

The Scala
Programming Language

Mooly Sagiv

Slides taken from

Martin Odersky (EPFL)

Donna Malayeri (CMU)

Hila Peleg (TAU)

Modern Functional Programming
• Higher order

• Modules

• Pattern matching

• Statically typed with type inference

• Two viable alternatives

• Haskel

• Pure lazy evaluation and higher order programming leads to

Concise programming

• Support for domain specific languages

• I/O Monads

• Type classes

• OCaml

• Encapsulated side-effects via references

Then Why aren’t FP adapted?

• Education

• Lack of OO support

• Subtyping increases the complexity of type inference

• Programmers seeks control on the exact

implementation

• Imperative programming is natural in certain

situations

Why Scala?
(Coming from OCaml)

• Runs on the JVM/.NET

• Can use any Java code in Scala

• Combines functional and imperative programming in a

smooth way

• Effective library

• Inheritance

• General modularity mechanisms

The Java Programming Language

• Designed by Sun 1991-95

• Statically typed and type safe

• Clean and Powerful libraries

• Clean references and arrays

• Object Oriented with single inheritance

• Interfaces with multiple inhertitence

• Portable with JVM

• Effective JIT compilers

• Support for concurrency

• Useful for Internet

Java Critique

• Downcasting reduces the effectiveness of

static type checking

• Many of the interesting errors caught at runtime

• Still better than C, C++

• Huge code blowouts

• Hard to define domain specific knowledge

• A lot of boilerplate code

• Sometimes OO stands in our way

• Generics only partially helps

Why Scala?
(Coming from Java/C++)

• Runs on the JVM/.NET

• Can use any Java code in Scala

• Almost as fast as Java (within 10%)

• Much shorter code

• Odersky reports 50% reduction in most code over Java

• Local type inference

• Fewer errors

• No Null Pointer problems

• More flexibility

• As many public classes per source file as you want

• Operator overloading

Scala

• Designed and implemented by Martin Odersky [2001-]

• Motivated by towards “ordinary” programmers

• Scalable version of software

• Focused on abstractions, composition, decomposition

• Unifies OOP and FP

• Exploit FP on a mainstream platform

• Higher order functions

• Pattern matching

• Lazy evaluation

• Interoperates with JVM and .NET

• Better support for component software

• Much smaller code

Scala

• Scala is an object-oriented and functional language
which is completely interoperable with Java (.NET)

• Remove some of the more arcane constructs of these

environments and adds instead:

(1) a uniform object model,

(2) pattern matching and higher-order functions,

(3) novel ways to abstract and compose programs

Getting Started in Scala

• scala

• Runs compiled scala code

• Or without arguments, as an interpreter!

• scalac - compiles

• fsc - compiles faster! (uses a background server to minimize startup time)

• Go to scala-lang.org for downloads/documentation

• Read Scala: A Scalable Language

 (see http://www.artima.com/scalazine/articles/scalable-language.html)

http://www.scala-lang.org/node/211
http://www.scala-lang.org/node/211
http://www.scala-lang.org/node/211
http://www.artima.com/scalazine/articles/scalable-language.html
http://www.artima.com/scalazine/articles/scalable-language.html
http://www.artima.com/scalazine/articles/scalable-language.html

Plan

Motivation

• Scala vs. Java

• Modularity

• Discussion

Features of Scala

• Scala is both functional and object-oriented

• every value is an object

• every function is a value--including methods

• Scala is statically typed

• includes a local type inference system:

• in Java 1.5:
Pair<Integer, String> p =

 new Pair<Integer, String>(1, "Scala");

• in Scala:
val p = new MyPair(1, "scala");

Basic Scala

• Use var to declare variables:

var x = 3;

x += 4;

• Use val to declare values (final vars)

val y = 3;

y += 4; // error

• Notice no types, but it is statically typed
var x = 3;

x = “hello world”; // error

• Type annotations:
var x : Int = 3;

let x = ref 3 in

x := !x + 4

OCaml

Scala’s version of the extended

for loop

(use <- as an alias for )

Scala is interoperable
 Scala programs interoperate

seamlessly with Java class
libraries:

• Method calls

• Field accesses

• Class inheritance

• Interface implementation

 all work as in Java

 Scala programs compile to JVM
bytecodes

Scala’s syntax resembles Java’s,
but there are also some
differences

 object Example1 {

 def main(args: Array[String]) {

 val b = new StringBuilder()

 for (i  0 until args.length) {

 if (i > 0) b.append(" ")

 b.append(args(i).toUpperCase)

 }

 Console.println(b.toString)

