The Scala
Programming Language

Mooly Sagiv

Slides taken from
Martin Odersky (EPFL)
Donna Malayeri (CMU)

Hila Peleg (TAU)

Modern Functional Programming

Higher order
Modules
Pattern matching
Statically typed with type inference
Two viable alternatives
« Haskel

 Pure lazy evaluation and higher order programming leads to
Concise programming

 Support for domain specific languages
* |/O Monads
« Type classes
« OCaml
 Encapsulated side-effects via references

Then Why aren’t FP adapted?

Education

Lack of OO support
* Subtyping increases the complexity of type inference

Programmers seeks control on the exact
implementation

Imperative programming is natural in certain
situations HSC‘J“%S&SJK

i

Why Scala?

(Coming from OCaml)

* Runs on the JVM/.NET
* Can use any Java code in Scala

 Combines functional and imperative programming in a
smooth way

» Effective library
* Inheritance
* General modularity mechanisms

The Java Programming Language

Designed by Sun 1991-95

Statically typed and type safe

Clean and Powerful libraries

Clean references and arrays

Object Oriented with single inheritance
Interfaces with multiple inhertitence
Portable with JVM

Effective JIT compilers

Support for concurrency

Useful for Internet

Java Critique

» Downcasting reduces the effectiveness of
static type checking

« Many of the interesting errors caught at runtime
o Still better than C, C++
» Huge code blowouts
 Hard to define domain specific knowledge
A lot of boilerplate code
« Sometimes OO stands in our way
 Generics only partially helps

Why Scala?

(Coming from Java/C++)

Runs on the JVM/.NET
 Can use any Java code in Scala
 Almost as fast as Java (within 10%)
Much shorter code
o QOdersky reports 50% reduction in most code over Java
* Local type inference
Fewer errors
* No Null Pointer problems
More flexibility
* As many public classes per source file as you want
* QOperator overloading

Scala

Designed and implemented by Martin Odersky [2001-]
Motivated by towards “ordinary” programmers

Scalable version of software
 Focused on abstractions, composition, decomposition

Unifies OOP and FP
* Exploit FP on a mainstream platform
* Higher order functions
» Pattern matching
* Lazy evaluation
Interoperates with JVM and .NET
Better support for component software
Much smaller code

Scala

Scala is an object-oriented and functional language
which is completely interoperable with Java (.NET)

Remove some of the more arcane constructs of these
environments and adds instead:
(1) a uniform object model, F
(2) pattern matching and higher-order functions, Scala
(3) novel ways to abstract and compose programs

Getting Started in Scala

scala
 Runs compiled scala code
* Or without arguments, as an interpreter!

scalac - compiles
fsc - compiles faster! (uses a background server to minimize startup time)
Go to scala-lang.org for downloads/documentation

Read Scala: A Scalable Language
(see http://www.artima.com/scalazine/articles/scalable-language.html)

http://www.scala-lang.org/node/211
http://www.scala-lang.org/node/211
http://www.scala-lang.org/node/211
http://www.artima.com/scalazine/articles/scalable-language.html
http://www.artima.com/scalazine/articles/scalable-language.html
http://www.artima.com/scalazine/articles/scalable-language.html

Plan

v Motivation
« Scala vs. Java
 Modularity
* Discussion

Features of Scala

Basic Scala

Use var to declare variables:

var x = 3;

X += 4;

Use val to declare values (final vars)
val y = 3;

y += 4; // error

Notice no types, but it is statically typed
var x = 3;

x = “hello world”; // error

Type annotations:
var x : Int = 3;

letx =ref 3in

X:=Ix +4

OCaml

Scala is interoperable

Scala programs mteroperate
seamlessly with Java class
libraries:

* Method calls

* Field accesses

« Class inheritance

* Interface implementation

all work as in Java

Scala programs compile to JVM
bytecodes

Scala’s syntax resembles Java’s,
b_ut there are also some
differences

Scala’s version of the extended
for loop
(use <- as an alias for <)

var. Type iInstead of Type var]

}

object Exampk\/f

or (i <~ O until args.length) {
if (1>0) b.append("")
b. append(7\)toUpperCase)

def main(args: Array[String]) {
val b = new StringBuilder()

Console printin(\oString)

|

Arrays are mdexed
args(i) instead of args[l]

