Concepts of Programming
Languages — Recitation 2:
Natural Operational Semantics

Oded Padon
odedp@mail.tau.ac.il

Reference:
Semantics with Applications by H. Nielson and F. Nielson — Ch. 2
http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html

Formal Semantics

* Operational Semantics

— The meaning of the program is described
“operationally”

— Natural Operational Semantics < today!
— Structural Operational Semantics

e Denotational Semantics

— The meaning of the program is an input/output
relation

— Mathematically challenging but complicated
* Axiomatic Semantics
— The meaning of the program are observed properties

The While Programming Language

* Abstract syntax
Sii=x :=a|skip|S;;S,|ifbthenS, elseS, |
while b do S

e Use parenthesizes for precedence
* |Informal Semantics

— skip behaves like no-operation

— Import meaning of arithmetic and Boolean
operations

Example While Program

y =1

while —(x=1) do (
Y=y *X;
X =X-1;

General Notations

* Syntactic categories
— Var the set of program variables
— Aexp the set of arithmetic expressions
— Bexp the set of Boolean expressions
— Stm set of program statements

* Semantic categories
— Natural values N={0, 1, 2, ...}
— Truth values T={ff, tt}
— States State =Var —> N
— Lookup in a state s: s x
— Update of a states: s [x+— 5]

Example State Manipulations

x—1, y—7,2—16] y =
x—1, y—7,z2—16] t =
x—1, y—7, z—16][x—5] =

x—1, y—7, 2—16][x—5] x =

x—1, y—7, 2—16][x—5] y =

Semantics of arithmetic expressions

* Assume that arithmetic expressions are side-effect

free

* Al Aexp] : State > N

e Defined by structural induction on the syntax tree

Al

n]s
z]s
a; + axs

REXE

B oo

a1 — as]S$

L.

= 2

Vin

‘5 + A[[a-g]]S
s x Alas]s
Js — Alas]s

Semantic Equivalence

* We say that e, is semantically equivalent to e, (e, = e,) when
Alle,] =Ale,]
* Which of the following expressions are equivalent?
— 2=1+17?
— X+y~ry+Xx?
— X+Xx=2*x?
— (x+y) * (x-y)=x*x-y*y?

— x:=10;y:=20; z := x+vy; z := 30;
x+y ~ 307

Semantics of Boolean expressions

* Assume that Boolean expressions are side-effect free
 B[Bexp]:State > T
* Defined by induction on the syntax tree:

Bltrue]s = tt
B[false]s = ff

[tt if AJai]s = Alay]s
Bla, = as]s = o _

| T if Afay]s # Alaq]s

[tt if Afai]s < Afas]s
Bla; < as]s = 4 lar]s < Ala]

| T if Afa]s > Alas]s

[tt if B[b]s = fF
B[- b]s =K

| T if B[b]s = tt

[tt if B[bi]s = tt and B[bs]s = tt
Blby A by]s = o (0] Lb2]

ff if B[b,]s = ff or B[by]s = ff

Natural Operational Semantics

Notations:
— S — program construct (word in the While language)
— s, 8" — states (functions Var — N)

<S, s> — s’ means:
If S is executed on state s, it terminates and the state after
executionis s’

Describe the “overall” effect of program constructs
lgnores non terminating computations

Examples for —

<y =2, s5[x = 1]> = sy[x = 1] [y »2]
<x :=x+1, s;> — sy[x —~1]
<X 1= X+1, so[x 1] > = sy[x »2]

<X = x+1; x:=x+1, 5, > —> sy[x = 2]

So: State which assigns
zero to all variables

<ifx>0theny:=2elsey:=3,s,>— s,y ~3]

<ifx>0theny:=2elsey:=3, s,[x=1] > > sy[x 1] [y »2]

<x:=x+1;if x >0theny:=2else y:=3, s;,> > s [x »1] [y »2]

<while x < 5 do (x:=x+2 ; y:=y+10), s, > — s,[x »6] [y ~30]

<(while x < 5 do (x:=x+2 ; y:=y+10)) ;

(while x > 0 do x := x-5),
<while x 2 0 do x:=x+1, 5,> —> ?

