
Programming Language Semantics
Axiomatic Semantics

The Formal Semantics of
Programming Languages

Glynn Winskel
Chapter 6

Motivation
• What do we need in order to prove that the program

does what it supposed to do?

• Specify the required behavior

• Compare the behavior with the one obtained by the
denotational/operational semantics

• Develop a proof system for showing that the program
satisfies a requirement

• Mechanically use the proof system to show
correctness

• The meaning of a program is a set of verification rules

Plan

• The basic idea
• An assertion language
• Semantics of assertions
• Proof rules
• An example
• Soundness
• Completeness
• Verification conditions

Example Program

S:=0

N := 1

while ¬(N=101) do

 S := S + N ;

 N :=N+1

N=101

S=∑1≤m≤100
 m

Example Program

S:=0

{S=0}

N := 1

{S=0 ∧N=1}

while ¬(N=101) do

 S := S + N ;

 N :=N+1

{N=101 ∧S=∑1≤m≤100 m}

Example Program

S:=0

{S=0}

N := 1

{S=0 ∧N=1}

while {1 ≤N ≤ 101 ∧S=∑1≤m≤N-1 m}¬(N=101) do

 S := S + N ;

 {1 ≤N < 101 ∧S=∑1≤m≤N m}

 N :=N+1

{N=101 ∧S=∑1≤m≤100 m}

Partial Correctness

• {P}S{Q}
– P and Q are assertions

(extensions of Boolean expressions)
– S is a statement
– For all states σ which satisfies P, if the execution of

S from state σ terminates in state σ’, then σ’
satisfies Q

• {true}while true do skip{false}

Total Correctness

• [P]S[Q]
– P and Q are assertions

(extensions of Boolean expressions)
– S is a statement
– For all states σ which satisfies P,

• the execution of S from state σ must terminates in a
state σ’

• σ’ satisfies Q

Formalizing Partial Correctness

• σA
– A is true in σ

• {P} S {Q}

– ∀σ, σ’∈∑. (σP & <S, σ>→ σ’) ⇒ σ’  Q
– ∀σ∈∑. (σP & S Sσ) ⇒ S Sσ Q

• Convention for all A
 A

• ∀σ, σ’∈∑. σP ⇒ S Sσ  Q

An Assertion Language

• Extend Bexp
• Allow quantifications

– ∀i: …
– ∃i: …

• ∃i. k=il

• Import well known mathematical concepts
– n!  n (n-1)   2 1

An Assertion Language

Aexpv

a:= n | X | i | a0 + a1 | a0 - a1 | a0  a1

Assn

A:= true | false | a0 = a1 | a0 ≤ a1 | A0 ∧ A1 | A0 ∨ A1 | ¬A |

A0 ⇒ A1 | ∀i. A | ∃i. A

Example

while ¬(M=N) do

 if M  N

 then N := N – M

 else M := M - N

Example
int power(int x, unsigned int y)
{
 int temp;
 if(y == 0)
 return 1;
 temp = power(x, y/2);
 if (y%2 == 0)
 return temp*temp;
 else
 return x*temp*temp;

Free and Bound Variables

• An integer variable is bound when it occurs in the
scope of a quantifier

• Otherwise it is free
• Examples ∃i. k=iL (i+100≤77)∧∀i.j+1=i+3)

FV(n) = FV(X) = ∅ FV(i) = {i}

FV(a0 + a1)=FV(a0-a1)=FV(a0a1) = FV(a0) ∪FV(a1)

FV(true)=FV(false)= ∅ FV(a0 = a1)=FV(a0 ≤ a1)= FV(a0) ∪FV(a1)

FV(A0∧A1)=FV(A0∨A1) =FV(A0⇒A1)= FV(A0) ∪FV(A1)

FV(¬A)=FV(A)