Scala is_functinnal

Arrays are instances of sequences }

with map and mkString methods

The last program can also Obj;"c f;izrigfeyzi“\/ |
be written in a Completely def main(args:|/Array{String]) {
different style: printin(args.
, map (_.toUpperCase) .
* Treat arrays as instances of mkString " ")
general sequence abstractions }

+ Use higher-order J
functions instead of loops

A cl

mkString is a method of Array which
forms a string of all elements with a
given separator between them

mk_string map (fun x -> toUpperCase(x), args), " "

Functions, Mapping, Filtering

Defining lambdas — nameless functions (types sometimes needed)
val f=x:Int =>x+ 42; F{is now a mapping ini-> ini
Closures! A way to haul around staie
vary = 3;
valg={x:Int=>y +=1; xty; }
Maps (and a cool way to do some functions)
List(1,2,3).map(_+10).foreach(printin)
Filtering (and ranges!)

(1 to 100). filter (_ % 7 == 3). foreach (printin)
* (Feels a bit like doing unix pipes?)

Scala is concise

Scala’s syntax is lightweight
and concise

Contributors:

* type inference

* lightweight classes
o extensible API's

« closures as
control abstractions

var capital = Map("US" — "Washington",
"France" — "paris",
"Japan" — "tokyo")

capital += ("Russia" — "Moskow")

for ((country, city) <« capital)
capital += (country — city.capitalize)

assert (capital("Japan") == "Tokyo")

Average reduction in LOC wrt Java: = 2
due to concise syntax and better abstraction capabilities

Big or small?

Every language design faces
the tension whether it should
be big or small:
* Big is good: expressive,
easy to use
« Small is good: elegant,
easy to learn
Can a language be both big
and small?

Scala’s approach: concentrate
on abstraction and
composition capabilities
instead of basic language
constructs

Scala adds

Scala removes

+ a pure object

- static members

system
+ operator - special treatment of
overloading primitive types

+ closures as control
abstractions

- break, continue

+ mixin composition
with traits

- special treatment of
interfaces

+ abstract type
members

- wildcards

+ pattern matching

The Scala design

Scala strives for the Scala unifies

tightest possible . -

integration of OOP and FP algebralc d?ta types
in a statically typed with class hierarchies,
language * functions with objects
This continues to have Has some benefits with
unexpected

concurrency
consequences

ADTs are class hierarchies

Many functional languages | Object-oriented programmers
have algebraic data types | object:

and pattern matching » ADTs are not extensible,
— ADTs violate the purity of the
: : OO0 data model
Concise and canonical bo AP
manipulation of data atiern malching breas
encapsulation

tructur it i j
SUrUcCtures + and it violates representation

independence!

The case modifier of an object or class
means you can pattern match on it

definitions describing
binary trees:

And here's an
inorder traversal of
binary trees:

This design keeps

Pattern matching in Scala

e[T]
case object Empty extends Tree

case class Binary(elem: T, left: Tree[T], right: Tree[T])
extends Tree

def inOrder [T] (t: Tree[T]): List[T] = t match {

case Empty => List()

case Binary(e, I, r) => inOrder(l) ::: List(e) ::: inOrder(r)
}

* purity: all cases are classes or objects

« extensibility: you can define more cases elsewhere

* encapsulation: only parameters of case classes are revealed

* representation independence using extractors [Beyond the scope of the course]

Pattern Scala vs. OCaml

abstract class Tree[T]

case object Empty extends Tree

case class Binary(elem: T, left: Tree[T], right: Tree[T])
extends Tree

def inOrder [T] (t: Tree[T]): List[T] = t match {

case Empty => List()

case Binary(e, I, r) => inOrder(l) ::: List(e) ::: inOrder(r)
}

type Tree = Empty | Binary of Element * Tree * Tree

let rec InOrder (t : tree) = match t with
| Empty ->]
| Binary (element, left, right) -> List.append(
List.append(inOrder(left), [element]), InOrder(right))

Mutable vs. Immutable Data Structures

Basic data structures in Scala are immutable
Operations will copy (if they must)

X —>a b cl\

y

y = X.drop(2)

z = X.map(_ + "h")

,—{ ah {>{ bh {>{ ch x —la b c[™~_

 Many positive consequences

Mutable vs. Immutable

« Mutable and immutable collections are not the
same type hierarchy!