So> —> So[x —-4] [y »30]

NOT <while x 2 0 do x:=x+1, s,> — s’ for any s’

Formally defining —

« — isdefined inductively using inference rules, with both
syntactic conditions on S and semantic conditions on s

[assyg] (z = a, sy = slz—Ala]s]
skipus] (skip, 8) — $
(S1, 8) = 5, (8, §') = §”
[COMPyg]
(51;59, s) — "
y (51, 8) = & .
[if35] if B[b]s = tt
(if b then S; else 59, 8) — &
(S5, 8) — &
i) 2 5 it B[b]s =
(if b then 5 else Sy, s) — &
(§,5) — &, (while bdo S, s’y — §”
[while,] if B[b]s = tt
(while b do S, s) — &"
[whilel] (while b do S, s) — s if B[b]s = ff

pwoN e

Example of Inference

s8] (z := a, s) — s[z—Ala]s]

S1,8) =5, (S, §) = §"
(51 s) (S,

[COMPyg] (51:59,) — §"
B (S1,8) — & 3
ifte] it B[b]s = tt
(if b then 51 else Sy, 5) — &
| S9, 8) — &
0] (52, 5) it B[b]s = ff
(if b then S, else Sy, s) — &
<y =2, so[x »1]> > s [x »1] [y »2] # by ass,
<if x>0theny:=2else y:=3, sj[x 1] > — s [x »1] [y =»2] # by if " (1)
<X 1= X+1, 55> — sy[x 1] # by ass,

<x:=x+1;if x>0theny:=2elsey:=3,s5,>— s,[x »1] [y »2] # by comp,_,(2,3)

Derivation Trees

A derivation tree is a way to write applications of inference
rules

A derivation tree is a “proof” that <S, s> —>¢’
The root of tree is <S, s> —>¢’

Each node is a conclusion from its children using an inference
rule

Leaves are instances of axioms (rules with no premises)
Non-leaves are instances of inference rules with premises
— Immediate children match rule premises

— The semantic condition is satisfied

Example Derivation Tree

<x:=x+1;ifx>0theny:=2elsey:=3, s;>— sj[x 1] [y »2]

<X 1= x+1, 55> —> sy[x ~1]

ass,,

<ifx>0theny:=2elsey:=3, s;[x~»1]>—> sj[x~1] [y »2]

if M
s8] (z:=a, s) = s|lz—Ala]s]

(compa] (51 8) = 8, (92, 8) = 5" <y =2, s5[x = 1]> = sy[x = 1]y 2]
S ($1;89, s) = §"
ass, .
- (51, 8) = ¢ y
[if] _ i B[]s = tt
(if b then S; else Sy, 5) —

Sy, 8) — &

] (52, 9 it B[b]s = ff

(if b then §; else Sy, s) — &'

Bad Derivation Tree

<x:=x+1;ifx>0theny:=2elsey:=3, s;>— sy[x 1] [y »3]

<X 1= x+1, 55> —> sy[x ~1]

ass,,

<ifx>0theny:=2elsey:=3, s;[x~1]>—> sj[x=1] [y »3]

semantic condition not satisfied: if ff
BIx>0] (s4[x —1]) = tt = ff

<y =3, sy[x =1]> > sy[x »1][y = 3]

dass

’ ns
1] (51, 8) = it B[B[s = tt
" (if b then S; else 59, 5) — &' ‘
(Sq, 8) = 4

[iff] if B[b]s = I
(if b then S, else §y, s) — &'

Top Down Evaluation of Derivation Trees

Given a program S and an input state s

Find an output state s’ such that
<S§, s> —¢’

Start with the root and repeatedly apply rules
until the axioms are reached

Inspect different alternatives in order
In While s” and the derivation tree is unique

Example of Top Down Tree Construction

* |[nput state ssuchthatsx =2
* Factorial program

<y:=1;while=(x=1)do (y ==y *X;x:=x-1),s> > s[y~2][x~1] >

[TT0ns
/ Wy~ 1> o2l

<y:=1,s>—> S[y > 1] whiletts

dSSns <W, S[y l—>2] [Xl—>1]> —>

<(y:=y*x;x:=x -1,s[y=1]> - s[y »2][x~1] > sly »2][x~1 =

/O\mpﬁ’\ whileffs

<y =y *X;sly~1]> — s[y 2> <x:=x -1,s[y 2> — sy »2][x~1] >

dSSns dSSns

