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Motivation 
• What do we need in order to prove that the program 

does what it supposed to do? 

• Specify the required behavior  

• Compare the behavior with the one obtained by the 
denotational/operational semantics 

• Develop a proof system for showing that the program 
satisfies a requirement 

• Mechanically use the proof system to show 
correctness 

• The meaning of a program is a set of verification rules  



Plan 

• The basic idea 
• An assertion language 
• Semantics of assertions 
• Proof rules 
• An example 
• Soundness 
• Completeness 
• Verification conditions 



Example Program 

S:=0 

N := 1 

while ¬(N=101) do 

 S := S + N ; 

            N :=N+1 

N=101 

S=∑1≤m≤100
 m 



Example Program 

S:=0 

{S=0} 

N := 1 

{S=0 ∧N=1} 

while ¬(N=101) do 

 S := S + N ; 

            N :=N+1 

{N=101 ∧S=∑1≤m≤100 m} 



Example Program 

S:=0 

{S=0} 

N := 1 

{S=0 ∧N=1} 

while {1 ≤N ≤ 101 ∧S=∑1≤m≤N-1 m}¬(N=101) do 

 S := S + N ; 

          {1 ≤N < 101 ∧S=∑1≤m≤N m} 

            N :=N+1 

{N=101 ∧S=∑1≤m≤100 m} 



Partial Correctness 

• {P}S{Q} 
– P and Q are assertions 

(extensions of Boolean expressions) 
– S is a statement 
– For all states σ which satisfies P, if the execution of 

S from state σ terminates in state σ’, then σ’ 
satisfies Q 

• {true}while true do skip{false} 



Total Correctness 

• [P]S[Q] 
– P and Q are assertions 

(extensions of Boolean expressions) 
– S is a statement 
– For all states σ which satisfies P,  

• the execution of S from state σ must terminates in a 
state σ’ 

• σ’ satisfies Q 



Formalizing Partial Correctness 

• σA 
– A is true in σ  

• {P} S {Q} 

– ∀σ, σ’∈∑. (σP & <S, σ>→ σ’ ) ⇒ σ’  Q   
– ∀σ∈∑. (σP & S Sσ) ⇒ S Sσ Q 

• Convention for all A 
 A 

• ∀σ, σ’∈∑. σP  ⇒ S Sσ  Q 



An Assertion Language 

• Extend Bexp 
• Allow quantifications 

– ∀i: …  
– ∃i: …  

• ∃i. k=il 

• Import well known mathematical concepts 
– n!  n (n-1)   2 1 



An Assertion Language 

Aexpv 

a:= n | X | i | a0 + a1 | a0 - a1 | a0  a1 

Assn 

A:= true | false |  a0 = a1 | a0 ≤ a1 | A0 ∧ A1 | A0 ∨ A1 | ¬A | 

A0 ⇒ A1 |  ∀i. A | ∃i. A  



Example 

while ¬(M=N) do  

           if M  N  

                  then N := N – M 

                  else  M := M - N 



Example 
int power(int x, unsigned int y) 
{ 
    int temp; 
    if( y == 0) 
        return 1; 
    temp = power(x, y/2); 
    if (y%2 == 0) 
        return temp*temp; 
    else 
        return x*temp*temp; 



Free and Bound Variables 

• An integer variable is bound when it occurs in the 
scope of a quantifier 

• Otherwise it is free 
• Examples ∃i. k=iL   (i+100≤77)∧∀i.j+1=i+3) 

FV(n) = FV(X) = ∅                                    FV(i) = {i} 

FV(a0 + a1)=FV(a0-a1)=FV(a0a1 ) = FV(a0) ∪FV(a1) 

FV(true)=FV(false)= ∅  FV(a0 = a1)=FV(a0 ≤ a1)= FV(a0) ∪FV(a1) 

FV(A0∧A1)=FV(A0∨A1) =FV(A0⇒A1)= FV(A0) ∪FV(A1) 

FV(¬A)=FV(A) 

FV(∀i. A)=FV(∃i. A)= FV(A) {i}  



Substitution 

• Visualization of an assertion A 
                    ---i---i---- 

• Consider a “pure” arithmetic expression 
         A[a/i] ---a---a--- 

n[a/i] = n                                                                X[a/i]=X  

i[a/i] = a                                                                  j[a/i] = j            

(a0 + a1)[a/i] = a0[a/i] + a1/[a/i]              (a0 - a1)[a/i] = a0[a/i]  –  a1[a/i]   

                        (a0  a1 )[a/i]= a0[a/i]    a1[a/i]  



Substitution 

• Visualization of an assertion A 
                    ---i---i---- 

• Consider a “pure” arithmetic expression 
         A[a/i] ---a---a--- 

true[a/i] = true                                                              false[a/i]=false  

