Combining Abstract Interpreters

Mooly Sagiv

Tel Aviv University

640–6706
Motivation

- Develop new abstract interpreters from old
- If I know how to handle programs over data type A and programs over data type B
 - How can I handle programs with variables of type A or type B
- Develop new abstract domains from old
- Develop new transformers from old
Pointer Semantics
Simple Pointer Commands

- `<com> ::= X := Y X, Y ∈ Var
 | X := &Y
 | *X := Y
 | assume X = Y
 | assume *X = Y
 | assert X = Y
 | assert *X = Y

- Control Flow Graph \(G(N, E, s) \) where \(E \subseteq N \times N \) is annotated with commands
 - \(s \in N \) is the start node
Example Program

1

A1 := &B1

2

A2 := &B2

3

X := &A1

4

X := &A2

5

6

*X := B1

7
Disjunctive Completion

- Given an abstract domain D
 - Construct an abstract domain D' such that join does not lose information
 » How can this be formulated?
- Examples:
 - Signs = $\{\emptyset, \{+\}, \{-\}, \{0\}, \{0, +\}, \{0, -\}, \mathbb{Z}\}$
 - Points-to
- Size of the new domain
- Height of the new abstract domain
 - Finite lattices
 - Infinite lattice
- Constructing transformers
Example Program

1
A1 := &B1

2

3
A2 := &B2
X := &A1
X := &A2

4

5

6

7
*X := B1
Cartesian Product

- Given domains
 \[D_1 = \langle D_1, \sqsubseteq^1, \sqcup^1, \sqcap^1, \bot^1, \top^1 \rangle \text{ and } D_2 = \langle D_2, \sqsubseteq^2, \sqcup^2, \sqcap^2, \bot^2, \top^2 \rangle \]
- Construct a domain \(D = \langle D_1 \times D_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top \rangle \)
- Galois connection
 - Is it a Galois insertion
- Widening
- Transformers

 for (i=0; i < arr.length ; i++)

 arr[i] = 0
Reduced Product

- Cartesian product does not utilize the interaction between the domains
- How can each analysis in the abstract composition benefits from the information brought by the other analyses
- Two solutions
 - Employ a theorem prover
 - Employ semantic reduction
Semantic Reduction

- Improve the precision of the analysis by recovering properties of the program semantics

- A Galois connection \((L_1, \alpha, \gamma, L_2)\)

- An operation \(\text{op}:L_2 \rightarrow L_2\) is a semantic reduction
 - \(\forall l \in L_2\) \(\text{op}(l) \sqsubseteq l\)
 - \(\gamma(\text{op}(l)) = \gamma(l)\)

- The most precise semantic reduction can be defined but not-necessarily computed

- Can be applied before and after basic operations
Example

- $D_1 = \text{Intervals}$
- $D_2 = \text{Parity}$

- Example Reduction:
 - Update lower/upper bound
Granger Product

- A general heuristics for approximating semantic reduction

- $D_1 = \langle D_1, \sqcup^1, \sqcap^1, \bot^1, \top^1 \rangle$
- $D_2 = \langle D_2, \sqcup^2, \sqcap^2, \bot^2, \top^2 \rangle$
- $D = \langle D_1 \times D_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top \rangle$

- Define operations: $\rho_1: D_1 \times D_2 \rightarrow D_1$ and $\rho_2: D_1 \times D_2 \rightarrow D_2$ such that
 - $\rho_1(d_1, d_2) \sqsubseteq^1 d_1$ and $\gamma(\rho_1(d_1, d_2), d_2) = \gamma(d_1, d_2)$
 - $\rho_2(d_1, d_2) \sqsubseteq^2 d_2$ and $\gamma(d_1, \rho_2(d_1, d_2)) = \gamma(d_1, d_2)$

- Compute the semantic reduction iteratively
 - $<a_0, b_0> = <a, b>$
 - $<a_{n+1}, b_{n+1}> = <\rho_1(a_n, b_n), \rho_2(a_n, b_n)>$
A Simple Example

[Intervals+Inequalities]

```java
if (I <= 0)
    arr = new Int[1]
else
    arr = new Int[I]
for (i=0; i < I ; i++)
    arr[i] = 0;
```
A Complex Example
[Intervals+Inqualities]

```java
if (I <= 2)
    arr = new Int[1]
else
    arr = new Int[I]
for (i=3; i < I ; i++)
    arr[i] = 0;
```
Reduced Cardinal Power

♦ Combine the two domains in a way which keeps correlations between the individual elements

♦ The element $a \rightarrow b$ means that if the state obeys ‘a’ it also obeys ‘b’
Reduced Cardinal Power

- Given domains
 \[D_1 = \langle D_1, \sqsubseteq^1, \sqcup^1, \sqcap^1, \bot^1, \top^1 \rangle \text{ and } \]
 \[D_2 = \langle D_2, \sqsubseteq^2, \sqcup^2, \sqcap^2, \bot^2, \top^2 \rangle \]
- Construct a domain \(D = \langle D_1 \rightarrow D_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top \rangle \)
- Galois connection
- Transformers
A Complex Example
[Intervals+Inqualities]

if (I \leq 2)
 arr = new Int[1]
else
 arr = new Int[I]
for (i=3; i < I ; i++)
 arr[i] = 0;
A Complex Example

[Booleans+Signs]

\[
x := 100; \ b := \text{true};
\]

\[
\text{while } b \text{ do }
\]

\[
\quad x := x - 1;
\]

\[
\quad b := (x > 0);
\]

\[
}
\]
Practical Applications of Reduced Cardinal Power

- Astree Branch Correlations
- Interprocedural analysis [Next lesson]
- Shape Analysis [Later]
Other Combinations

- Open Product
- Logical Product
Bibliography

- Cousot & Cousot POPL 1979
- Bruno Blachet, Introduction to Abstract Interpretation
- Sumit Gulewani, Ashish Tiwari: Combining abstract interpreters PLDI’06
Summary

- Many ways to combine abstractions
- Simplifies the design and implementation of static analyzers
- Improve our understanding of abstractions