 }

}

object instead of

static members
var: Type instead of Type var

Arrays are indexed

args(i) instead of args[i]

map is a method of Array which

applies the function on its right

to each array element

Scala is functional

 The last program can also

be written in a completely

different style:

• Treat arrays as instances of

general sequence abstractions

• Use higher-order

functions instead of loops

object Example2 {

 def main(args: Array[String]) {

 println(args.

 map (_.toUpperCase) .

 mkString " ")

 }

}

Arrays are instances of sequences

with map and mkString methods

A closure which applies the

toUpperCase method to its

String argument
mkString is a method of Array which

forms a string of all elements with a

given separator between them

mk_string map (fun x -> toUpperCase(x), args), " "

Functions, Mapping, Filtering

• Defining lambdas – nameless functions (types sometimes needed)

val f = x :Int => x + 42; f is now a mapping int-> int

• Closures! A way to haul around state

 var y = 3;

 val g = {x : Int => y += 1; x+y; }

• Maps (and a cool way to do some functions)

List(1,2,3).map(_+10).foreach(println)

• Filtering (and ranges!)
(1 to 100). filter (_ % 7 == 3). foreach (println)

• (Feels a bit like doing unix pipes?)

Scala is concise

 Scala’s syntax is lightweight
and concise

 Contributors:
• type inference

• lightweight classes

• extensible API’s

• closures as
control abstractions

Average reduction in LOC wrt Java: ≥ 2

 due to concise syntax and better abstraction capabilities

var capital = Map("US"  "Washington",

 "France"  "paris",

 "Japan"  "tokyo")

capital += ("Russia"  "Moskow")

for ((country, city)  capital)

 capital += (country  city.capitalize)

assert (capital("Japan") == "Tokyo")

Big or small?
 Every language design faces

the tension whether it should
be big or small:
• Big is good: expressive,

easy to use

• Small is good: elegant,
easy to learn

 Can a language be both big
and small?

 Scala’s approach: concentrate
on abstraction and
composition capabilities
instead of basic language
constructs

Scala adds Scala removes

+ a pure object

 system

- static members

+ operator

 overloading

- special treatment of

 primitive types

+ closures as control

 abstractions

- break, continue

+ mixin composition

 with traits

- special treatment of

 interfaces

+ abstract type

 members

- wildcards

+ pattern matching

The Scala design

 Scala strives for the
tightest possible
integration of OOP and FP
in a statically typed
language

 This continues to have
unexpected
consequences

 Scala unifies

• algebraic data types
with class hierarchies,

• functions with objects

 Has some benefits with
concurrency

ADTs are class hierarchies

 Many functional languages

have algebraic data types

and pattern matching

 

 Concise and canonical

manipulation of data

structures

 Object-oriented programmers

object:

• ADTs are not extensible,

• ADTs violate the purity of the

OO data model

• Pattern matching breaks

encapsulation

• and it violates representation

independence!

Pattern matching in Scala

 Here's a a set of
definitions describing
binary trees:

 And here's an
inorder traversal of
binary trees:

 This design keeps

• purity: all cases are classes or objects

• extensibility: you can define more cases elsewhere

• encapsulation: only parameters of case classes are revealed

• representation independence using extractors [Beyond the scope of the course]

abstract class Tree[T]

case object Empty extends Tree

case class Binary(elem: T, left: Tree[T], right: Tree[T])

 extends Tree

def inOrder [T] (t: Tree[T]): List[T] = t match {

 case Empty => List()

 case Binary(e, l, r) => inOrder(l) ::: List(e) ::: inOrder(r)

}

The case modifier of an object or class

means you can pattern match on it

Pattern Scala vs. OCaml
abstract class Tree[T]

case object Empty extends Tree

case class Binary(elem: T, left: Tree[T], right: Tree[T])

 extends Tree

def inOrder [T] (t: Tree[T]): List[T] = t match {

 case Empty => List()

 case Binary(e, l, r) => inOrder(l) ::: List(e) ::: inOrder(r)

}

type Tree = Empty | Binary of Element * Tree * Tree

let rec InOrder (t : tree) = match t with

 | Empty -> []

 | Binary (element, left, right) -> List.append(

 List.append(inOrder(left), [element]), InOrder(right))

• Basic data structures in Scala are immutable

• Operations will copy (if they must)

• Many positive consequences

Mutable vs. Immutable Data Structures

z = x.map(_ + "h")

ah bh ch

a b c x

y

a b c x
y

y = x.drop(2)

z

Mutable vs. Immutable

• Mutable and immutable collections are not the

same type hierarchy!