* Have to copy the collection to change back and
forth, can’t cast

x.toList

More features

Supports lightweight syntax for anonymous functions,
higher-order functions, nested functions, currying

ML-style pattern matching
Integration with XML

* can write XML directly in Scala program
* can convert XML DTD into Scala class definitions

Support for regular expression patterns

Other features

Allows defining new control structures without
using macros, and while maintaining static

typing
Any function can be used as an infix or postfix
operator

Semicolon inference
Can define methods named +, <=or : :

Automatic Closure Construction

* Allows programmers to make their own control
structures

» Can tag the parameters of methods with the
modifier det

* When method is called, the actual def parameters
are not evaluated and a no-argument function is
passed

While loop example

TargetTest1 {
loopWhile(: = cond: Boolean)(:'= body: Unit): Unit =
(cond) {
body;
loopWhile(cond)(body);

}

i=10;
loopWhile (i > 0) {
Console.printin(i);
i=i-1

Scala object system

Class-based
Single inheritance

Can define singleton objects easily (no need for
static which is not really OO)

Traits, compound types, and views allow for
more flexibility

Dependent Multiple Inheritance (C++

class A |
field al;
field aZ;
method mli);
method m2 i} ;

ti

class C extends L |
field <l;
field oZ;
method mli);
method m2i) ;

¥
clazs D extends & |
field d4d1;

method m2 () ;
method md () ;

};

class E extends O, D {
field el1;
method m2Z i} ;
method md () ;
method m& () ;

};

Traits

Similar to interfaces in Java

They may have implementations of methods
But can't contain state

Can be multiply inherited from

Classes and Objects

trait Nat;

object Zero extends Nat {
def iszero: boolean = true;
def pred: Nat =
throw new Error('zZero.pred");

}

class Succ(n: Nat) extends Nat {
def iszero: boolean = false;
def pred: Nat = n;

}

More on Traits

Halfway between an interface and a class, called a trait

A class can incorporate as multiple Traits like Java
interfaces but unlike interfaces they can also contain
behavior, like classes

Also, like both classes and interfaces, traits can introduce
new methods

Unlike either, the definition of that behavior isn't checked
until the trait is actually incorporated as part of a class

Another Example of traits

trait Similarity {
def isSimilar(x: Any): Boolean;
def isNotSimilar(x: Any): Boolean = !isSimilar(x);

}

class Point(xc: Int, yc: Int) with Similarity {
var x: Int = Xc;
var y: Int = yc;
def isSimilar(obj: Any) =
obj.isInstanceOf[Point] &&
obj.asInstanceOf[Point].x == x &&
obj.asInstanceOf[Point].y ==y ;

Mixin class composition

* Basic inheritance model is single inheritance
 But mixin classes allow more flexibility

class Point2D(xc: Int, yc: Int) {
val X = Xc;
val y = yc;
// methods for manipulating PointZ2Ds
}
class CcoloredPoint2D(u: Int, v: Int, c: String)
extends Point2D(u, v) {
var color = c;
def setColor(newCol: String): Unit = color = newCol;

}

Mixin class composition example

Point2D

]

ColoredPoint2D Point3D ColoredPoint3D

ColoredPoint2D
|

class Point3D(xc: Int, yc: Int, zc: Int)
extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds
class ColoredPoint3D(x Int, yc: Int, zc: Int, col: String)
extends Point3D(xc, yc, zc)
with ColoredPoint2D(xc, yc, col);

Mixin class composition

 Mixin composition adds members explicitly defined
in ColoredPoint2D
(members that weren't inherited)

 Mixing a class C into another class D is legal only
as long as D’s superclass is a subclass of C's
superclass.
* I.e., D must inherit at least everything that C inherited

» Why?

Mixin class composition

» Remember that only members explicitly defined in
ColoredPoint2D are mixin inherited

« So, if those members refer to definitions that were inherited
from Point2D, they had better exist in ColoredPoint3D
* They do, since
ColoredPoint3D extends Point3D
which extends Point2D

Views

* Defines a coercion from one type to another
 Similar to conversion operators in C++/C#

trait Set {
def include(x: int): Set;
def contains(x: int): boolean

}

def view(list: List) : Set = new Set {
def include(x: int): Set = x prepend list;
def contains(x: int): boolean =
1iSEmpty &&
(list.head == x || list.tail contains Xx)

Covariance vs. Contravariance

Enforcing type safety in the presence of subtyping

If a function expects a formal argument of
type T1 = T2 and the actual argument has a
type S1 =2 S2 then

 what do have to require?

