Programming Language Semantics Axiomatic Semantics

The Formal Semantics of Programming Languages Glynn Winskel Chapter 6

Motivation

• What do we need in order to prove that the program does what it supposed to do?

- Specify the required behavior
- Compare the behavior with the one obtained by the denotational/operational semantics
- Develop a proof system for showing that the program satisfies a requirement
- Mechanically use the proof system to show correctness
- The meaning of a program is a set of verification rules

Plan

- The basic idea
- An assertion language
- Semantics of assertions
- Proof rules
- An example
- Soundness
- Completeness
- Verification conditions

Example Program

S:=0 N := 1 while \neg (N=101) do S := S + N;N := N+1N=101 $S = \sum_{1 \le m \le 100} m$

Example Program

S:=0 {S=0} N := 1 $\{S=0 \land N=1\}$ while \neg (N=101) do S := S + N;N := N+1 $\{N=101 \land S=\sum_{1 \le m \le 100} m\}$

Example Program

S:=0 {S=0} N := 1 $\{S=0 \land N=1\}$ while $\{1 \le N \le 101 \land S = \sum_{1 \le m \le N-1} m\} \neg (N=101)$ do S := S + N : $\{1 \le N < 101 \land S = \sum_{1 \le m \le N} m\}$ N := N + 1 $\{N=101 \land S=\sum_{1 \le m \le 100} m\}$

Partial Correctness

- {P}S{Q}
 - P and Q are assertions (extensions of Boolean expressions)
 - S is a statement
 - For all states σ which satisfies P, if the execution of S from state σ terminates in state σ' , then σ' satisfies Q
- {true}while true do skip{false}

Total Correctness

- [P]S[Q]
 - P and Q are assertions (extensions of Boolean expressions)
 - S is a statement
 - For all states σ which satisfies P,
 - the execution of S from state σ must terminates in a state σ'
 - σ' satisfies Q

Formalizing Partial Correctness

- σ⊨A
 - A is true in σ
- {P} S {Q}
 - $\forall \sigma, \sigma' \in \Sigma. (\sigma \models P \& <S, \sigma \rightarrow \sigma') \Rightarrow \sigma' \models Q$ $\forall \sigma \in \Sigma. (\sigma \models P \& S [S] \sigma \neq \bot) \Rightarrow S [S] \sigma \models Q$
- Convention for all A $\perp \models A$
- $\forall \sigma, \sigma' \in \Sigma. \sigma \models P \implies S \llbracket S \rrbracket \sigma \models Q$

An Assertion Language

- Extend Bexp
- Allow quantifications
 - ∀i: ...
 - —∃i: ...
 - ∃i. k=i×l
- Import well known mathematical concepts $-n! = n \times (n-1) \times \cdots 2 \times 1$

Assertion Language

Aexpv

$$a:= n | X | i | a_0 + a_1 | a_0 - a_1 | a_0 \times a_1$$

Assn
 $A:= true | false | a_0 = a_1 | a_0 \le a_1 | A_0 \wedge A_1 | A_0 \vee A_1 | \neg A |$

$$A_0 \Rightarrow A_1 \mid \forall i. A \mid \exists i. A$$

Example

while $\neg(M=N)$ do if $M \le N$ then N := N - Melse M := M - N

Example

```
int power(int x, unsigned int y)
{
  int temp;
  if(y == 0)
     return 1;
  temp = power(x, y/2);
  if (y\%2 == 0)
     return temp*temp;
  else
     return x*temp*temp;
```

Free and Bound Variables

- An integer variable is **bound** when it occurs in the scope of a quantifier
- Otherwise it is free
- Examples $\exists i. k=i \times L$ (i+100 \leq 77) $\land \forall i.j+1=i+3$)

 $FV(n) = FV(X) = \emptyset$ $FV(i) = \{i\}$

 $FV(a_0 + a_1) = FV(a_0 - a_1) = FV(a_0 \times a_1) = FV(a_0) \cup FV(a_1)$

 $FV(true) = FV(false) = \emptyset FV(a_0 = a_1) = FV(a_0 \le a_1) = FV(a_0) \cup FV(a_1)$

$$FV(A_0 \land A_1) = FV(A_0 \lor A_1) = FV(A_0 \Longrightarrow A_1) = FV(A_0) \cup FV(A_1)$$

