Concepts of Programming Languages – Recitation 2: Natural Operational Semantics

> Oded Padon odedp@mail.tau.ac.il

> > Reference:

Semantics with Applications by H. Nielson and F. Nielson – Ch. 2 http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

Formal Semantics

- Operational Semantics
 - The meaning of the program is described "operationally"

 - Structural Operational Semantics
- Denotational Semantics
 - The meaning of the program is an input/output relation
 - Mathematically challenging but complicated
- Axiomatic Semantics
 - The meaning of the program are observed properties

The While Programming Language

• Abstract syntax

S::= x := a | skip | S_1 ; S_2 | if b then S_1 else S_2 | while b do S

- Use parenthesizes for precedence
- Informal Semantics
 - skip behaves like no-operation
 - Import meaning of arithmetic and Boolean operations

Example While Program

y := 1;
while
$$\neg(x=1)$$
 do (
 $y := y * x;$
 $x := x - 1;$

General Notations

- Syntactic categories
 - Var the set of program variables
 - Aexp the set of arithmetic expressions
 - Bexp the set of Boolean expressions
 - Stm set of program statements
- Semantic categories
 - Natural values N={0, 1, 2, ...}
 - Truth values T={ff, tt}
 - States State = Var \rightarrow N
 - Lookup in a state s: s x
 - Update of a state s: s $[x \mapsto 5]$

Example State Manipulations

- [x→1, y→7, z→16] y =
- [x→1, y→7, z→16] t =
- $[x \mapsto 1, y \mapsto 7, z \mapsto 16][x \mapsto 5] =$
- $[x \mapsto 1, y \mapsto 7, z \mapsto 16][x \mapsto 5] x =$
- $[x \mapsto 1, y \mapsto 7, z \mapsto 16][x \mapsto 5] y =$

Semantics of arithmetic expressions

- Assume that arithmetic expressions are side-effect free
- A[[Aexp]] : State \rightarrow N
- Defined by structural induction on the syntax tree

$$\mathcal{A}\llbracket n \rrbracket s = \mathcal{N}\llbracket n \rrbracket$$
$$\mathcal{A}\llbracket x \rrbracket s = s x$$
$$\mathcal{A}\llbracket a_1 + a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s + \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \star \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 - a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s - \mathcal{A}\llbracket a_2 \rrbracket s$$

Semantic Equivalence

- We say that e_1 is semantically equivalent to e_2 ($e_1 \approx e_2$) when $A[\![e_1]\!] = A[\![e_2]\!]$
- Which of the following expressions are equivalent?
 - $2 \approx 1 + 1$?
 - $x + y \approx y + x$?
 - $x + x \approx 2 * x ?$
 - $(x + y) * (x y) \approx x^*x y^*y$?
 - x := 10; y := 20; z := x+y; z := 30; x+y ≈ 30 ?

Semantics of Boolean expressions

- Assume that Boolean expressions are side-effect free
- $B[[Bexp]] : State \rightarrow T$
- Defined by induction on the syntax tree:

$$\mathcal{B}\llbracket\operatorname{true}\rrbracket s = \operatorname{tt}$$

$$\mathcal{B}\llbracket\operatorname{false}\rrbracket s = \operatorname{ff}$$

$$\mathcal{B}\llbracket a_1 = a_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s = \mathcal{A}\llbracket a_2 \rrbracket s \\ & \operatorname{ff} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s \end{cases}$$

$$\mathcal{B}\llbracket a_1 \le a_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s \\ & \operatorname{ff} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \leq \mathcal{A}\llbracket a_2 \rrbracket s \end{cases}$$

$$\mathcal{B}\llbracket a_1 \le a_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \leq \mathcal{A}\llbracket a_2 \rrbracket s \\ & \operatorname{ff} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s > \mathcal{A}\llbracket a_2 \rrbracket s \end{cases}$$

$$\mathcal{B}\llbracket b_1 \le b_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{B}\llbracket b_1 \rrbracket s = \operatorname{tt} \text{ and } \mathcal{B}\llbracket b_2 \rrbracket s = \operatorname{tt} \\ & \operatorname{ff} & \operatorname{if} \mathcal{B}\llbracket b_1 \rrbracket s = \operatorname{ff} \text{ or } \mathcal{B}\llbracket b_2 \rrbracket s = \operatorname{ff} \end{cases}$$

Natural Operational Semantics

- Notations:
 - S program construct (word in the While language)

- s, s' - states (functions Var \rightarrow N)

- <S, s> → s' means: If S is executed on state s, <u>it terminates</u> and the state after execution is s'
- Describe the "overall" effect of program constructs
- Ignores non terminating computations