(a0 = a1)[a/i] = (a0/[a/i] = a1[a/i])          (a0≤ a1)[a/i] = (a0/[a/i] ≤ a1[a/i]) 
(A0 ∧ A1)[a/i] = (A0[a/i]  ∧ A1[a/i])   (A0 ∨ A1)[a/i]= (A0[a/i]∨A1[a/i]) 
                 (A0 ⇒ A1)[a/i] = (A0[a/i] ⇒ A1[a/i])[a/i] 
                             (¬A)[a/i] = ¬(A[a/i])  
 (∀i.A)[a/i] =∀i. A                           (∀j.A)[a/i] = (∀j. A[a/i]) 
 (∃i.A)[a/i] =∃i. A                           (∃j.A)[a/i] =(∃j. A[a/i]) 



Location Substitution 

• Visualization of an assertion A 
                    ---X---X---- 

• Consider a “pure” arithmetic expression 
         A[a/X] ---a---a--- 



Example Assertions 

• i is a prime number 
• i is the least common multiple of j and k  



Semantics of Assertions 

• An interpretation I:intvar →N 
• The meaning of Aexpv 

– AvnIσ=n 
– AvXIσ= σ(X) 
– AviIσ= I(i) 
– Ava0+a1 Iσ = Ava0Iσ +Av a1 Iσ 
– … 

• For all a ∈ Aexp states σ and Interpretations I 
– Aaσ=AvaIσ 



Semantics of Assertions (II) 
• I[n/i] change i in I to n 
• For I and σ∈Σ , define σ I A by  

structural induction 
– σ I true 
– σ I (a0 = a1) if Ava0 Iσ= Ava1 Iσ 
– σ I (A ∧B) if σ I A and σ I B 
– σ I ¬A  if not σ I A 
– σ I A⇒B if (not σ I A) or σ I B) 
–  σ I ∀i.A  if σ I[n/i] A  for all n∈N 
–    A 



Proposition 6.4 

For all b ∈ Bexp states σ and Interpretations I 
            Bbσ= true  iff  σ I b 
            Bbσ= false  iff not σ I b 
 

 



Partial Correctness Assertions 

• {P}c{Q}  
– P, Q ∈Assn and c ∈Com 

• For a state σ ∈Σ and interpretation I 
– σ  I {P}c{Q} if (σ I  P ⇒ C cσ I Q) 

• Validity 
– When ∀σ ∈Σ, σ  I {P}c{Q} we write 

• I {P}c{Q} 
– When ∀σ ∈Σ, and I σ  I {P}c{Q} we write 

•  {P}c{Q} 
• {P}c{Q} is valid  



The extension of an assertion 

AI    {σ ∈Σ    |   σ I A } 
 



The extension of assertions 

Suppose that  (P⇒Q) 

Then for any interpretation  I 
∀σ ∈Σ. σ I P ⇒ σ I Q 

PI⊆QI 

Σ 

QI 

PI 



The extension of assertions 

Suppose that {P}c{Q} 

Then for any interpretation  I 
∀σ ∈Σ. σ I P ⇒ C cσ I Q 

C cPI⊆QI 

Σ 

QI 

PI 

C c 



Hoare Proof Rules for Partial Correctness 

{A} skip {A} 

{B[a/X]} X:=a  {B} 

{P} S0 {C} {C} S1 {Q} 

{P} S0;S1{Q} 

{P∧b} S0 {Q} {P ∧¬b} S1 {Q} 

{P} if b then S0 else S1{Q} 

{I∧b} S {I} 

{I} while b do S{I∧¬b} 

P ⇒ P’  {P’} S {Q’}  Q’ ⇒ Q 

{P} S {Q} 



Example 

Y := 1; 

 

while X > 0 do 

 Y := X Y; 

            X := X – 1 

{X = n ∧ n ≥0} 

{Y = n! } 

{X = n ∧ Y=1 ∧ n ≥ 0} 



Example 

Y := 1; 

 

while X > 0 do 

  

             Y := X Y; 

 

            X := X – 1 

 

{X = n ∧ n ≥ 0} 

{Y = n! } 

{X ≥0 ∧ n ≥0 ∧ Y=n!/X!} 

{X = n ∧ Y=1 ∧ n ≥ 0} 

{X > 0 ∧ n ≥0 ∧ Y=n!/X!} 

{X > 0 ∧ n ≥0 ∧ Y=n!/(X-1)!} 

{X > 0 ∧ n ≥0 ∧ Y=n!/X!} 



Example Formal 
{X = n ∧ n ≥ 0} Y :=1 {X = n ∧ Y=1 ∧ n ≥ 0}  

{X > 0 ∧ n ≥0 ∧ Y=n!/X!} Y := X Y; {X > 0 ∧ n ≥0 ∧ Y=n!/(X-1)!}  

{X = n ∧ n ≥ 0} Y :=1 {X ≥0  ∧ n ≥ 0 ∧ Y=n!/X!}   

{X > 0 ∧ n ≥0 ∧ Y=n!/(X-1)!} X := X-1; {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!}  

{X > 0 ∧ n ≥0 ∧ Y=n!/X!} Y := X Y; X := X-1 {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!}  

{ X ≥ 0 ∧ n ≥0 ∧ Y=n!/X! ∧ X>0} Y := X Y; X := X-1 {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!}  

{ X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!} while X > 0 do Y := X Y; X := X-1 
 {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!∧¬ X > 0 }  

{ X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!} while X > 0 do Y := X Y; X := X-1 {Y=n! }  