FV(∀i. A)=FV(∃i. A)= FV(A) {i}

Substitution

• Visualization of an assertion A
 ---i---i----

• Consider a “pure” arithmetic expression
 A[a/i] ---a---a---

n[a/i] = n X[a/i]=X

i[a/i] = a j[a/i] = j

(a0 + a1)[a/i] = a0[a/i] + a1/[a/i] (a0 - a1)[a/i] = a0[a/i] – a1[a/i]

 (a0  a1)[a/i]= a0[a/i]  a1[a/i]

Substitution

• Visualization of an assertion A
 ---i---i----

• Consider a “pure” arithmetic expression
 A[a/i] ---a---a---

true[a/i] = true false[a/i]=false

(a0 = a1)[a/i] = (a0/[a/i] = a1[a/i]) (a0≤ a1)[a/i] = (a0/[a/i] ≤ a1[a/i])
(A0 ∧ A1)[a/i] = (A0[a/i] ∧ A1[a/i]) (A0 ∨ A1)[a/i]= (A0[a/i]∨A1[a/i])
 (A0 ⇒ A1)[a/i] = (A0[a/i] ⇒ A1[a/i])[a/i]
 (¬A)[a/i] = ¬(A[a/i])
 (∀i.A)[a/i] =∀i. A (∀j.A)[a/i] = (∀j. A[a/i])
 (∃i.A)[a/i] =∃i. A (∃j.A)[a/i] =(∃j. A[a/i])

Location Substitution

• Visualization of an assertion A
 ---X---X----

• Consider a “pure” arithmetic expression
 A[a/X] ---a---a---

Example Assertions

• i is a prime number
• i is the least common multiple of j and k

Semantics of Assertions

• An interpretation I:intvar →N
• The meaning of Aexpv

– AvnIσ=n
– AvXIσ= σ(X)
– AviIσ= I(i)
– Ava0+a1 Iσ = Ava0Iσ +Av a1 Iσ
– …

• For all a ∈ Aexp states σ and Interpretations I
– Aaσ=AvaIσ

Semantics of Assertions (II)
• I[n/i] change i in I to n
• For I and σ∈Σ , define σ I A by

structural induction
– σ I true
– σ I (a0 = a1) if Ava0 Iσ= Ava1 Iσ
– σ I (A ∧B) if σ I A and σ I B
– σ I ¬A if not σ I A
– σ I A⇒B if (not σ I A) or σ I B)
– σ I ∀i.A if σ I[n/i] A for all n∈N
–   A

Proposition 6.4

For all b ∈ Bexp states σ and Interpretations I
 Bbσ= true iff σ I b
 Bbσ= false iff not σ I b

Partial Correctness Assertions

• {P}c{Q}
– P, Q ∈Assn and c ∈Com

• For a state σ ∈Σ and interpretation I
– σ I {P}c{Q} if (σ I P ⇒ C cσ I Q)

• Validity
– When ∀σ ∈Σ, σ I {P}c{Q} we write

• I {P}c{Q}
– When ∀σ ∈Σ, and I σ I {P}c{Q} we write

•  {P}c{Q}
• {P}c{Q} is valid

The extension of an assertion

AI  {σ ∈Σ | σ I A }

The extension of assertions

Suppose that  (P⇒Q)

Then for any interpretation I
∀σ ∈Σ. σ I P ⇒ σ I Q

PI⊆QI

Σ

QI

PI

The extension of assertions

Suppose that {P}c{Q}

Then for any interpretation I
∀σ ∈Σ. σ I P ⇒ C cσ I Q

C cPI⊆QI

Σ

QI

PI

C c

Hoare Proof Rules for Partial Correctness

{A} skip {A}

{B[a/X]} X:=a {B}

{P} S0 {C} {C} S1 {Q}

{P} S0;S1{Q}

{P∧b} S0 {Q} {P ∧¬b} S1 {Q}

{P} if b then S0 else S1{Q}

{I∧b} S {I}

{I} while b do S{I∧¬b}

P ⇒ P’ {P’} S {Q’}  Q’ ⇒ Q

{P} S {Q}

Example

Y := 1;

while X > 0 do

 Y := X Y;

