Types and Type Inference

Mooly Sagiv

Slides by Kathleen Fisher and John Mitchell

Reading: “Concepts in Programming Languages”, Revised Chapter 6 - handout on the course homepage
Outline

• General discussion of types
 – What is a type?
 – Compile-time versus run-time checking
 – Conservative program analysis

• Type inference
 – Discuss algorithm and examples
 – Illustrative example of static analysis algorithm

• Polymorphism
 – Uniform versus non-uniform implementations
Language Goals and Trade-offs

• Thoughts to keep in mind
 – What features are convenient for programmer?
 – What other features do they prevent?
 – What are design tradeoffs?
 • Easy to write but harder to read?
 • Easy to write but poorer error messages?
 – What are the implementation costs?
What is a type?

- A type is a collection of computable values that share some structural property.

Examples
- Integer
- String
- \(\text{Int} \to \text{Bool} \)
- \((\text{Int} \to \text{Int}) \to \text{Bool}\)
- \([a] \to a\)
- \([a] \times a \to [a]\)

Non-examples
- \(\{3, \text{True}, \lambda x \to x\}\)
- Even integers
- \(\{f: \text{Int} \to \text{Int} \mid x > 3 \implies f(x) > x \times (x+1)\}\)

Distinction between sets of values that are types and sets that are not types is *language dependent*.
Advantages of Types

• Program organization and documentation
 – Separate types for separate concepts
 • Represent concepts from problem domain
 – Document intended use of declared identifiers
 • Types can be checked, unlike program comments

• Identify and prevent errors
 – Compile-time or run-time checking can prevent meaningless computations such as \(3 + \text{true} \) – “Bill”

• Support optimization
 – Example: short integers require fewer bits
 – Access components of structures by known offset
What is a type error?

- Whatever the compiler/interpreter says it is?
- Something to do with bad bit sequences?
 - Floating point representation has specific form
 - An integer may not be a valid float
- Something about programmer intent and use?
 - A type error occurs when a value is used in a way that is inconsistent with its definition
 - Example: declare as character, use as integer
Type errors are language dependent

• Array out of bounds access
 – C/C++: runtime errors
 – Haskell/Java: dynamic type errors

• Null pointer dereference
 – C/C++: run-time errors
 – Haskell/ML: pointers are hidden inside datatypes
 • Null pointer dereferences would be incorrect use of these datatypes, therefore static type errors
Compile-time vs Run-time Checking

- JavaScript and Lisp use run-time type checking
 - \(f(x) \) Make sure \(f \) is a function before calling \(f \)

- Haskell and Java use compile-time type checking
 - \(f(x) \) Must have \(f :: A \rightarrow B \) and \(x :: A \)

- Basic tradeoff
 - Both kinds of checking prevent type errors
 - Run-time checking slows down execution
 - Compile-time checking restricts program flexibility
 - JavaScript array: elements can have different types
 - Haskell list: all elements must have same type
 - Which gives better programmer diagnostics?
Expressiveness

• In JavaScript, we can write a function like

```javascript
function f(x) { return x < 10 ? x : x(); }
```

Some uses will produce type error, some will not.

• Static typing always conservative

```javascript
if (complicated-boolean-expression)
  then  f(5);
else  f(15);
```
Type Safety

- Type safe programming languages protect its own abstractions
- Type safe programs cannot go wrong
- No run-time errors
- But exceptions are fine
- The small step semantics cannot get stuck
- Type safety is proven at language design time
Relative Type-Safety of Languages

- **Not safe:** BCPL family, including C and C++
 - Casts, unions, pointer arithmetic
- **Almost safe:** Algol family, Pascal, Ada
 - Dangling pointers
 - Allocate a pointer \(p \) to an integer, deallocate the memory referenced by \(p \), then later use the value pointed to by \(p \)
 - Hard to make languages with explicit deallocation of memory fully type-safe
- **Safe:** Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 - Dynamically typed: Lisp, Smalltalk, JavaScript
 - Statically typed: ML, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data.
Type Checking vs Type Inference

• Standard type checking:

```c
int f(int x) { return x+1; }
int g(int y) { return f(y+1)*2; }
```

– Examine body of each function
– Use declared types to check agreement

• Type inference:

```c
int f(int x) { return x+1; }
int g(int y) { return f(y+1)*2; }
```