{ X=n ∧ n ≥0} Y :=1; while X > 0 do Y := X Y; X := X-1 {Y=n! }  



Soundness 

• Every theorem obtained by the rule system is 
valid 
– {P} c {Q}  ⇒ {P} c {Q}  

• The system can be implemented (HOL, LCF, 
Coq) 
– Requires user assistance 

• Proof of soundness 
– Every rule preserves validity (Theorem 6.1) 



Unsound Proof Rules for Partial Correctness 

{A} skip {B} 

{B} X:=a  {B[a/X]} 

{P} S0 {C1} {C2} S1 {Q} 

{P} S0;S1{Q} 

{P∧¬b} S0 {Q} {P ∧b} S1 {Q} 

{P} if b then S0 else S1{Q} 

{I∧b} S {I} 

{I} while b do S{I∧¬b} 

P’ ⇒ P  {P’} S {Q’}  Q ⇒ Q’ 

{P} S {Q} 



Incomplete Proof Rules for Partial Correctness 

{A} skip {A} 

{B[a/x]} X:=a  {B} 

{P} S0 {C} {C} S1 {Q} 

{P} S0;S1{Q} 

{P} S0 {Q} {P } S1 {Q} 

{P} if b then S0 else S1{Q} 

{I} S {I} 

{I} while b do S{I} 



Soundness of skip axiom 

{A} skip {A} 



Soundness of the assignment axiom 

{B[a/X]} X:=a  {B} 



Soundness of the sequential composition rule 

• Assume that 
  {P} S0 {C} 
and  
{C} S1 {Q} 

• Show that 
 {P} S0;S1{Q}  
 



Soundness of the conditional rule 

• Assume that 
  {P ∧ b} S0 {Q} 
and  
{P ∧ ¬b} S1 {Q} 

• Show that 
 {P} if b then S0 else S1{Q}  
 



Soundness of the while rule 

• Assume that 
  {I  ∧ b} S {I} 

• Show that 
 {I} while b do S {I ∧ ¬b}  
 



Soundness of the consequence rule 

• Assume that 
  {P’} S {Q’} 
and 
  P ⇒ P’  
and 
 Q’ ⇒ Q 

• Show that 
 {P} S {Q}  
 



Extensions to While 

• Other control flow constructs 
• Abort statement (like C exit w/o return value) 
• Non determinism 
• Parallelism 
• Local Variables 
• Procedures 

 



(Ideal) Completeness 

• Every valid theorem can be proved by the rule 
system 

• For every P and Q such that {P} S {Q}  
there exists a proof such  {P} S {Q} 

• But what about Gödel’s incompleteness? 
{true} skip {Q} 

• What does {true} c {false} mean? 



Relative Completeness (Chapter 7) 

• Assume that every math theorem can be 
proved 
{P} S {Q}  implies  {P} S {Q} 
 
 



Relative completeness of composition rule 

• Prove that {P} S0;S1{Q} 
• Does there exist an assertion I such that 

 {P} S0 {C} 
and  
{I} S1 {Q} 
 



wp 

Weakest Precondition 

• wp: Stm →(Ass→Ass) 
• wp S(Q) – the weakest condition such 

that every terminating computation of S 
results in a state satisfying Q 

• σ  wp S(Q) ↔   ∀σ’: σ S σ’ → σ’  Q 
 
 
 
 

• Can be used to compute verification 
conditions 

Q 



Weakest (Liberal) Precondition 
• wp(S, Q) – the weakest condition such that every 

terminating computation of S results in a state 
satisfying Q 

•   wpI(S, Q)   ={σ ∈Σ| SS σI Q} 



Some WP rules 

• wp(S, false) = 
• wp(skip, Q) = Q 
• wp(X := a, Q) = Q[a/X] 
• wp(S0; S1, Q) = wp(S0, wp(S1, Q)) 
• wp(if b then S0 else S1, Q) =  

b ∧wp(S0, Q) ∨ ¬ b ∧wp(S1, Q)  
• wp(while B {I} do S, Q) =  



Verification Process 

Program P Assertions ϕ 

VC gen 

Verification Condition 
P “→” ϕ 

SAT Solver 

Counterexample Proof 



Verification Conditions 

• Generate assertions that describe the partial 
correctness of the program 

• Use automatic theorem provers to show 
partial correctness 

• Existing tools ESC/Java, Spec#  



VC rules 

• VCgen({P} S {Q}) =  P → wpS(Q) ∧ ∧VCaux(S, Q) 

• VCaux(S, Q) = {} (for any atomic statement) 
• VCaux(S1; S2, Q) =  

                VCaux(S1, wp(S2, Q)) ∪VCaux(S2, Q) 
• VCaux(if C then S1 else S2, Q) = 

                VCaux(S1, Q) ∪VCaux(S2, Q) 
• VCaux(while B do {I} S, Q) = VCaux(S, I)∪ 

                     {I∧B→wpS(I)} ∪ 
                     {I∧¬B→Q}  
 



Summary 

• Axiomatic semantics provides an abstract 
semantics 

• Can be used to explain programming 
• Can be automated 
• More effort is required to make it practical  
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