 X := X – 1

{X = n ∧ n ≥0}

{Y = n! }

{X = n ∧ Y=1 ∧ n ≥ 0}

Example

Y := 1;

while X > 0 do

 Y := X Y;

 X := X – 1

{X = n ∧ n ≥ 0}

{Y = n! }

{X ≥0 ∧ n ≥0 ∧ Y=n!/X!}

{X = n ∧ Y=1 ∧ n ≥ 0}

{X > 0 ∧ n ≥0 ∧ Y=n!/X!}

{X > 0 ∧ n ≥0 ∧ Y=n!/(X-1)!}

{X > 0 ∧ n ≥0 ∧ Y=n!/X!}

Example Formal
{X = n ∧ n ≥ 0} Y :=1 {X = n ∧ Y=1 ∧ n ≥ 0}

{X > 0 ∧ n ≥0 ∧ Y=n!/X!} Y := X Y; {X > 0 ∧ n ≥0 ∧ Y=n!/(X-1)!}

{X = n ∧ n ≥ 0} Y :=1 {X ≥0 ∧ n ≥ 0 ∧ Y=n!/X!}

{X > 0 ∧ n ≥0 ∧ Y=n!/(X-1)!} X := X-1; {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!}

{X > 0 ∧ n ≥0 ∧ Y=n!/X!} Y := X Y; X := X-1 {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!}

{ X ≥ 0 ∧ n ≥0 ∧ Y=n!/X! ∧ X>0} Y := X Y; X := X-1 {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!}

{ X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!} while X > 0 do Y := X Y; X := X-1
 {X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!∧¬ X > 0 }

{ X ≥ 0 ∧ n ≥0 ∧ Y=n!/X!} while X > 0 do Y := X Y; X := X-1 {Y=n! }

{ X=n ∧ n ≥0} Y :=1; while X > 0 do Y := X Y; X := X-1 {Y=n! }

Soundness

• Every theorem obtained by the rule system is
valid
– {P} c {Q} ⇒ {P} c {Q}

• The system can be implemented (HOL, LCF,
Coq)
– Requires user assistance

• Proof of soundness
– Every rule preserves validity (Theorem 6.1)

Unsound Proof Rules for Partial Correctness

{A} skip {B}

{B} X:=a {B[a/X]}

{P} S0 {C1} {C2} S1 {Q}

{P} S0;S1{Q}

{P∧¬b} S0 {Q} {P ∧b} S1 {Q}

{P} if b then S0 else S1{Q}

{I∧b} S {I}

{I} while b do S{I∧¬b}

P’ ⇒ P {P’} S {Q’}  Q ⇒ Q’

{P} S {Q}

Incomplete Proof Rules for Partial Correctness

{A} skip {A}

{B[a/x]} X:=a {B}

{P} S0 {C} {C} S1 {Q}

{P} S0;S1{Q}

{P} S0 {Q} {P } S1 {Q}

{P} if b then S0 else S1{Q}

{I} S {I}

{I} while b do S{I}

Soundness of skip axiom

{A} skip {A}

Soundness of the assignment axiom

{B[a/X]} X:=a {B}

Soundness of the sequential composition rule

• Assume that
 {P} S0 {C}
and
{C} S1 {Q}

• Show that
 {P} S0;S1{Q}

Soundness of the conditional rule

• Assume that
 {P ∧ b} S0 {Q}
and
{P ∧ ¬b} S1 {Q}

• Show that
 {P} if b then S0 else S1{Q}

Soundness of the while rule

• Assume that
 {I ∧ b} S {I}

• Show that
 {I} while b do S {I ∧ ¬b}

Soundness of the consequence rule

• Assume that
 {P’} S {Q’}
and
  P ⇒ P’
and
 Q’ ⇒ Q

• Show that
 {P} S {Q}

Extensions to While

• Other control flow constructs
• Abort statement (like C exit w/o return value)
• Non determinism
• Parallelism
• Local Variables
• Procedures

(Ideal) Completeness

• Every valid theorem can be proved by the rule
system

• For every P and Q such that {P} S {Q}
there exists a proof such  {P} S {Q}

• But what about Gödel’s incompleteness?
{true} skip {Q}

• What does {true} c {false} mean?