Examples for \rightarrow

 s_0 : state which assigns

zero to all variables

- $\langle y := 2, s_0[x \mapsto 1] \rangle \rightarrow s_0[x \mapsto 1] [y \mapsto 2]$
- $\langle x := x+1, s_0 \rangle \rightarrow s_0[x \mapsto 1]$
- $<\mathbf{x} := \mathbf{x}+1, \mathbf{s}_0[\mathbf{x} \mapsto 1] > \rightarrow \mathbf{s}_0[\mathbf{x} \mapsto 2]$
- $<\mathbf{x} := \mathbf{x}+1$; $\mathbf{x} := \mathbf{x}+1$, $\mathbf{s}_0 > \rightarrow \mathbf{s}_0[\mathbf{x} \mapsto 2]$
- **<if** x > 0 **then** y := 2 **else** y := 3, $s_0 > \rightarrow s_0[y \mapsto 3]$
- <if x > 0 then y := 2 else y:= 3, $s_0[x \mapsto 1] > \rightarrow s_0[x \mapsto 1] [y \mapsto 2]$
- <x:=x+1; if x > 0 then y := 2 else y:= 3, $s_0 > \rightarrow s_0[x \mapsto 1] [y \mapsto 2]$
- **<while** x < 5 **do** $(x:=x+2; y:=y+10), s_0 > \rightarrow s_0[x \mapsto 6] [y \mapsto 30]$
- <(while x < 5 do (x:=x+2; y:=y+10)); (while x > 0 do x := x-5), $s_0 > \rightarrow s_0[x \mapsto -4] [y \mapsto 30]$
- **<while** $x \ge 0$ **do** x:=x+1, $s_0 > \rightarrow ?$
- NOT < while $x \ge 0$ do x:=x+1, $s_0 > \rightarrow s'$ for any s'

Formally defining \rightarrow

• → is defined **inductively** using **inference rules**, with both **syntactic** conditions on S and **semantic** conditions on s

 $\langle x := a, s \rangle \to s[x \mapsto \mathcal{A}[\![a]\!]s]$ $[ass_{ns}]$ $[skip_{ns}] \quad \langle skip, s \rangle \to s$ $\langle S_1, s \rangle \to s', \langle S_2, s' \rangle \to s''$ $\frac{\langle \mathcal{S}_1, \mathcal{S}_1 \rangle}{\langle S_1; S_2, s \rangle \to s''}$ $[\text{comp}_{ns}]$ $\frac{\langle S_1, s \rangle \to s'}{\langle \text{if } b \text{ then } S_1 \text{ else } S_2, s \rangle \to s'} \text{ if } \mathcal{B}[\![b]\!]s = \mathbf{t}\mathbf{t}$ $[\mathrm{if}_\mathrm{ns}^\mathrm{tt}]$ $\frac{\langle S_2, s \rangle \to s'}{\langle \text{if } b \text{ then } S_1 \text{ else } S_2, s \rangle \to s'} \text{ if } \mathcal{B}[\![b]\!]s = \text{ff}$ $[if_{ns}^{ff}]$ $\frac{\langle S, s \rangle \to s', \, \langle \text{while } b \text{ do } S, s' \rangle \to s''}{\langle \text{while } b \text{ do } S, s \rangle \to s''} \quad \text{if } \mathcal{B}\llbracket b \rrbracket s = \mathbf{tt}$ [while^{tt}_{ns}] $\langle \text{while } b \text{ do } S, s \rangle \to s \text{ if } \mathcal{B}\llbracket b \rrbracket s = \mathbf{ff}$ $[\text{while}_{ns}^{\text{ff}}]$

Example of Inference

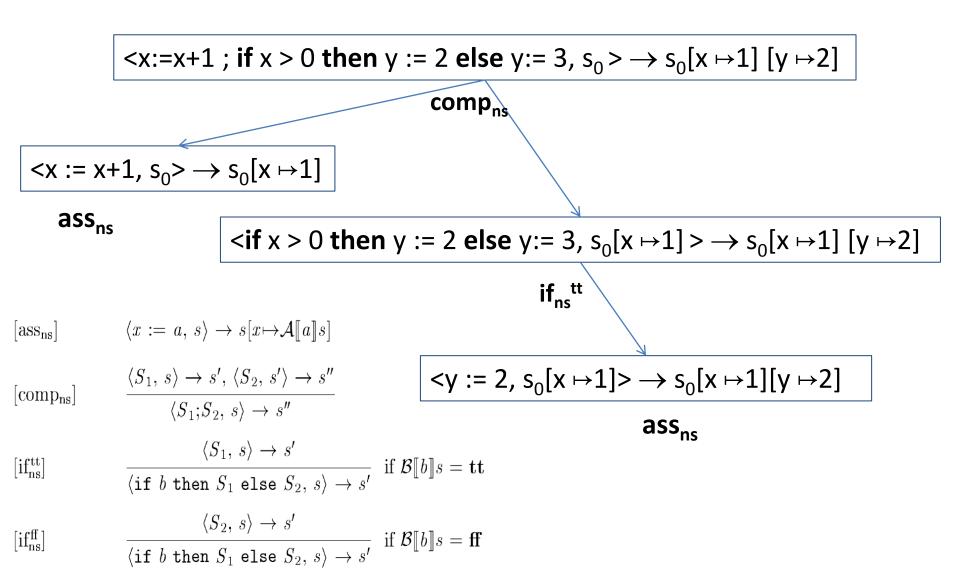
$$\begin{split} & [\text{ass}_{\text{ns}}] \qquad \langle x := a, s \rangle \to s[x \mapsto \mathcal{A}\llbracket a \rrbracket s] \\ & [\text{comp}_{\text{ns}}] \qquad \frac{\langle S_1, s \rangle \to s', \langle S_2, s' \rangle \to s''}{\langle S_1; S_2, s \rangle \to s''} \\ & [\text{if}_{\text{ns}}^{\text{tt}}] \qquad \frac{\langle S_1, s \rangle \to s'}{\langle \text{if } b \text{ then } S_1 \text{ else } S_2, s \rangle \to s'} \quad \text{if } \mathcal{B}\llbracket b \rrbracket s = \text{tt} \\ & [\text{if}_{\text{ns}}^{\text{ff}}] \qquad \frac{\langle S_2, s \rangle \to s'}{\langle \text{if } b \text{ then } S_1 \text{ else } S_2, s \rangle \to s'} \quad \text{if } \mathcal{B}\llbracket b \rrbracket s = \text{ff} \end{split}$$