– Examine code without type information
– Infer the most general types that could have been declared

ML and Haskell are designed to make type inference feasible
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 • Eliminated sources of unsoundness
 • Become substantially more expressive
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types
 – Guaranteed to produce most general type
 – Widely regarded as important language innovation
 – Illustrative example of a flow-insensitive static analysis algorithm
History

• Original type inference algorithm
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958

• In 1969, Hindley
 – extended the algorithm to a richer language and proved it always produced the most general type

• In 1978, Milner
 – independently developed equivalent algorithm, called algorithm W, during his work designing ML

• In 1982, Damas proved the algorithm was complete.
 – Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, C++0x,...
• Subset of Haskell to explain type inference.
 – Haskell and ML both have overloading
 – Will not cover type inference with overloading

\[
\texttt{<decl>} ::= [\texttt{name} \texttt{pat} = \texttt{exp}]
\]

\[
\texttt{<pat>} ::= \texttt{Id} | (\texttt{pat}, \texttt{pat}) | \texttt{pat} :\texttt{pat} | []
\]

\[
\texttt{<exp>} ::= \texttt{Int} | \texttt{Bool} | [] | \texttt{Id} | (\texttt{exp})
\]

\[
| \texttt{exp} \texttt{op} \texttt{exp}
\]

\[
| \texttt{exp} \texttt{exp} | (\texttt{exp}, \texttt{exp})
\]

\[
| \texttt{if exp then exp else exp}
\]
Type Inference: Basic Idea

• Example

\[f \ x = 2 + x \]
\[> f :: \text{Int} \rightarrow \text{Int} \]

• What is the type of \(f \)?

+ has type: \(\text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \)

2 has type: \(\text{Int} \)

Since we are applying + to \(x \) we need \(x :: \text{Int} \)

Therefore \(f \ x = 2 + x \) has type \(\text{Int} \rightarrow \text{Int} \)
Type Inference: Basic Idea

• Another Example

\[
f(g, h) = g(h(0))
\]

> \(f :: (a \to b, \text{Int} \to a) \to b \)
Imperative Example

\[
x := b[z]\\
a [b[y]] := x
\]
Step 1: Parse Program

- Parse program text to construct parse tree

Infix operators are converted to Curied function application during parsing:

\[f \ x = 2 + x \quad \rightarrow \quad (+) \ 2 \ x \]
Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence

\[f \ x = 2 + x \]
Step 3: Add Constraints

\[
\begin{align*}
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_2 &= t_3 \rightarrow t_4 \\
 t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int}
\end{align*}
\]

\[f \ x = 2 + x \]
Step 4: Solve Constraints

\[
\begin{align*}
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_2 &= t_3 \rightarrow t_4 \\
 t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \\
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_4 &= \text{Int} \rightarrow \text{Int} \\
 t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \\
 t_0 &= \text{Int} \rightarrow \text{Int} \\
 t_1 &= \text{Int} \\
 t_6 &= \text{Int} \\
 t_4 &= \text{Int} \rightarrow \text{Int} \\
 t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \\
\end{align*}
\]
Step 5:
Determine type of declaration

\[
\begin{align*}
t_0 &= \text{Int} \rightarrow \text{Int} \\
t_1 &= \text{Int} \\
t_6 &= \text{Int} \rightarrow \text{Int} \\
t_4 &= \text{Int} \rightarrow \text{Int} \\
t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
t_3 &= \text{Int} \\
\end{align*}
\]

\[
f \ x = 2 + x \\
> f :: \text{Int} \rightarrow \text{Int}
\]
Unification

• Given two type terms t_1, t_2

• Compute the most general unifier of t_1 and t_2

 – A mapping m from type variables to typed terms such that

 • $t_1 \{m\} == t_2 \{m\}$

 • Every other unifier is a refinement of m

• Example

 $\text{mgu}(t_3 \rightarrow t_4, \text{Int} \rightarrow (\text{Int} \rightarrow \text{Int})) = [t_3 \mapsto \text{Int}, t_4 \mapsto \text{Int} \rightarrow \text{Int}]$
Type Inference Algorithm

• Parse program to build parse tree
• Assign type variables to nodes in tree
• Generate constraints:
 – From environment: literals (2), built-in operators (+), known functions (\textit{tail})
 – From form of parse tree: e.g., application and abstraction nodes
• Solve constraints using \textit{unification}
• Determine types of top-level declarations
Constraints from Application Nodes

