
Concepts of Programming
Languages – Recitation 2:

Natural Operational Semantics

Oded Padon

odedp@mail.tau.ac.il

Reference:

Semantics with Applications by H. Nielson and F. Nielson – Ch. 2

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

Formal Semantics

• Operational Semantics
– The meaning of the program is described

“operationally”
– Natural Operational Semantics today!
– Structural Operational Semantics

• Denotational Semantics
– The meaning of the program is an input/output

relation
– Mathematically challenging but complicated

• Axiomatic Semantics
– The meaning of the program are observed properties

The While Programming Language

• Abstract syntax
S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |
 while b do S

• Use parenthesizes for precedence

• Informal Semantics

– skip behaves like no-operation

– Import meaning of arithmetic and Boolean
operations

Example While Program

y := 1;

while (x=1) do (

 y := y * x;

 x := x – 1;

)

General Notations

• Syntactic categories
– Var the set of program variables
– Aexp the set of arithmetic expressions
– Bexp the set of Boolean expressions
– Stm set of program statements

• Semantic categories
– Natural values N={0, 1, 2, …}
– Truth values T={ff, tt}
– States State = Var N
– Lookup in a state s: s x
– Update of a state s: s [x 5]

Example State Manipulations

• [x1, y7, z16] y =

• [x1, y7, z16] t =

• [x1, y7, z16][x5] =

• [x1, y7, z16][x5] x =

• [x1, y7, z16][x5] y =

Semantics of arithmetic expressions

• Assume that arithmetic expressions are side-effect
free

• A Aexp : State N

• Defined by structural induction on the syntax tree

Semantic Equivalence

• We say that e1 is semantically equivalent to e2 (e1 e2) when
Ae1 = A e2

• Which of the following expressions are equivalent?

– 2 1 + 1 ?

– x + y y + x ?

– x + x 2 * x ?

– (x + y) * (x - y) x*x - y*y ?

– x := 10; y := 20; z := x+y; z := 30;
x+y 30 ?

Semantics of Boolean expressions

• Assume that Boolean expressions are side-effect free
• B Bexp : State T
• Defined by induction on the syntax tree:

Natural Operational Semantics

• Notations:

– S – program construct (word in the While language)

– s, s’ – states (functions Var N)

• <S, s> s’ means:
If S is executed on state s, it terminates and the state after
execution is s’

• Describe the “overall” effect of program constructs

• Ignores non terminating computations

Examples for

• <y := 2, s0[x 1]> s0[x 1] [y 2]

• <x := x+1, s0> s0[x 1]

• <x := x+1, s0[x 1] > s0[x 2]

• <x := x+1 ; x := x+1, s0 > s0[x 2]

• <if x > 0 then y := 2 else y:= 3, s0 > s0[y 3]

• <if x > 0 then y := 2 else y:= 3, s0[x 1] > s0[x 1] [y 2]

• <x:=x+1 ; if x > 0 then y := 2 else y:= 3, s0 > s0[x 1] [y 2]

• <while x < 5 do (x:=x+2 ; y:=y+10), s0 > s0[x 6] [y 30]

• <(while x < 5 do (x:=x+2 ; y:=y+10)) ;
 (while x > 0 do x := x-5), s0 > s0[x -4] [y 30]

• <while x ≥ 0 do x:=x+1, s0 > ?

• NOT <while x ≥ 0 do x:=x+1, s0 > s’ for any s’

s0: state which assigns

zero to all variables

Formally defining

• is defined inductively using inference rules, with both
syntactic conditions on S and semantic conditions on s

Example of Inference

1. <y := 2, s0[x 1]> s0[x 1] [y 2] # by assns

2. <if x > 0 then y := 2 else y:= 3, s0[x 1] > s0[x 1] [y 2] # by ifns
tt (1)

3. <x := x+1, s0> s0[x 1] # by assns

4. <x:=x+1 ; if x > 0 then y := 2 else y:= 3, s0 > s0[x 1] [y 2] # by compns (2,3)

Derivation Trees

• A derivation tree is a way to write applications of inference
rules

• A derivation tree is a “proof” that <S, s> s’

• The root of tree is <S, s> s’

• Each node is a conclusion from its children using an inference
rule

• Leaves are instances of axioms (rules with no premises)

• Non-leaves are instances of inference rules with premises

– Immediate children match rule premises

– The semantic condition is satisfied

Example Derivation Tree

<x:=x+1 ; if x > 0 then y := 2 else y:= 3, s0 > s0[x 1] [y 2]

<x := x+1, s0> s0[x 1]

<if x > 0 then y := 2 else y:= 3, s0[x 1] > s0[x 1] [y 2]

<y := 2, s0[x 1]> s0[x 1][y 2]

assns

assns

compns

ifns
tt

Bad Derivation Tree

<x:=x+1 ; if x > 0 then y := 2 else y:= 3, s0 > s0[x 1] [y 3]

<x := x+1, s0> s0[x 1]

<if x > 0 then y := 2 else y:= 3, s0[x 1] > s0[x 1] [y 3]

<y := 3, s0[x 1]> s0[x 1][y 3]

assns

assns

compns

ifns
ff semantic condition not satisfied:

B[x>0] (s0[x 1]) = tt ff

Top Down Evaluation of Derivation Trees

• Given a program S and an input state s

• Find an output state s’ such that
 <S, s> s’

• Start with the root and repeatedly apply rules
until the axioms are reached

• Inspect different alternatives in order

• In While s’ and the derivation tree is unique

Example of Top Down Tree Construction

• Input state s such that s x = 2

• Factorial program
<y := 1; while (x=1) do (y := y * x; x := x - 1), s> >

assns assns

<y :=1, s>

<W, > >

compns

<(y := y * x ; x := x -1, s[y1]> >

<W, >

 >

whilett
ns

whileff
ns

<y := y * x ; s[y1]> > <x := x - 1 , > >

compns

assns

s[y 1]

s[y 1]

s[y 2][x1] s[y 2]

s[y 2][x1

s[y 2][x1]

s[y 2][x1

s[y 2][x1]

s[y 2]

s[y 2][x1]