• Have to copy the collection to change back and

forth, can’t cast

x.toList

List

MutableList

More features

• Supports lightweight syntax for anonymous functions,

higher-order functions, nested functions, currying

• ML-style pattern matching

• Integration with XML

• can write XML directly in Scala program

• can convert XML DTD into Scala class definitions

• Support for regular expression patterns

Other features

• Allows defining new control structures without

using macros, and while maintaining static

typing

• Any function can be used as an infix or postfix

operator

• Semicolon inference

• Can define methods named +, <= or ::

Automatic Closure Construction

• Allows programmers to make their own control

structures

• Can tag the parameters of methods with the

modifier def

• When method is called, the actual def parameters

are not evaluated and a no-argument function is

passed

object TargetTest1 {

 def loopWhile(def cond: Boolean)(def body: Unit): Unit =

 if (cond) {

 body;

 loopWhile(cond)(body);

 }

 var i = 10;

 loopWhile (i > 0) {

 Console.println(i);

 i = i – 1

 }

}

While loop example

Define loopWhile method

Use it with nice syntax

Scala object system

• Class-based

• Single inheritance

• Can define singleton objects easily (no need for

static which is not really OO)

• Traits, compound types, and views allow for

more flexibility

Dependent Multiple Inheritance (C++)

Traits

• Similar to interfaces in Java

• They may have implementations of methods

• But can’t contain state

• Can be multiply inherited from

Classes and Objects

trait Nat;

object Zero extends Nat {

 def isZero: boolean = true;

 def pred: Nat =

 throw new Error("Zero.pred");

}

class Succ(n: Nat) extends Nat {

 def isZero: boolean = false;

 def pred: Nat = n;

}

More on Traits

• Halfway between an interface and a class, called a trait

• A class can incorporate as multiple Traits like Java
interfaces but unlike interfaces they can also contain
behavior, like classes

• Also, like both classes and interfaces, traits can introduce
new methods

• Unlike either, the definition of that behavior isn't checked
until the trait is actually incorporated as part of a class

Another Example of traits

trait Similarity {

 def isSimilar(x: Any): Boolean;

 def isNotSimilar(x: Any): Boolean = !isSimilar(x);

}

class Point(xc: Int, yc: Int) with Similarity {

 var x: Int = xc;

 var y: Int = yc;

 def isSimilar(obj: Any) =

 obj.isInstanceOf[Point] &&

 obj.asInstanceOf[Point].x == x &&

 obj.asInstanceOf[Point].y == y ;

}

Mixin class composition

• Basic inheritance model is single inheritance

• But mixin classes allow more flexibility

class Point2D(xc: Int, yc: Int) {

 val x = xc;

 val y = yc;

 // methods for manipulating Point2Ds

}

class ColoredPoint2D(u: Int, v: Int, c: String)

 extends Point2D(u, v) {

 var color = c;

 def setColor(newCol: String): Unit = color = newCol;

}

class ColoredPoint3D(x Int, yc: Int, zc: Int, col: String)

 extends Point3D(xc, yc, zc)

 with ColoredPoint2D(xc, yc, col);

Mixin class composition example

ColoredPoint2D

Point2D

class Point3D(xc: Int, yc: Int, zc: Int)

 extends Point2D(xc, yc) {

 val z = zc;

 // code for manipulating Point3Ds

Point3D ColoredPoint3D

ColoredPoint2D

Mixin class composition

• Mixin composition adds members explicitly defined

in ColoredPoint2D

(members that weren’t inherited)

• Mixing a class C into another class D is legal only

as long as D’s superclass is a subclass of C’s

superclass.

• i.e., D must inherit at least everything that C inherited

• Why?

Mixin class composition

• Remember that only members explicitly defined in

ColoredPoint2D are mixin inherited

• So, if those members refer to definitions that were inherited

from Point2D, they had better exist in ColoredPoint3D

• They do, since

ColoredPoint3D extends Point3D

which extends Point2D

Views

• Defines a coercion from one type to another

• Similar to conversion operators in C++/C#

trait Set {

 def include(x: int): Set;

 def contains(x: int): boolean

}

def view(list: List) : Set = new Set {

 def include(x: int): Set = x prepend list;

 def contains(x: int): boolean =

 !isEmpty &&
 (list.head == x || list.tail contains x)

}

Covariance vs. Contravariance

• Enforcing type safety in the presence of subtyping

• If a function expects a formal argument of

type T1  T2 and the actual argument has a

type S1  S2 then

• what do have to require?

• If a function assumes a precondition T1 and ensures a

postcondition T2

• If the caller satisfies a precondition S1 and requires that S2

holds after the call

• What do we have to require?