• Function application (apply f to x)
 – Type of f (t_0 in figure) must be domain \rightarrow range
 – Domain of f must be type of argument x (t_1 in fig)
 – Range of f must be result of application (t_2 in fig)
 – Constraint: $t_0 = t_1 \rightarrow t_2$
Constraints from Abstractions

• Function declaration:
 – Type of f (t_0 in figure) must domain \(\rightarrow\) range
 – Domain is type of abstracted variable x (t_1 in fig)
 – Range is type of function body e (t_2 in fig)
 – Constraint: \(t_0 = t_1 \rightarrow t_2\)
Inferring Polymorphic Types

- Example:
 \[f \ g = g \ 2 \]
 \[> f :: (\text{Int} \rightarrow \text{t}_4) \rightarrow \text{t}_4 \]

- Step 1:
 Build Parse Tree
Inferring Polymorphic Types

• Example:
 \[f \ g = g \ 2 \]
 \[> f :: (\text{Int} \rightarrow t_4) \rightarrow t_4 \]

• Step 2:
 Assign type variables

```
Fun
  f :: t_0
  g :: t_1
  (\emptyset) :: t_4
  g :: t_1
  2 :: t_3
```
Inferring Polymorphic Types

• Example:

 \[f \cdot g = g \cdot 2 \]

 \[> f :: (\text{Int} \rightarrow t_4) \rightarrow t_4 \]

• Step 3:
 Generate constraints

\[
\begin{align*}
 t_0 &= t_1 \rightarrow t_4 \\
 t_1 &= t_3 \rightarrow t_4 \\
 t_3 &= \text{Int}
\end{align*}
\]
Inferring Polymorphic Types

- Example:

- Step 4:
 Solve constraints

\[
\begin{align*}
 t_0 &= t_1 \rightarrow t_4 \\
 t_1 &= t_3 \rightarrow t_4 \\
 t_3 &= \text{Int}
\end{align*}
\]

\[
\begin{align*}
 f \ g &= g \\ n \ f &:: (\text{Int} \rightarrow t_4) \rightarrow t_4
\end{align*}
\]
Inferring Polymorphic Types

- Example:

 \[f \ g = g \ 2 \]
 \[> f :: (\text{Int} \to t_4) \to t_4 \]

- Step 5:
 Determine type of top-level declaration

Unconstrained type variables become polymorphic types

\[t_0 = (\text{Int} \to t_4) \to t_4 \]
\[t_1 = \text{Int} \to t_4 \]
\[t_3 = \text{Int} \]
Using Polymorphic Functions

• Function:

\[
\begin{align*}
\text{add } x &= 2 + x \\
\Rightarrow \text{add} &: \text{Int} \rightarrow \text{Int}
\end{align*}
\]

\[
\begin{align*}
f \ g &= g \ 2 \\
\Rightarrow f &: (\text{Int} \rightarrow t_4) \rightarrow t_4
\end{align*}
\]

• Possible applications:

\[
\begin{align*}
\text{add } x &= 2 + x \\
\Rightarrow \text{add} &: \text{Int} \rightarrow \text{Int}
\end{align*}
\]

\[
\begin{align*}
\text{isEven } x &= \text{mod} \ (x, \ 2) = 0 \\
\Rightarrow \text{isEven} &: \text{Int} \rightarrow \text{Bool}
\end{align*}
\]

\[
\begin{align*}
f \ \text{add} \\
\Rightarrow 4 &: \text{Int}
\end{align*}
\]

\[
\begin{align*}
f \ \text{isEven} \\
\Rightarrow \text{True} &: \text{Bool}
\end{align*}
\]
Recognizing Type Errors

• Function:

\[
f \ g = g \ 2 \\
> f :: (\text{Int} \rightarrow t_4) \rightarrow t_4
\]

• Incorrect use

\[
\text{not } x = \text{if } x \text{ then True else False} \\
> \text{not} :: \text{Bool} \rightarrow \text{Bool} \\
f \ \text{not} \\
> \text{Error: operator and operand don’t agree} \\
\text{operator domain: Int} \rightarrow a \\
\text{operand: Bool} \rightarrow \text{Bool}
\]

• Type error: cannot unify Bool → Bool and Int → t
Another Example

• Example:

\[
 f(g, x) = g(g \cdot x)
\]