 $FV(\neg A)=FV(A)$

 $FV(\forall i. A)=FV(\exists i. A)=FV(A)\setminus \{i\}$

Substitution

- Visualization of an assertion A ----i----i
- Consider a "pure" arithmetic expression A[a/i] ---a---a---

n[a/i] = n i[a/i] = a j[a/i] = j (a - b - a)[a/i] = a - a - a - b[a/i] = a - a - b[a/i] = a - b[a/i]

 $(a_0 + a_1)[a/i] = a_0[a/i] + a_1/[a/i] \qquad (a_0 - a_1)[a/i] = a_0[a/i] - a_1[a/i]$ $(a_0 \times a_1)[a/i] = a_0[a/i] \times a_1[a/i]$

Substitution

- Visualization of an assertion A ----i----i
- Consider a "pure" arithmetic expression A[a/i] ---a---a---

true[a/i] = true

false[a/i]=false

 $\begin{aligned} (a_0 = a_1)[a/i] &= (a_0/[a/i] = a_1[a/i]) & (a_0 \le a_1)[a/i] = (a_0/[a/i] \le a_1[a/i]) \\ (A_0 \land A_1)[a/i] &= (A_0[a/i] \land A_1[a/i]) & (A_0 \lor A_1)[a/i] = (A_0[a/i] \lor A_1[a/i]) \\ & (A_0 \Rightarrow A_1)[a/i] = (A_0[a/i] \Rightarrow A_1[a/i])[a/i] \\ & (\neg A)[a/i] = \neg (A[a/i]) \\ (\forall i.A)[a/i] &= \forall i. A & (\forall j.A)[a/i] = (\forall j. A[a/i]) \\ (\exists i.A)[a/i] &= \exists i. A & (\exists j.A)[a/i] = (\exists j. A[a/i]) \end{aligned}$

Location Substitution

- Visualization of an assertion A
 ---X---X----
- Consider a "pure" arithmetic expression A[a/X] ---a---a---

Example Assertions

- i is a prime number
- i is the least common multiple of j and k

Semantics of Assertions

- An interpretation I:intvar \rightarrow N
- The meaning of Aexpv
 - − Av[[n]]lσ=n
 - $\operatorname{Av}[\![X]\!] \operatorname{I\sigma} = \sigma(X)$
 - − Av[[i]]Iσ= I(i)
 - $\operatorname{Av}\llbracket a0 + a1 \rrbracket \operatorname{I\sigma} = \operatorname{Av}\llbracket a0 \rrbracket \operatorname{I\sigma} + \operatorname{Av}\llbracket a1 \rrbracket \operatorname{I\sigma}$
 - ...
- For all $a \in Aexp$ states σ and Interpretations I $A[a]\sigma = Av[a]I\sigma$

Semantics of Assertions (II)

- I[n/i] change i in I to n
- For I and $\sigma\!\in\!\Sigma_{\!\!\!\perp}$, define $\sigma\models^{\!\!\!\!\!|} \mathsf{A}$ by structural induction
 - $\sigma \models^{\mathsf{I}} \mathsf{true}$
 - $\sigma \models^{l} (a_0 = a_1) \text{ if } Av \llbracket a_0 \rrbracket I\sigma = Av \llbracket a_1 \rrbracket I\sigma$
 - $-\sigma \models^{l} (A \land B) \text{ if } \sigma \models^{l} A \text{ and } \sigma \models^{l} B$
 - $-\sigma \models^{I} \neg A$ if not $\sigma \models^{I} A$
 - $-\sigma \models A \Rightarrow B$ if (not $\sigma \models A$) or $\sigma \models B$)
 - $\ \sigma \models^{{\scriptscriptstyle \mathsf{I}}} \forall i.A \ \text{ if } \sigma \models^{{\scriptscriptstyle \mathsf{I}}[n/i]} A \ \text{ for all } n \in \mathsf{N}$
 - $\perp \models A$

Proposition 6.4

For all $b \in Bexp$ states σ and Interpretations I $B[\![b]\!]\sigma = true \quad iff \quad \sigma \models^{I} b$ $B[\![b]\!]\sigma = false \quad iff \quad not \quad \sigma \models^{I} b$

