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Specialized Chaotic Iterations 

System of Equations 

S = 

  dfentry[s] =  

  dfentry[v] = {f(u, v) (dfentry[u]) | (u, v)  E } 

 

FS:Ln Ln 

      FS (X)[s] =  

    FS(X)[v] = {f(u, v)(X[u]) | (u, v)  E } 

lfp(S) = lfp(FS) 



Specialized Chaotic Iterations 

Chaotic(G(V, E): Graph, s: Node, L: Lattice, : L, f: E (L L) ){ 

   for each v in V to n do dfentry[v] :=  

  df[s] =   

   WL = {s} 

   while (WL     )  do 

      select and remove an element u  WL 

      for each v, such that. (u, v) E do 

                 temp = f(e)(dfentry[u])  

  new := dfentry(v) temp 

                 if (new  dfentry[v]) then   

                            dfentry[v] := new; 

                            WL := WL {v}    



z =3 

x =1 

while (x>0) 

if (x=1) 

y =7 y =z+4 

x=3 

print y 

e.e[z3] 

e.e[x1] 

e. if x >0 then e     else  

e. if e x 0 then e     else  

e. e [x1, y , z] e. if e x 0 then e    else  

e.e[y7] e.e[ye(z)+4] 

e.e[x3] 

e.e 
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[x0, y0, z0] 

WL dfentry]v] 

{1} 

{2} df[2]:=[x0, y0, z3] 

{3} df[3]:=[x1, y0, z3] 

{4} df[4]:=[x1, y0, z3] 

{5} df[5]:=[x1, y0, z3] 

{7} df[7]:=[x1, y7, z3] 

{8} df[8]:=[x3, y7, z3] 

{3} df[3]:=[x, y, z3] 

{4} df[4]:=[x, y, z3] 

{5,6} df[5]:=[x1, y, z3] 

{6,7} df[6]:=[x, y, z3] 

{7} df[7]:=[x, y7, z3] 



The Abstract Interpretation 

Technique (Cousot & Cousot) 

 The foundation of program analysis 

 Defines the meaning of the information computed 
by static tools 

 A mathematical framework 

 Allows proving that an analysis is sound in a local 
way 

 Identify design bugs 

 Understand where precision is lost 

 New analysis from old 

 Not limited to certain programming style 
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Abstract (Conservative) interpretation 

abstract  

representation 

Set of states 
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Galois Connections 
 Lattices C and A and functions : C A and : A C 

 The pair of functions (, ) form  

 Galois connection if 

–  and   are monotone 

–  a    A 

» ( (a))  a 

–  c  C  

» c    ((C)) 

 Alternatively if: 

  c  C 

  a  A 

          (c)  a  iff c   (a)  

 

   and  uniquely  determine each other 



The Abstraction Function (CP) 
 Map collecting states into constants 

 The abstraction of an individual state 

CP:[Var* Z]  [Var* Z{, }] 

CP() =  

 The abstraction of set of states 

 CP:P([Var* Z])  [Var* Z{, }] 

 CP (CS) =   { CP () |   CS} = {|   CS}  

 Soundness 

 CP (Reach (v))  df(v)  

 Completeness 

 



The Concretization Function 
 Map constants into collecting states 

 The formal meaning of constants 

 The concretization 

 CP: [Var* Z{, }] P([Var* Z])  

  CP (df) =  {| CP ()  df} = { |   df} 

 Soundness 

 Reach (v)  CP (df(v))  

 Completeness 



Galois Connection Constant 

Propagation 

 CP is monotone 

 CP is monotone 

  df  [Var* Z{, }]  

–  CP( CP (df))  df 

  c  P([Var* Z])  

– c CP   CP ( CP(C)) 

 

 

 



Upper Closures 

 Define abstractions on sets of concrete states 

 : P() P() such that 

–  is monotone, i.e., X  Y   X   Y 

–  is extensive, i.e.,  X  X 

–  is closure, i.e., (  X) =  X 

 Every Galois connection defines an upper closure 

 

 

 

 



Proof of Soundness 

 Define an “appropriate” operational semantics 

 Define “collecting” operational semantics by pointwise 

extension  

 Establish a Galois connection between collecting states 

and abstract states 

 (Local correctness) Show that the abstract interpretation  

of every atomic statement is sound 

w.r.t. the collecting semantics 

 (Global correctness) Conclude that the analysis is sound 



Collecting Semantics 

The input state is not known at 

compile-time 

“Collect”  all the states for all 

possible inputs to the program 

No lost of precision 



A Simple Example Program 

z = 3 

x = 1 

while (x > 0) ( 

        if (x = 1) then y = 7 

                        else y = z + 4 

         x = 3 

         print y  

   )  