1.
$$\langle \mathbf{y} := 2, s_0[\mathbf{x} \mapsto 1] \rangle \rightarrow s_0[\mathbf{x} \mapsto 1] [\mathbf{y} \mapsto 2]$$
 # by ass_{ns}
2. $\langle \mathbf{if} \mathbf{x} > 0 \text{ then } \mathbf{y} := 2 \text{ else } \mathbf{y} := 3, s_0[\mathbf{x} \mapsto 1] \rangle \rightarrow s_0[\mathbf{x} \mapsto 1] [\mathbf{y} \mapsto 2] \text{ # by } \mathbf{if}_{ns}^{tt} (1)$
3. $\langle \mathbf{x} := \mathbf{x}+1, s_0 \rangle \rightarrow s_0[\mathbf{x} \mapsto 1]$ # by ass_{ns}
4. $\langle \mathbf{x} := \mathbf{x}+1; \mathbf{if} \mathbf{x} > 0 \text{ then } \mathbf{y} := 2 \text{ else } \mathbf{y} := 3, s_0 \rangle \rightarrow s_0[\mathbf{x} \mapsto 1] [\mathbf{y} \mapsto 2] \text{ # by } \operatorname{comp}_{ns} (2,3)$

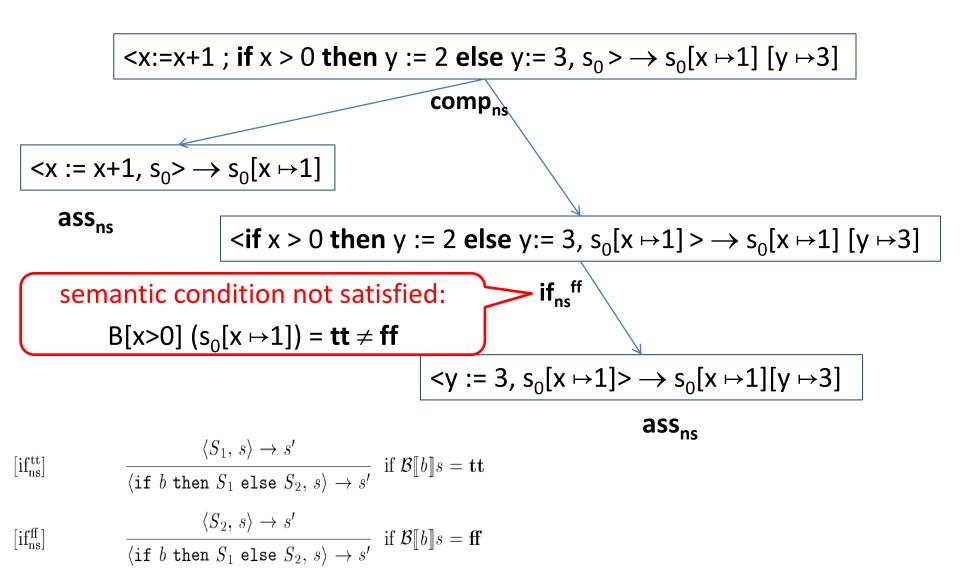
Derivation Trees

- A derivation tree is a way to write applications of inference rules
- A derivation tree is a "proof" that $\langle S, s \rangle \rightarrow s'$
- The root of tree is $\langle S, s \rangle \rightarrow s'$
- Each node is a conclusion from its children using an inference rule
- Leaves are instances of axioms (rules with no premises)
- Non-leaves are instances of inference rules with premises
 - Immediate children match rule premises
 - The semantic condition is satisfied

Example Derivation Tree



Bad Derivation Tree



Top Down Evaluation of Derivation Trees

- Given a program S and an input state s
- Find an output state s' such that $\langle S, s \rangle \rightarrow s'$
- Start with the root and repeatedly apply rules until the axioms are reached
- Inspect different alternatives in order
- In While s' and the derivation tree is unique

Example of Top Down Tree Construction

Input state s such that s x = 2