Relative Completeness (Chapter 7)

• Assume that every math theorem can be
proved
{P} S {Q} implies  {P} S {Q}

Relative completeness of composition rule

• Prove that {P} S0;S1{Q}
• Does there exist an assertion I such that

 {P} S0 {C}
and
{I} S1 {Q}

wp

Weakest Precondition

• wp: Stm →(Ass→Ass)
• wp S(Q) – the weakest condition such

that every terminating computation of S
results in a state satisfying Q

• σ  wp S(Q) ↔ ∀σ’: σ S σ’ → σ’  Q

• Can be used to compute verification
conditions

Q

Weakest (Liberal) Precondition
• wp(S, Q) – the weakest condition such that every

terminating computation of S results in a state
satisfying Q

• wpI(S, Q) ={σ ∈Σ| SS σI Q}

Some WP rules

• wp(S, false) =
• wp(skip, Q) = Q
• wp(X := a, Q) = Q[a/X]
• wp(S0; S1, Q) = wp(S0, wp(S1, Q))
• wp(if b then S0 else S1, Q) =

b ∧wp(S0, Q) ∨ ¬ b ∧wp(S1, Q)
• wp(while B {I} do S, Q) =

Verification Process

Program P Assertions ϕ

VC gen

Verification Condition
P “→” ϕ

SAT Solver

Counterexample Proof

Verification Conditions

• Generate assertions that describe the partial
correctness of the program

• Use automatic theorem provers to show
partial correctness

• Existing tools ESC/Java, Spec#

VC rules

• VCgen({P} S {Q}) = P → wpS(Q) ∧ ∧VCaux(S, Q)

• VCaux(S, Q) = {} (for any atomic statement)
• VCaux(S1; S2, Q) =

 VCaux(S1, wp(S2, Q)) ∪VCaux(S2, Q)
• VCaux(if C then S1 else S2, Q) =

 VCaux(S1, Q) ∪VCaux(S2, Q)
• VCaux(while B do {I} S, Q) = VCaux(S, I)∪

 {I∧B→wpS(I)} ∪
 {I∧¬B→Q}

Summary

• Axiomatic semantics provides an abstract
semantics

• Can be used to explain programming
• Can be automated
• More effort is required to make it practical

	Programming Language Semantics�Axiomatic Semantics
	Motivation
	Plan
	Example Program
	Example Program
	Example Program
	Partial Correctness
	Total Correctness
	Formalizing Partial Correctness
	An Assertion Language
	An Assertion Language
	Example
	Example
	Free and Bound Variables
	Substitution
	Substitution
	Location Substitution
	Example Assertions
	Semantics of Assertions
	Semantics of Assertions (II)
	Proposition 6.4
	Partial Correctness Assertions
	The extension of an assertion
	The extension of assertions
	The extension of assertions
	Hoare Proof Rules for Partial Correctness
	Example
	Example
	Example Formal
	Soundness
	Unsound Proof Rules for Partial Correctness
	Incomplete Proof Rules for Partial Correctness
	Soundness of skip axiom
	Soundness of the assignment axiom
	Soundness of the sequential composition rule
	Soundness of the conditional rule
	Soundness of the while rule
	Soundness of the consequence rule
	Extensions to While
	(Ideal) Completeness
	Relative Completeness (Chapter 7)
	Relative completeness of composition rule
	Weakest Precondition
	Weakest (Liberal) Precondition
	Some WP rules
	Verification Process
	Verification Conditions
	VC rules
	Summary