If a function assumes a precondition T1 and ensures a
postcondition T2

If the caller satisfies a precondition S1 and requires that S2
holds after the call
« What do we have to require?

Variance annotations

class Arrayl[a] {
def get(index: int): a
def set(index: int, elem: a): unit;

}

* Array[String] is not a subtype of Array[Any]
* Ifit were, we could do this:

val x = new Array[String](1);

val y : Array[Any] = X;

y.set(0, new FooBar());

// just stored a FooBar in a String array!

Variance Annotations

« Covariance is ok with immutable data structures

trait GenList[+T] {
def isEmpty: boolean;
def head: T;
def tail: GenList[T]
}
object Empty extends GenList[All] {
def isEmpty: boolean = true;
def head: A1l = throw new Error("Empty.head");
def tail: List[Al1] = throw new Error("Empty.tail");
}

class Cons[+T](x: T, Xs: GenList[T]) extends
GenList[T] {

def isEmpty: boolean = false;
def head: T = Xx;
def tail: GenList[T] = xs

}

Variance Annotations

* Can also have contravariant type parameters
* Useful for an object that can only be written to

« Scala checks that variance annotations are sound

covariant positions: immutable field types, method results
contravariant. method argument types

Type system ensures that covariant parameters are only used
covariant positions
(similar for contravariant)

Missing

Compound types
Types as members
Actors and concurrency
Libraries

Resources

The Scala programming language home page
(see http://www.scala-lang.org/)

The Scala mailing list
(see http://listes.epfl.ch/cgi-bin/doc_en?liste=scala)

The Scala wiki (see hitp://scala.sygneca.com/)

A Scala plug-in for Eclipse
(see http://www.scala-lang.org/downloads/eclipse/index.html)

A Scala plug-in for IntelliJ
(see http://plugins.intellij.net/plugin/?id=1347)

http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://listes.epfl.ch/cgi-bin/doc_en?liste=scala
http://listes.epfl.ch/cgi-bin/doc_en?liste=scala
http://listes.epfl.ch/cgi-bin/doc_en?liste=scala
http://scala.sygneca.com/
http://www.scala-lang.org/downloads/eclipse/index.html
http://www.scala-lang.org/downloads/eclipse/index.html
http://www.scala-lang.org/downloads/eclipse/index.html
http://plugins.intellij.net/plugin/?id=1347
http://plugins.intellij.net/plugin/?id=1347

References

The Scala Programming Language as presented by Donna Malayeri (see
http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt)

The Scala Language Specification 2.7
(seehttp://www.scala-lang.org/docu/files/ScalaReference.pdf)

The busy Java developer's guide to Scala: Of traits and behaviorsUsing Scala's
version of Java interfaces(see http://www.ibm.com/developerworks/javallibrary/j-
scala04298.html)

First Steps to Scala (in Scalazine) by Bill Venners, Martin Odersky, and Lex Spoon,
May 9, 2007 (see http://www.artima.com/scalazine/articles/steps.html)

http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt
http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt
http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.artima.com/scalazine/articles/steps.html

Summing Up [Odersky]

Scala blends functional and object-oriented programming.

This has worked well in the past: for instance in Smalltalk,
Python, or Ruby

However, Scala is goes farthest in unifying FP and OOP
in a statically typed language

This leads to pleasant and concise programs

Scala feels similar to a modern scripting language, but
without giving up static typing

=~ W=

Lessons Learned[Odersky]

Don't start from scratch
Don't be overly afraid to be different
Pick your battles

Think of a “killer-app”, but expect that in the end it
may well turn out to be something else

Provide a path from here to there

Twitter

Gilt
Foursquare
Coursera
Guardian
UBS
Bitgold
Linkin
Verizen

Scala Adaptation

 Yammer

Summary

An integration of OO and FP
* Also available in Ruby but with dynamic tryping

Static typing

Concise

Efficient

Support for concurrency

Already adapted

But requires extensive knowledge

Languages

« QOcaml
» Javascript
« Scala

Concepts &Techniques

Syntax
 Context free grammar
* Ambiguous grammars
* Syntax vs. semantics
* Predictive Parsing
Static semantics
« Scope rules
Semantics
* Small vs. big step

Runtime management

* Functional programming

Lambda calculus
Recursion

Higher order programming
Lazy vs. Eager evaluation
Pattern matching
Continuation

« Types

Type safety

Static vs. dynamic

Type checking vs. type inference
Most general type

Polymorphism

Type inference algorithm