{[x0, y0, z0]} 

{[x1, y0, z3]} 

{[x1, y0, z3], [x3, y0, z3],} 

{[x0, y0, z3]} 

{[x1, y7, z3], [x3, y7, z3]} 

{[x1, y7, z3], [x3, y7, z3]} 

{[x3, y7, z3]} 

{[x3, y7, z3]} 



Another Example 

x= 0 

while (true) do 

   x = x +1 



An “Iterative” Definition  

 Generate a system of monotone equations 

 The least solution is well-defined 

 The least solution is the collecting interpretation 

 But may not be computable 



Equations Generated for Collecting Interpretation 

 Equations for elementary statements 

– [skip] 

 

CSexit(1) = CSentry(l)  

– [b] 

CSexit(1) = {:  CSentry(l), b=tt}  

– [x := a] 

CSexit(1) = {(s[x Aas]) | s  CSentry(l)} 

 Equations for control flow constructs 
 CSentry(l) =    CSexit(l’) l’ immediately precedes l 
in the control flow graph 

An equation for the entry 
CSentry(1) = { |   Var* Z} 



Specialized Chaotic Iterations 

System of Equations 

 (Collecting Semantics) 
S = 

  CSentry[s] ={0} 

 CSentry[v] = {f(e)(CSentry[u]) | (u, v)  E } 

where f(e) = X. {st(e)  |  X} for atomic statements 

           f(e) = X.{ | b(e)  =tt } 

 
FS:Ln Ln 

    Fs(X)[v] = {f(e)[u] | (u, v)  E }  

lfp(S) = lfp(FS) 



The Least Solution 

 2n sets of equations 

CSentry(1), …, CSentry (n), CSexit(1), …, CSexit (n) 

 Can be written in vectorial form 

 

 The least solution lfp(Fcs) is well-defined 

 Every component is minimal 

 Since Fcs is monotone such a solution always exists 

 CSentry(v) = {s|s0| <P, s0 > * (S’, s)),  

                                       init(S’)=v} 

 Simplify the soundness criteria 

)CS(CS csF



 

 

f() 

f() 

f2() 

f2() 

f(x)=x 

f(x)x 

f(x)x 

gfp(f) 

lfp(f) 

 

 
f#() 

f#() 

f#2() 

f#2() 

f#(y)=y 

f#(y)y 

f#(y)y 

gfp(f#) 

lfp(f#) 

 

a: f((a))  (f#(a))   



Finite Height Case 
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Soundness Theorem(1) 

1. Let (, ) form Galois connection from C to A 

2. f: C  C  be a monotone function 

3. f# : A  A  be a monotone function 

4. aA: f((a))  (f#(a))   

lfp(f)  (lfp(f#))  

(lfp(f))  lfp(f#)  



Soundness Theorem(2) 

1. Let (, ) form Galois connection from C to A 

2. f: C  C  be a monotone function 

3. f# : A  A  be a monotone function 

4. cC: (f(c))  f#((c))   

(lfp(f))  lfp(f#)  

lfp(f)  (lfp(f#))  



Soundness Theorem(3) 

1. Let (, ) form Galois connection from C to A 

2. f: C  C  be a monotone function 

3. f# : A  A  be a monotone function 

4. aA: (f((a)))  f#(a)   

(lfp(f))  lfp(f#)  

lfp(f)  (lfp(f#))  



Proof of Soundness (Summary) 

 Define an “appropriate” structural operational 

semantics 

 Define “collecting” structural operational 

semantics  

 Establish a Galois connection between collecting 

states and reaching definitions 

 (Local correctness) Show that the abstract 

interpretation  of every atomic statement is sound 

w.r.t. the collecting semantics 

 (Global correctness) Conclude that the analysis is 

sound 



Completeness 

(lfp(f)) = lfp(f#)  

lfp(f) = (lfp(f#))  



Constant Propagation 

 : [Var  Z]  [Var  Z{, }]  

– () = () 

 : P([Var  Z])  [Var  Z{, }]  

– (X) =  {() |  X} =  { |  X}  

 :[Var  Z {, }]  P([Var  Z])  

– (#) = { | ()  # } = { |   # } 

 Local Soundness 

– st#(#)  ({st   |   (#) =  {st  |   # }  

 Optimality (Induced) 

