Lambda Calculus

Oded Padon & Mooly Sagiv

(original slides by Kathleen Fisher, John Mitchell,
Shachar Itzhaky, S. Tanimoto)

Computation Models

Turing Machines
Wang Machines

Counter Programs

Lambda Calculus

Historical Context

Like Alan Turing, another mathematician, Alonzo Church, was very
Interested, during the 1930s, in the question “What is a computable
function?”

He developed a formal system known as the pure lambda calculus, in
order to describe programs in a simple and precise way.

Today the Lambda Calculus serves as a mathematical foundation for

the study of functional programming languages, and especially for the
study of “denotational semantics.”

Reference: http://en.wikipedia.org/wiki/Lambda_calculus

Basics

e Repetitive expressions can be compactly
represented using functional abstraction

e Example:
—(5*4*3*2 *1) +(7*6*5*4*3*2%*]) =
— factorial(5) + factorial(7)
— factorial(n) = if n =0 then 1 else n * factorial(n-1)
— factorial= An. if n =0 then O else n * factorial(n-1)
— factorial=An. if n =0 then O else n * apply (factorial

(n-1))

Untyped Lambda Calculus

t= terms
X variable
A Xt abstraction
tt application

Terms can be represented as abstract syntax trees

Syntactic Conventions

» Applications associates to left
e;e,e3= (e;e,)e;

» The body of abstraction extends as far as possible

o AX. AY. Xy X =AX. (AY. (XY) X)

Lambda Calculus in Python

(AX.X)Y (lambda x: x) (y)

Substitution

 Replace aterm by a term
—X+((x+2)*y)[x=>3,y>7]=7?
—X+((x+2)*y)[x—>z+2]="7

—X+((x+2)*y)[t—z+2]="7
 More tricky in programming languages
— Why?

Free vs. Bound Variables

e An occurrence of x is bound in tif it occurs in Ax. t
— otherwise it is free
— AXis a binder

e Examples
— ld=Ax. x
— Ay. X (y 2)
— Az. AX. Ay. x (y 2)
— (AX. X) X

FV:t > 2Varis the set free variables of t
FV(x) = {x}
FV(A x. 1) = FV(t) — {x}
FV (t, t,) = FV(t,) U FV(t,)

Beta-Reduction

XS] X =5

X—Sly =y If y # X

XS] (Y. t) = Ay. [Xx Bs] 1, Ify =x and ygFV(s)
xes] (t; 1) = ([x=s] ty) ([x=s] 1)

Beta-Reduction

(AX. t) L= [XP 1]t (B-reduction)

redex

AX.X)y =5 Y
(A X. X (AX. X)) (Ur)=gur(AX X)

(A X (Aw. xW)) (Y Z2) =5 AW y z W

Alpha- Conversion

Alpha conversion:
Renaming of a bound variable and its bound occurrences

AXAYY =, AX.AZ.Z

Divergence

(A X 1) =g [XPL] (B-reduction)
(A x.y) (A X.(x X)) (A X.(X X)))

Gpply)
(o) pply
o@ (0

Qpply Qpply
O O

Divergence

(A X 1) =g [XPL] 1 (B-reduction)
(A X.(X X)) (A X.(X X))

Different Evaluation Orders

(A X 1) =g [XPL] (B-reduction)
(A x.y) (A X.(x X)) (A X.(X X)))

Qpply Qppiy

~, G a2y
(3 o O o

Qpply Qpply Qppiy Qpply
WD W OO0

Different Evaluation Orders

(A X 1) =g [XPL] (B-reduction)
(A x.y) (A X.(x X)) (A X.(X X)))

Qpply

=B

QX QX D

Qpply Qpply
W O

Different Evaluation Orders

(A X 1) =g [XPL] (B-reduction)
(A X.y) (A X.(X X)) (A X.(x X))
Cpply
def f():
@ m while True: pass
0 @ @ def g(x):
m m return 2

° ° ° @ print g(f())

Different Evaluation Orders
(AX 1)L =[xHt]ty (B-reduction)

(A X. X) (AX. X) (Az. (AX. X) 2)) =id (id (Az. Id 2))
pply

G ppiy)
°®®

() apply
S
()

Order of Evaluation

Full-beta-reduction
— All possible orders
Applicative order call by value (Eager)
— Left to right
— Fully evaluate arguments before function
Normal order
— The leftmost, outermost redex is always reduced first
Call by name
— Evaluate arguments as needed
Call by need
— Evaluate arguments as needed and store for subsequent usages
— Implemented in Haskel