> \(f : (\text{t}_8 \to \text{t}_8, \text{t}_8) \to \text{t}_8 \)

• Step 1:
 Build Parse Tree
Another Example

• Example:
• Step 2:
 Assign type variables

\[f(g, x) = g(g(x)) \]
\[f :: (t_8 -> t_8, t_8) -> t_8 \]
Another Example

• Example:

 \[
 f (g, x) = g (g x)
 \]

 \[
 \Rightarrow f :: (t_8 \rightarrow t_8, t_8) \rightarrow t_8
 \]

• Step 3:

 Generate constraints

\[
\begin{align*}
t_0 &= t_3 \rightarrow t_8 \\
t_3 &= (t_1, t_2) \\
t_1 &= t_7 \rightarrow t_8 \\
t_1 &= t_2 \rightarrow t_7
\end{align*}
\]
Another Example

- Example:
 \[f(g,x) = g(g(x)) \]
 \[\Rightarrow f :: (t_8 \to t_8, t_8) \to t_8 \]

- Step 4:
 Solve constraints

\[t_0 = t_3 \to t_8 \]
\[t_3 = (t_1, t_2) \]
\[t_1 = t_7 \to t_8 \]
\[t_1 = t_2 \to t_7 \]

\[t_0 = (t_8 \to t_8, t_8) \to t_8 \]
Another Example

- Example:
 \[f (g,x) = g (g x) \]
 \[f :: (t_8 \to t_8, t_8) \to t_8 \]

- Step 5:
 Determine type of \(f \)

```
\[
\begin{align*}
t_0 &= t_3 \to t_8 \\
t_3 &= (t_1, t_2) \\
t_1 &= t_7 \to t_8 \\
t_1 &= t_2 \to t_7
\end{align*}
\]
```

```
\[
\begin{align*}
t_0 &= (t_8 \to t_8, t_8) \to t_8
\end{align*}
\]
Polymorphic Datatypes

- Functions may have multiple clauses

\[
\begin{align*}
\text{length } [] &= 0 \\
\text{length } (x: \text{rest}) &= 1 + (\text{length } \text{rest})
\end{align*}
\]

- Type inference
  - Infer separate type for each clause
  - Combine by adding constraint that all clauses must have the same type
  - Recursive calls: function has same type as its definition
Type Inference with Datatypes

• Example:  
  \[
  \text{length (x:rest)} = 1 + (\text{length rest})
  \]

• Step 1: Build Parse Tree
Type Inference with Datatypes

• Example:  
  \[ \text{length} \ (x:\text{rest}) = 1 + (\text{length\ rest}) \]

• Step 2: Assign type variables
Type Inference with Datatypes

• Example:

\[ \text{length (x:rest) = 1 + (length rest)} \]

• Step 3: Generate constraints

- \( t_0 = t_3 \rightarrow t_{10} \)
- \( t_3 = t_2 \)
- \( t_3 = [t_1] \)
- \( t_6 = t_9 \rightarrow t_{10} \)
- \( t_4 = t_5 \rightarrow t_6 \)
- \( t_4 = \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \)
- \( t_5 = \text{Int} \)
- \( t_0 = t_2 \rightarrow t_9 \)
Type Inference with Datatypes

- Example:

\[ \text{length} (x : \text{rest}) = 1 + (\text{length} \ \text{rest}) \]

- Step 3: Solve Constraints

\[
\begin{align*}
    t_0 &= t_3 \rightarrow t_{10} \\
    t_3 &= t_2 \\
    t_3 &= [t_1] \\
    t_6 &= t_9 \rightarrow t_{10} \\
    t_4 &= t_5 \rightarrow t_6 \\
    t_4 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
    t_5 &= \text{Int} \\
    t_0 &= t_2 \rightarrow t_9
\end{align*}
\]
Multiple Clauses

• Function with multiple clauses

\[
\begin{align*}
\text{append } ([], r) &= r \\
\text{append } (x:xs, r) &= x : \text{append } (xs, r)
\end{align*}
\]

• Infer type of each clause
  – First clause:
    
    \[
    > \text{append} :: ([t_1], t_2) \rightarrow t_2
    \]
  – Second clause:
    
    \[
    > \text{append} :: ([t_3], t_4) \rightarrow [t_3]
    \]

• Combine by equating types of two clauses

\[
> \text{append} :: ([t_1], [t_1]) \rightarrow [t_1]
\]
Most General Type

• Type inference produces the most general type