Partial Correctness Assertions

- {P}c{Q}
 - P, Q \in Assn and c \in Com
- For a state $\sigma \in \Sigma_{\perp}$ and interpretation I - $\sigma \models^{!} \{P\}c\{Q\} \text{ if } (\sigma \models^{!} P \Rightarrow C \llbracket c \rrbracket \sigma \models^{!} Q)$
- Validity
 - When $\forall \sigma \in \Sigma_{\perp}$, $\sigma \models^{\mathsf{I}} {\mathsf{P}c{Q}}$ we write
 - ⊨[|] {P}c{Q}
 - When $\forall \sigma \in \Sigma_{\perp}$, and I $\sigma \models^{I} {P}c{Q}$ we write
 - \models {P}c{Q}
 - {P}c{Q} is valid

The extension of an assertion

 $A^{I} \doteq \{ \sigma \in \Sigma_{\perp} \mid \sigma \models^{I} A \}$

The extension of assertions

Suppose that \models (P \Rightarrow Q)

Then for any interpretation I $\forall \sigma \in \Sigma_{\perp}$. $\sigma \models^{I} P \Rightarrow \sigma \models^{I} Q$

 $P^{I}\!\!\subseteq\!\!Q^{I}$

The extension of assertions

Suppose that \models {P}c{Q}

Then for any interpretation I $\forall \sigma \in \Sigma_{\perp}$. $\sigma \models^{I} P \Rightarrow C \llbracket c \rrbracket \sigma \models^{I} Q$

 $C\,[\![c]\!]P^I\!\subseteq\!Q^I$

 Σ_{\perp}

Hoare Proof Rules for Partial Correctness

{A} skip {A} {B[a/X]} X:=a {B}

 $\frac{\{P\} S_0 \{C\} \{C\} S_1 \{Q\}}{\{P\} S_0; S_1 \{Q\}}$

 $\underline{\{P \land b\} S_0} \{Q\} \{P \land \neg b\} S_1 \{Q\}$

 $\{P\}$ if b then S_0 else $S_1\{Q\}$

${I \land b} S {I}$

 $\{I\}$ while b do S $\{I \land \neg b\}$

 $\models P \Rightarrow P' \{P'\} S \{Q'\} \models Q' \Rightarrow Q$

 $\{P\} \ S \ \{Q\}$

Example

Example

```
\{X = n \land n \ge 0\}
Y := 1;
       \{X = n \land Y = 1 \land n \ge 0\}
while X > 0 do
                              \{X \ge 0 \land n \ge 0 \land Y = n!/X!\}
    \{X > 0 \land n \ge 0 \land Y = n!/X!\}
          Y := X \times Y:
 \{X > 0 \land n \ge 0 \land Y = n!/(X-1)!\}
          X := X - 1
     \{X > 0 \land n \ge 0 \land Y = n!/X!\}
             \{Y = n!\}
```

Example Formal

Soundness

- Every theorem obtained by the rule system is valid
 - $\vdash \!\! \{ \mathsf{P} \} c \{ \mathsf{Q} \} \Longrightarrow \models \!\! \{ \mathsf{P} \} c \{ \mathsf{Q} \}$
- The system can be implemented (HOL, LCF, Coq)
 - Requires user assistance
- Proof of soundness
 - Every rule preserves validity (Theorem 6.1)

Unsound Proof Rules for Partial Correctness

{A} skip {B}
{B} X:=a {B[a/X]}

 $\frac{\{P\} S_0 \{C1\} \{C2\} S_1 \{Q\}}{\{P\} S_0; S_1 \{Q\}}$

 $\underline{\{P \land \neg b\} S_{\underline{0}} \{Q\} \{P \land b\} S_{\underline{1}} \{Q\}}$

 $\{P\}$ if b then S_0 else $S_1\{Q\}$

${I \land b} S {I}$

 $\{I\}$ while b do S $\{I \land \neg b\}$

 $\models P' \Rightarrow P \{P'\} S \{Q'\} \models Q \Rightarrow Q'$

 $\{P\} \ S \ \{Q\}$

Incomplete Proof Rules for Partial Correctness

{A} skip {A} {B[a/x]} X:=a {B}

 $\frac{\{P\} S_0 \{C\} \{C\} S_1 \{Q\}}{\{P\} S_0; S_1 \{Q\}}$

 $\underline{\{P\}\;S_{\underline{0}}\;\{Q\}\;\{P\;\}\;S_{\underline{1}}\;\{Q\}}$

 $\{P\}$ if b then S_0 else $S_1\{Q\}$

$\{I\} S \{I\}$

 $\{I\}$ while b do S{I}

Soundness of skip axiom

 \models {A} skip {A}

Soundness of the assignment axiom

 $\models \{B[a/X]\} X := a \{B\}$

Soundness of the sequential composition rule

- Assume that $\models \{P\} S_0 \{C\}$ and $\models \{C\} S_1 \{Q\}$
- Show that \models {P} S₀;S₁{Q}

