraints using unification
- Determine types of top-level declarations
Step 1: Parse Program

- Parse program text to construct parse tree

```ml
let f x = 2 + x
```

Infix operators are converted to Curried function application during parsing: (not necessary)

```
2 + x ➜ (+) 2 x
```
Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence
Step 3: Add Constraints

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_6 \\
t_4 &= t_1 \rightarrow t_6 \\
t_2 &= t_3 \rightarrow t_4 \\
t_2 &= \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
t_3 &= \text{int} \\
\end{align*}
\]

\[
\begin{align*}
\text{let } f \ x &= 2 + x
\end{align*}
\]
Step 4: Solve Constraints

\[t_0 = t_1 \rightarrow t_6 \]
\[t_4 = t_1 \rightarrow t_6 \]
\[t_2 = t_3 \rightarrow t_4 \]
\[t_2 = \text{int} \rightarrow \text{int} \rightarrow \text{int} \]
\[t_3 = \text{int} \]

\[t_3 \rightarrow t_4 = \text{int} \rightarrow (\text{int} \rightarrow \text{int}) \]

\[t_0 = t_1 \rightarrow t_6 \]
\[t_4 = t_1 \rightarrow t_6 \]
\[t_4 = \text{int} \rightarrow \text{int} \]
\[t_2 = \text{int} \rightarrow \text{int} \rightarrow \text{int} \]
\[t_3 = \text{int} \]

\[t_1 \rightarrow t_6 = \text{int} \rightarrow \text{int} \]

\[t_0 = \text{int} \rightarrow \text{int} \]
\[t_1 = \text{int} \]
\[t_6 = \text{int} \]
\[t_4 = \text{int} \rightarrow \text{int} \]
\[t_2 = \text{int} \rightarrow \text{int} \rightarrow \text{int} \]
\[t_3 = \text{int} \]
Step 5: Determine type of declaration

\[
\begin{align*}
 t_0 &= \text{int} \to \text{int} \\
 t_1 &= \text{int} \\
 t_6 &= \text{int} \to \text{int} \\
 t_4 &= \text{int} \to \text{int} \\
 t_2 &= \text{int} \to \text{int} \to \text{int} \\
 t_3 &= \text{int}
\end{align*}
\]

let \(f \ x = 2 + x \)
val \(f : \text{int} \to \text{int} = \langle \text{fun} \rangle \)
Constraints from Application Nodes

- Function application (apply f to x)
 - Type of f (t_0 in figure) must be domain \(\rightarrow \) range
 - Domain of f must be type of argument x (t_1 in fig)
 - Range of f must be result of application (t_2 in fig)
 - Constraint: \(t_0 = t_1 \rightarrow t_2 \)

\[\equiv \]
• Function declaration:

 – Type of f (t_0 in figure) must domain → range
 – Domain is type of abstracted variable x (t_1 in fig)
 – Range is type of function body e (t_2 in fig)
 – Constraint: t_0 = t_1 -> t_2

:: ≡ ::
Inferring Polymorphic Types

- Example:
  ```
  let f g = g 2
  val f : (int -> t_4) -> t_4 = <fun>
  ```

- Step 1:
 Build Parse Tree
Inferring Polymorphic Types

• Example:
 let f g = g 2
 val f : (int -> t_4) -> t_4 = fun

• Step 2:
 Assign type variables
Inferring Polymorphic Types

- Example:
- Step 3:
 Generate constraints

```
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_4 \\
t_1 &= t_3 \rightarrow t_4 \\
t_3 &= \text{int}
\end{align*}
\]
Inferring Polymorphic Types

• Example:

let \(f \ g = g \ 2 \)

val \(f : (\text{int} \to t_4) \to t_4 = \langle \text{fun} \rangle \)

• Step 4:
Solve constraints
Inferring Polymorphic Types

• Example:

let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>

• Step 5:
 Determine type of top-level declaration

Unconstrained type variables become polymorphic types

\[t_0 = (\text{int} \to t_4) \to t_4 \]
\[t_1 = \text{int} \to t_4 \]
\[t_3 = \text{int} \]

\[\vdash \equiv \]
Using Polymorphic Functions

• Function:

```ocaml
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Possible applications:

```ocaml
let add x = 2 + x
val add : int -> int = <fun>
f add
:- int = 4
```

```ocaml
let isEven x = mod (x, 2) == 0
val isEven: int -> bool = <fun>
f isEven
:- bool= true
```
Recognizing Type Errors

• Function:

```
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

• Incorrect use

```
let not x = if x then true else false
val not : bool -> bool = <fun>

f not
> Error: operator and operand don’t agree
   operator domain: int -> a
   operand:         bool-> bool
```

• Type error:
cannot unify bool → bool and int → t
Another Example

- Example:
- Step 1: Build Parse Tree
Another Example

- Example:
 - Step 2:
 Assign type variables

```ml
let f (g, x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

```
:: ≡ ::
```
Another Example

- Example:

- Step 3:
 Generate constraints

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

```plaintext
\[
\begin{align*}
  t_0 &= t_3 \rightarrow t_8 \\
  t_3 &= (t_1, t_2) \\
  t_1 &= t_7 \rightarrow t_8 \\
  t_1 &= t_2 \rightarrow t_7
\end{align*}
\]
Another Example

- Example:

- Step 4:
  
  Solve constraints

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```
Another Example

• Example:

• Step 5:
  Determine type of f

\[
\begin{align*}
\text{let } f \ (g, x) &= g \ (g \ x) \\
\text{val } f : ((t_8 \to t_8) \times t_8) \to t_8 \\
\end{align*}
\]

\[
\begin{align*}
t_0 &= t_3 \to t_8 \\
t_3 &= (t_1 \times t_2) \\
t_1 &= t_7 \to t_8 \\
t_1 &= t_2 \to t_7 \\
\end{align*}
\]
Pattern Matching

• Matching with multiple cases

\[
\begin{align*}
\text{let isempty} \ l &= \text{match} \ l \ \text{with} \\
&\quad |[] \rightarrow \text{true} \\
&\quad |_\_ \rightarrow \text{false}
\end{align*}
\]

• Infer type of each case

  – First case:

    \[ [t_1] \rightarrow \text{bool} \]

  – Second case:

    \[ t_2 \rightarrow \text{bool} \]

• Combine by unification of the types of the cases

\[
\text{val isempty : } [t_1] \rightarrow \text{bool} = \text{<fun>}
\]
Bad Pattern Matching

• Matching with multiple cases