```
map (f, []) = []
map (f, x:xs) = f x : map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]
```

• Functions may have many less general types

```
> map :: (t_1 -> Int, [t_1]) -> [Int]
> map :: (Bool -> t_2, [Bool]) -> [t_2]
> map :: (Char -> Int, [Char]) -> [Int]
```

• Less general types are all instances of most general type, also called the principal type
Type Inference Algorithm

- When Hindley/Milner type inference algorithm was developed, its complexity was unknown
- In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete
- Usually linear in practice though...
  - Running time is exponential in the depth of polymorphic declarations
Information from Type Inference

• Consider this function...

\[
\begin{align*}
\text{reverse} \ [\ ] &= [\ ] \\
\text{reverse} \ (x:xs) &= \text{reverse} \ xs
\end{align*}
\]

... and its most general type:

\[
> \text{reverse} :: [t_1] \to [t_2]
\]

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!
Type Inference: Key Points

• Type inference computes the types of expressions
  – Does not require type declarations for variables
  – Finds the most general type by solving constraints
  – Leads to polymorphism

• Sometimes better error detection than type checking
  – Type may indicate a programming error even if no type error

• Some costs
  – More difficult to identify program line that causes error
  – Natural implementation requires uniform representation sizes
  – Complications regarding assignment took years to work out

• Idea can be applied to other program properties
  – Discover properties of program using same kind of analysis
Haskell Type Inference

• Haskell uses type classes
  – supports user-defined overloading, so the inference algorithm is more complicated

• ML restricts the language
  – to ensure that no annotations are required

• Haskell provides additional features
  – like polymorphic recursion for which types cannot be inferred and so the user must provide annotations
Parametric Polymorphism: Haskell vs C++

• Haskell polymorphic function
  – Declarations (generally) require no type information
  – Type inference uses type variables to type expressions
  – Type inference substitutes for type variables as needed to instantiate polymorphic code

• C++ function template
  – Programmer must declare the argument and result types of functions
  – Programmers must use explicit type parameters to express polymorphism
  – Function application: type checker does instantiation
Example: Swap Two Values

- Haskell

```haskell
swap :: (IORef a, IORef a) -> IO ()
swap (x,y) = do {
 val_x <- readIORef x; val_y <- readIORef y;
 writeIORef y val_x; writeIORef x val_y;
 return () }
```

- C++

```cpp
template <typename T>
void swap(T& x, T& y){
 T tmp = x; x=y; y=tmp;
}
```

Declarations both swap two values polymorphically, but they are compiled very differently
Implementation

- Haskell
  - `swap` is compiled into one function
  - Typechecker determines how function can be used

- C++
  - `swap` is compiled differently for each instance
    (details beyond scope of this course ...)

- Why the difference?
  - Haskell ref cell is passed by pointer. The local `x` is a pointer to value on heap, so its size is constant
  - C++ arguments passed by reference (pointer), but local `x` is on the stack, so its size depends on the type
Polymorphism vs Overloading

- **Parametric polymorphism**
  - Single algorithm may be given many types
  - Type variable may be replaced by any type
  - if $f : : t \rightarrow t$ then $f : : \text{Int} \rightarrow \text{Int}$, $f : : \text{Bool} \rightarrow \text{Bool}$, ...

- **Overloading**
  - A single symbol may refer to more than one algorithm
  - Each algorithm may have different type
  - Choice of algorithm determined by type context
  - Types of symbol may be arbitrarily different
  - In ML, `$+$` has types `int*int→int`, `real*real→real`, no others
Varieties of Polymorphism

• **Parametric polymorphism** A single piece of code is typed generically
  – Imperative or first-class polymorphism
  – ML-style or let-polymorphism

• **Ad-hoc polymorphism** The same expression exhibit different behaviors when viewed in different types
  – Overloading
  – Multi-method dispatch
  – Intentional polymorphism

• **Subtype polymorphism** A single term may have many types using the rule of subsumption allowing to selectively forget information
Summary

• Types are important in modern languages
  – Program organization and documentation
  – Prevent program errors
  – Provide important information to compiler

• Type inference
  – Determine best type for an expression, based on known information about symbols in the expression

• Polymorphism
  – Single algorithm (function) can have many types