Soundness of the conditional rule

- Assume that
 - $\models \{P \land b\} S_0 \{Q\}$ and
 - $\models \{P \land \neg b\} S_1 \{Q\}$
- Show that \models {P} if b then S₀ else S₁{Q}

Soundness of the while rule

- Assume that
 ⊨{I ∧ b} S {I}
- Show that \models {I} while b do S {I $\land \neg$ b}

Soundness of the consequence rule

- Assume that \models {P'} S {Q'} and \models P \Rightarrow P'
 - and
 - $\models \mathsf{Q'} \Rightarrow \mathsf{Q}$
- Show that
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|

 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|
 ||+|

 ||+|
 ||+|
 ||+|

 ||+|

 ||+|

 ||+|

 ||+|

 ||+|

 ||+|

Extensions to While

- Other control flow constructs
- Abort statement (like C exit w/o return value)
- Non determinism
- Parallelism
- Local Variables
- Procedures

(Ideal) Completeness

- Every valid theorem can be proved by the rule system
- For every P and Q such that ⊨{P} S {Q} there exists a proof such ⊢ {P} S {Q}
- But what about Gödel's incompleteness?
 ⊨{true} skip {Q}
- What does ⊨{true} c {false} mean?

Relative Completeness (Chapter 7)

Assume that every math theorem can be proved
 ⊨{P} S {Q} implies ⊢ {P} S {Q}

Relative completeness of composition rule

- Prove that {P} S₀;S₁{Q}
- Does there exist an assertion I such that \models {P} S₀ {C} and \models {I} S₁ {Q}

Weakest Precondition

- wp: Stm \rightarrow (Ass \rightarrow Ass)
- wp [[S]](Q) the weakest condition such that every terminating computation of S results in a state satisfying Q
- $\sigma \models wp \llbracket S \rrbracket (Q) \leftrightarrow \forall \sigma' : \sigma \llbracket S \rrbracket \sigma' \rightarrow \sigma' \models Q$

 Can be used to compute verification conditions

Weakest (Liberal) Precondition

- wp(S, Q) the weakest condition such that every terminating computation of S results in a state satisfying Q
- $\llbracket wp^{I}(S, Q) \rrbracket = \{ \sigma \in \Sigma^{\perp} | S \llbracket S \rrbracket \sigma \vDash^{I} Q \}$

Some WP rules

- wp(S, false) =
- wp(skip, Q) = Q
- wp(X := a, Q) = Q[a/X]
- wp(S₀; S₁, Q) = wp(S₀, wp(S₁, Q))
- wp(if b then S₀ else S₁, Q) =
 b ∧wp(S₀, Q) ∨ ¬ b ∧wp(S₁, Q)
- wp(while B {I} do S, Q) =

Verification Process

Verification Conditions

- Generate assertions that describe the partial correctness of the program
- Use automatic theorem provers to show partial correctness
- Existing tools ESC/Java, Spec#

VC rules

- $VC_{gen}({P} S {Q}) = P \rightarrow wp[[S]](Q) \land \Lambda VC_{aux}(S, Q)$
- VC_{aux}(S, Q) = {} (for any atomic statement)
- $VC_{aux}(S_1; S_2, Q) = VC_{aux}(S_1, wp(S_2, Q)) \cup VC_{aux}(S_2, Q)$
- $VC_{aux}(if C then S_1 else S_2, Q) = VC_{aux}(S_1, Q) \cup VC_{aux}(S_2, Q)$
- VC_{aux} (while B do {I} S, Q) = $VC_{aux}(S, I) \cup$ { $I \land [\![B]\!] \rightarrow wp[\![S]\!](I)$ } \cup { $I \land \neg [\![B]\!] \rightarrow Q$ }

Summary

- Axiomatic semantics provides an abstract semantics
- Can be used to explain programming
- Can be automated
- More effort is required to make it practical