```ocaml
let isempty l = match l with
 | [] -> true
 | _ -> 0
```

• Infer type of each case
  – First case:
    ```ocaml
 [t_1] -> bool
    ```
  – Second case:
    ```ocaml
 t_2 -> int
    ```

• Combine by unification of the types of the cases

  Type Error: cannot unify bool and int
Recursion

```ocaml
let rec concat a b = match a with
| [] -> b
| x::xs -> x :: concat xs b
```

- To handle recursion, introduce type variables for the function:
  
  ```ocaml
 concat : t_1 -> t_2 -> t_3
  ```

- Use these types to conclude the type of the body:
  - Pattern matching first case:
    ```ocaml
 [t_4] -> t_5 -> t_5
 unify [t_4] with t_1 and t_5 with t_2 and t_3
    ```
  - Pattern matching second case:
    ```ocaml
 [t_6] -> t_7 -> t_3
 unify [t_6] with t_1 and t_7 with t_2
    ```

- Conclude the type of the function:
  ```ocaml
  ```
**Most General Type**

- Type inference produces the *most general type*

```ocaml
let rec map f arg = function
 | [] -> []
 | hd :: tl -> f hd :: (map f tl)
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```

- Functions may have many less general types

```ocaml
val map : (t_1 -> int, [t_1]) -> [int]
val map : (bool -> t_2, [bool]) -> [t_2]
val map : (char -> int, [cChar]) -> [int]
```

- Less general types are all instances of most general type, also called the *principal type*
Information from Type Inference

• Consider this function...

```plaintext
let reverse ls = match ls with
 [] -> []
| x :: xs -> reverse xs
```

... and its most general type:

```plaintext
:- reverse :: list 't_1 -> list 't_2
```

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!
Complexity of Type Inference Algorithm

• When Hindley/Milner type inference algorithm was developed, its complexity was unknown

• In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete

• Usually linear in practice though…
  – Running time is exponential in the depth of polymorphic declarations
Type Inference: Key Points

• Type inference computes the types of expressions
  – Does not require type declarations for variables
  – Finds the most general type by solving constraints
  – Leads to polymorphism

• Sometimes better error detection than type checking
  – Type may indicate a programming error even if no type error

• Some costs
  – More difficult to identify program line that causes error
  – Natural implementation requires uniform representation sizes
  – Complications regarding assignment took years to work out

• Idea can be applied to other program properties
  – Discover properties of program using same kind of analysis
Parametric Polymorphism: OCaml vs C++

• OCaml polymorphic function
  – Declarations (generally) require no type information
  – Type inference uses type variables to type expressions
  – Type inference substitutes for type variables as needed to instantiate polymorphic code

• C++ function template
  – Programmer must declare the argument and result types of functions
  – Programmers must use explicit type parameters to express polymorphism
  – Function application: type checker does instantiation
Example: Swap Two Values

- OCaml

```ocaml
let swap (x, y) =
 let temp = !x in
 (x := !y; y := temp)
val swap : 'a ref * 'a ref -> unit = <fun>
```

- C++

```cpp
template <typename T>
void swap(T& x, T& y){
 T tmp = x; x=y; y=tmp;
}
```

Declarations both swap two values polymorphically, but they are compiled very differently.
Implementation

- OCaml
  - \texttt{swap} is compiled into one function
  - Typechecker determines how function can be used

- C++
  - \texttt{swap} is compiled differently for each instance
    (details beyond scope of this course ...)

- Why the difference?
  - OCaml ref cell is passed by pointer. The local $x$ is a pointer to value on heap, so its size is constant
  - C++ arguments passed by reference (pointer), but local $x$ is on the stack, so its size depends on the type
Polymorphism vs Overloading

• Parametric polymorphism
  – Single algorithm may be given many types
  – Type variable may be replaced by any type
  – if \( f: t \to t \) then \( f: \text{int} \to \text{int}, f: \text{bool} \to \text{bool}, \ldots \)

• Overloading
  – A single symbol may refer to more than one algorithm
  – Each algorithm may have different type
  – Choice of algorithm determined by type context
  – Types of symbol may be arbitrarily different
  – In ML, \(+\) has types \text{int}*\text{int} \to \text{int}, \text{real}*\text{real} \to \text{real}, \text{no others}
  – Haskell permits more general overloading and requires user assistance
Varieties of Polymorphism

- **Parametric polymorphism** A single piece of code is typed generically
  - Imperative or first-class polymorphism
  - ML-style or let-polymorphism
- **Ad-hoc polymorphism** The same expression exhibit different behaviors when viewed in different types
  - Overloading
  - Multi-method dispatch
  - intentional polymorphism
- **Subtype polymorphism** A single term may have many types using the rule of subsumption allowing to selectively forget information
Summary

• Types are important in modern languages
  – Program organization and documentation
  – Prevent program errors
  – Provide important information to compiler

• Type inference
  – Determine best type for an expression, based on known information about symbols in the expression

• Polymorphism
  – Single algorithm (function) can have many types