Variance annotations

class Array[a] {

 def get(index: int): a

 def set(index: int, elem: a): unit;

}

• Array[String] is not a subtype of Array[Any]

• If it were, we could do this:

val x = new Array[String](1);

val y : Array[Any] = x;

y.set(0, new FooBar());

// just stored a FooBar in a String array!

Variance Annotations
• Covariance is ok with immutable data structures

trait GenList[+T] {
 def isEmpty: boolean;
 def head: T;
 def tail: GenList[T]
}
object Empty extends GenList[All] {
 def isEmpty: boolean = true;
 def head: All = throw new Error("Empty.head");
 def tail: List[All] = throw new Error("Empty.tail");
}
class Cons[+T](x: T, xs: GenList[T]) extends

GenList[T] {
 def isEmpty: boolean = false;
 def head: T = x;
 def tail: GenList[T] = xs
}

Variance Annotations

• Can also have contravariant type parameters
• Useful for an object that can only be written to

• Scala checks that variance annotations are sound

• covariant positions: immutable field types, method results

• contravariant: method argument types

• Type system ensures that covariant parameters are only used

covariant positions

(similar for contravariant)

Missing

• Compound types

• Types as members

• Actors and concurrency

• Libraries

Resources

• The Scala programming language home page
 (see http://www.scala-lang.org/)

• The Scala mailing list
 (see http://listes.epfl.ch/cgi-bin/doc_en?liste=scala)

• The Scala wiki (see http://scala.sygneca.com/)

• A Scala plug-in for Eclipse
(see http://www.scala-lang.org/downloads/eclipse/index.html)

• A Scala plug-in for IntelliJ
(see http://plugins.intellij.net/plugin/?id=1347)

http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://listes.epfl.ch/cgi-bin/doc_en?liste=scala
http://listes.epfl.ch/cgi-bin/doc_en?liste=scala
http://listes.epfl.ch/cgi-bin/doc_en?liste=scala
http://scala.sygneca.com/
http://www.scala-lang.org/downloads/eclipse/index.html
http://www.scala-lang.org/downloads/eclipse/index.html
http://www.scala-lang.org/downloads/eclipse/index.html
http://plugins.intellij.net/plugin/?id=1347
http://plugins.intellij.net/plugin/?id=1347

References

• The Scala Programming Language as presented by Donna Malayeri (see
http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt)

• The Scala Language Specification 2.7

• (seehttp://www.scala-lang.org/docu/files/ScalaReference.pdf)

• The busy Java developer's guide to Scala: Of traits and behaviorsUsing Scala's
version of Java interfaces(see http://www.ibm.com/developerworks/java/library/j-
scala04298.html)

• First Steps to Scala (in Scalazine) by Bill Venners, Martin Odersky, and Lex Spoon,
May 9, 2007 (see http://www.artima.com/scalazine/articles/steps.html)

http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt
http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt
http://www.cs.cmu.edu/~aldrich/courses/819/slides/scala.ppt
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.ibm.com/developerworks/java/library/j-scala04298.html
http://www.artima.com/scalazine/articles/steps.html

Summing Up [Odersky]

• Scala blends functional and object-oriented programming.

• This has worked well in the past: for instance in Smalltalk,
Python, or Ruby

• However, Scala is goes farthest in unifying FP and OOP
in a statically typed language

• This leads to pleasant and concise programs

• Scala feels similar to a modern scripting language, but
without giving up static typing

Lessons Learned[Odersky]

1. Don’t start from scratch

2. Don’t be overly afraid to be different

3. Pick your battles

4. Think of a “killer-app”, but expect that in the end it

may well turn out to be something else

5. Provide a path from here to there

Scala Adaptation

• Twitter

• Gilt

• Foursquare

• Coursera

• Guardian

• UBS

• Bitgold

• Linkin

• Verizen

• Yammer

Summary

• An integration of OO and FP

• Also available in Ruby but with dynamic tryping

• Static typing

• Concise

• Efficient

• Support for concurrency

• Already adapted

• But requires extensive knowledge

Languages

• Ocaml

• Javascript

• Scala

Concepts &Techniques

• Syntax

• Context free grammar

• Ambiguous grammars

• Syntax vs. semantics

• Predictive Parsing

• Static semantics

• Scope rules

• Semantics

• Small vs. big step

• Runtime management

• Functional programming
• Lambda calculus

• Recursion

• Higher order programming

• Lazy vs. Eager evaluation

• Pattern matching

• Continuation

• Types

• Type safety

• Static vs. dynamic

• Type checking vs. type inference

• Most general type

• Polymorphism

• Type inference algorithm