– st#(#) = ({st  |   (#)} =  {st  |   # }  

 Soundness 

 Completeness 

 

 

 



Proof of Soundness (Summary) 

 Define an “appropriate” structural operational 

semantics 

 Define “collecting” structural operational 

semantics  

 Establish a Galois connection between collecting 

states and reaching definitions 

 (Local correctness) Show that the abstract 

interpretation  of every atomic statement is sound 

w.r.t. the collecting semantics 

 (Global correctness) Conclude that the analysis is 

sound 



Best (Conservative) interpretation 

abstract  

representation 

Set of states 

concretization 

Abstract 

semantics 

statement  s 
abstract  

representation 

abstraction 

Operational 

semantics 

statement  s 
Set of states 

concretization 

Set of states  



Induced Analysis  

(Relatively Optimal) 

 It is sometimes possible to show that a given 
analysis is not only sound but optimal w.r.t. the 
chosen abstraction  

– but not necessarily optimal! 

 Define  
 S# (df) = ({S|    (df)})  

 But this S#  may not be computable 

 Derive (at compiler-generation time) an 
alternative form for S#  

 A useful measure to decide if the abstraction must 
lead to overly imprecise results 



Example Dataflow Problem 

 Formal available expression analysis 

 Find out which expressions are available at a given 
program point 

 Example program 
  x = y + t 
  z = y + r 
  while (…) { 
         t = t + (y + r) 
                    } 

 Lattice 

 Galois connection 

 Basic statements 

 Soundness 



Example: May-Be-Garbage 

 A variable x may-be-garbage at a program point v 

if there exists a execution path leading to v in 

which x’s value is unpredictable: 

– Was not assigned 

– Was assigned using an unpredictable expression 

 Lattice 

 Galois connection 

 Basic statements 

 Soundness 



Points-To Analysis  
Determine if a pointer variable p may point 

to q  

on some path leading to a program point 

 “Adapt” other optimizations  

– Constant propagation 

x = 5; 

*p = 7 ; 

… x … 

 Pointer aliases 

– Variables p and q are may-aliases at v if the points-to 

set at v contains entries (p, x) and (q, x)  

 Side-effect analysis 

   *p = *q + * * t 



The PWhile Programming Language  

Abstract Syntax 

a := x | *x | &x | n | a1 opa a2  

b := true | false | not b |  b1 opb b2 | a1 opr a2 

S := x := a | *x := a | skip | S1 ; S2 |  

        if b then S1 else S2 | while b do S 



Concrete Semantics 1 for PWhile 

For every atomic statement S 

S  : States1  States1  

x := a ()=[loc(x) Aa ] 

x := &y ()  

x := *y () 

x := y () 

*x := y () 

State1= [LocLocZ] 



Points-To Analysis  
 Lattice Lpt =  

 Galois connection 



Abstract Semantics for PWhile 

•For every atomic statement S 

S  #: P(Var* Var*) P(Var* Var*)  

x := &y #  

x := *y # 

x := y # 

*x := y # 



t := &a;  

y := &b;  

z := &c; 

 if x> 0;    

 then p:= &y;  

       else p:= &z; 

 *p := t; 

 



/*   */ t := &a; /* {(t, a)}*/ 
 /* {(t, a)}*/  y := &b; /* {(t, a), (y, b) }*/  

/* {(t, a), (y, b)}*/ z := &c; /* {(t, a), (y, b), (z, c) }*/ 

 if x> 0;    
 then p:= &y; /* {(t, a),  (y, b), (z, c), (p, y)}*/ 
  

 else p:= &z; /* {(t, a),  (y, b), (z, c), (p, z)}*/  
/* {(t, a),  (y, b), (z, c), (p, y), (p, z)}*/   

 *p := t; 

/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)}*/ 



Flow insensitive points-to-analysis 

Steengard 1996 

 Ignore control flow  

 One set of points-to per program 

 Can be represented as a directed graph 

 Conservative approximation 

– Accumulate pointers 

 Can be computed in almost linear time 



t := &a;  

y := &b;  

z := &c; 

 if x> 0;    

 then p:= &y;  

       else p:= &z; 

 *p := t; 

 



Precision 

 We cannot usually have 

– (CS) = DF  

on all programs 

 But can we say something about precision in all 

programs? 



Summary 

 Abstract interpretation Connects Abstract and 

Concrete Semantics 

 Galois Connection 

 Local Correctness 

 Global Correctness 