Different Evaluation Orders

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))

Qpply
Q) Qupp
) Gw G

Qo (W W
DO

Call By Value

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))

Call By Name (Lazy)

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))

G S
GO Gory aD
) Wi = @O *
G (@ G (2
SO

Normal Order

(AX.AY.(AZ.2)Yy) (Au.u) (A w. w))

Qpply Q3

N

GO Gon @) %
G W = W&® 7 "

G O W (&
GO

Call-by-value Operational Semantics

= terms
_ V= values
X variable
_ A Xt abstraction values
A Xt abstraction
o other values
tt application
(A X. 1)V, = [XPV,] 1ty (E-AppAbs)
t, =t
. (E-APPL1)
t.L = 4,1
t t’
2= 12 (E-APPL2)

vi b, => v, t,

Programming in the Lambda Calculus
Multiple arguments

f=A(x,vy).s
-> Currying

f=AX. Ay. s

fvw=
(fv)w =
(AX. AY.SV) W =
AY.[X »V]S) w)=

X =V [y »w] s

Programming in the Lambda Calculus
Booleans

tru = At. Af. t

fls = At. Af. f

test=Al. Am.An.Imn

test tru then else = (Al. Am. An. | m n) (At. Af. t)
test fls then else = (Al. Am. An. | m n) (At. Af. f)
and =Ab. Ac. b cfls

or="7

Programming in the Lambda Calculus
Numerals

* Cp=AS. Az.2z

* C;=AS.AZ.52Z

* C,=AS. Az.5 (s 2)

 C;=AS. Az.s (s (s z))
 succ=An.As. Az.s(nsz)

e plus=Am.An.As. Az.ms(ns z)
e times = Am. An. m (plus n) ¢,

> Turing Complete

Combinators

A combinator is a function in the Lambda
Calculus having no free variables

Examples

— AX. X is @ combinator

— AX. Y. (x) is a combinator

— AX.AY. (x 2) is not a combinator

Combinators can serve nicely as modular building
blocks for more complex expressions

The Church numerals and simulated booleans are
examples of useful combinators

Loops in Lambda Calculus

e omega= (AX. X X) (AX. X X)

e Recursion can be simulated

—Y = (Ax. (Ay. x (y y)) (Ay. x (y y)))

-Yf =% f(Yf)

Factorial in the Lambda Calculus

Define H as follows, to represent 1 step of recursion.
Note that ISZERO, MULT, and PRED represent particular
combinators that accomplish these functions

H = (1 f. 2 n.(ISZERO n) 1 (MULT n (f (PRED n))))
Then we can create

FACTORIAL=Y H
= (Ax. (Y. xyy) (Ay. x (YY) A f. A n.(ISZERO n) 1 (MULT n (f (PRED n))))

Reference: http://en.wikipedia.org/wiki/Y _combinator

Consistency of Function Application

Prevent runtime errors during evaluation
Reject inconsistent terms

What does x x” mean?

Cannot be always enforced

— if <tricky computation> then true else (Ax. x)

Simple Typed Lambda Calculus

terms
variable
abstraction

application

types
types of functions

Summary: Lambda Calculus

Powerful

The ultimate assembly language

Useful to illustrate ideas

But can be counterintuitive

Usually extended with useful syntactic sugars

Other calculi exist
— pi-calculus

— object calculus

— mobile ambients

	Lambda Calculus
	Computation Models
	Historical Context
	Basics
	Untyped Lambda Calculus
	Lambda Calculus in Python
	Substitution
	Free vs. Bound Variables
	Beta-Reduction
	Beta-Reduction
	Alpha- Conversion
	Divergence
	Divergence
	Different Evaluation Orders
	Different Evaluation Orders
	Different Evaluation Orders
	Different Evaluation Orders
	Order of Evaluation
	Different Evaluation Orders
	Call By Value
	Call By Name (Lazy)
	Normal Order
	Call-by-value Operational Semantics
	Programming in the Lambda Calculus�Multiple arguments�
	Programming in the Lambda Calculus �Booleans
	Programming in the Lambda Calculus �Numerals
	Combinators
	Loops in Lambda Calculus
	Factorial in the Lambda Calculus
	Consistency of Function Application
	Simple Typed Lambda Calculus
	Summary: Lambda Calculus

