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Computation Models

Turing Machines
Wang Machines

Counter Programs

Lambda Calculus



Historical Context

Like Alan Turing, another mathematician, Alonzo Church, was very
Interested, during the 1930s, in the question “What is a computable
function?”

He developed a formal system known as the pure lambda calculus, in
order to describe programs in a simple and precise way.

Today the Lambda Calculus serves as a mathematical foundation for

the study of functional programming languages, and especially for the
study of “denotational semantics.”

Reference: http://en.wikipedia.org/wiki/Lambda_calculus



Basics

e Repetitive expressions can be compactly
represented using functional abstraction

e Example:
—(5*4*3*2 *1) +(7*6*5*4*3*2%*]) =
— factorial(5) + factorial(7)
— factorial(n) = if n =0 then 1 else n * factorial(n-1)
— factorial= An. if n =0 then O else n * factorial(n-1)
— factorial=An. if n =0 then O else n * apply (factorial

(n-1))



Untyped Lambda Calculus

t= terms
X variable
A Xt abstraction
tt application

Terms can be represented as abstract syntax trees

Syntactic Conventions

» Applications associates to left
e;e,e3= (e;e,)e;

» The body of abstraction extends as far as possible

o AX. AY. Xy X =AX. (AY. (XY) X)



Lambda Calculus in Python

(AX.X)Y  (lambda x: x) (y)



Substitution

 Replace aterm by a term
—X+((x+2)*y)[x=>3,y>7]=7?
—X+((x+2)*y)[x—>z+2]="7

—X+((x+2)*y)[t—z+2]="7
 More tricky in programming languages
— Why?



Free vs. Bound Variables

e An occurrence of x is bound in tif it occurs in Ax. t
— otherwise it is free
— AXis a binder

e Examples
— ld=Ax. x
— Ay. X (y 2)
— Az. AX. Ay. x (y 2)
— (AX. X) X

FV:t > 2Varis the set free variables of t
FV(x) = {x}
FV( A x. 1) = FV(t) — {x}
FV (t, t,) = FV(t,) U FV(t,)



Beta-Reduction

XS] X =5

X—Sly =y If y # X

XS] (Y. t) = Ay. [Xx Bs] 1, Ify =x and ygFV(s)
xes] (t; 1) = ([x=s] ty) ([x=s] 1)




Beta-Reduction

(AX. t) L= [XP 1]t (B-reduction)

redex

AX.X)y =5 Y
(A X. X (AX. X)) (Ur)=gur(AX X)

(A X (Aw. xW)) (Y Z2) =5 AW y z W



Alpha- Conversion

Alpha conversion:
Renaming of a bound variable and its bound occurrences

AXAYY =, AX.AZ.Z



Divergence

(A X 1) =g [XPL] (B-reduction)
(A x.y) (A X.(x X)) (A X.(X X)))

Gpply)
(o) pply
o@ (0

Qpply Qpply
O O



Divergence

(A X 1) =g [XPL] 1 (B-reduction)
(A X.(X X)) (A X.(X X))




Different Evaluation Orders

(A X 1) =g [XPL] (B-reduction)
(A x.y) (A X.(x X)) (A X.(X X)))

Qpply Qppiy

~, G a2y
(3 o O o

Qpply Qpply Qppiy Qpply
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Different Evaluation Orders

(A X 1) =g [XPL] (B-reduction)
(A x.y) (A X.(x X)) (A X.(X X)))

Qpply

=B

QX QX D

Qpply Qpply
W O




Different Evaluation Orders

(A X 1) =g [XPL] (B-reduction)
(A X.y) (A X.(X X)) (A X.(x X))
Cpply
def f():
@ m while True: pass
0 @ @ def g(x):
m m return 2

° ° ° @ print g(f())



Different Evaluation Orders
(AX 1)L =[xHt]ty (B-reduction)

(A X. X) (AX. X) (Az. (AX. X) 2)) =id (id (Az. Id 2))
pply

G ppiy)
°®®

() apply
S
()



Order of Evaluation

Full-beta-reduction
— All possible orders
Applicative order call by value (Eager)
— Left to right
— Fully evaluate arguments before function
Normal order
— The leftmost, outermost redex is always reduced first
Call by name
— Evaluate arguments as needed
Call by need
— Evaluate arguments as needed and store for subsequent usages
— Implemented in Haskel



Different Evaluation Orders

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))

Qpply
Q) Qupp
) Gw G

Qo (W W
DO



Call By Value

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))




Call By Name (Lazy)

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))

G S
GO Gory aD
) Wi = @O *
G (@ G (2
SO



Normal Order

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))

Qpply Q3

N

GO Gon @) %
G W = W&® 7 "

G O W (&
GO



Call-by-value Operational Semantics

= terms
_ V= values
X variable
_ A Xt abstraction values
A Xt abstraction
o other values
tt application
(A X. 1)V, = [XPV,] 1ty (E-AppAbs)
t, =t
. (E-APPL1)
t.L = 4,1
t t’
2= 12 (E-APPL2)

vi b, => v, t,



Programming in the Lambda Calculus
Multiple arguments

f=A(x,vy).s
-> Currying

f=AX. Ay. s

fvw=
(fv)w =
(AX. AY.SV) W =
AY.[X »V]S) w)=

X =V [y »w] s



Programming in the Lambda Calculus
Booleans

tru = At. Af. t

fls = At. Af. f

test=Al. Am.An.Imn

test tru then else = (Al. Am. An. | m n) (At. Af. t)
test fls then else = (Al. Am. An. | m n) (At. Af. f)
and =Ab. Ac. b cfls

or="7



Programming in the Lambda Calculus
Numerals

* Cp=AS. Az.2z

* C;=AS.AZ.52Z

* C,=AS. Az.5 (s 2)

 C;=AS. Az.s (s (s z))
 succ=An.As. Az.s(nsz)

e plus=Am.An.As. Az.ms(ns z)
e times = Am. An. m (plus n) ¢,

> Turing Complete



Combinators

A combinator is a function in the Lambda
Calculus having no free variables

Examples

— AX. X is @ combinator

— AX. Y. (x ) is a combinator

— AX.AY. (x 2) is not a combinator

Combinators can serve nicely as modular building
blocks for more complex expressions

The Church numerals and simulated booleans are
examples of useful combinators



Loops in Lambda Calculus

e omega= (AX. X X) (AX. X X)

e Recursion can be simulated

—Y = (Ax. (Ay. x (y y)) (Ay. x (y y)))

-Yf =% f(Yf)



Factorial in the Lambda Calculus

Define H as follows, to represent 1 step of recursion.
Note that ISZERO, MULT, and PRED represent particular
combinators that accomplish these functions

H = (1 f. 2 n.(ISZERO n) 1 (MULT n (f (PRED n))))
Then we can create

FACTORIAL=Y H
= (Ax. (Y. xyy) (Ay. x (YY) A f. A n.(ISZERO n) 1 (MULT n (f (PRED n))))

Reference: http://en.wikipedia.org/wiki/Y _combinator



Consistency of Function Application

Prevent runtime errors during evaluation
Reject inconsistent terms

What does x x” mean?

Cannot be always enforced

— if <tricky computation> then true else (Ax. x)



Simple Typed Lambda Calculus

terms
variable
abstraction

application

types
types of functions



Summary: Lambda Calculus

Powerful

The ultimate assembly language

Useful to illustrate ideas

But can be counterintuitive

Usually extended with useful syntactic sugars

Other calculi exist
— pi-calculus

— object calculus

— mobile ambients
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