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Specialized Chaotic Iterations 

System of Equations 

S = 

  dfentry[s] =  

  dfentry[v] = {f(u, v) (dfentry[u]) | (u, v)  E } 

 

FS:Ln Ln 

      FS (X)[s] =  

    FS(X)[v] = {f(u, v)(X[u]) | (u, v)  E } 

lfp(S) = lfp(FS) 



Specialized Chaotic Iterations 

Chaotic(G(V, E): Graph, s: Node, L: Lattice, : L, f: E (L L) ){ 

   for each v in V to n do dfentry[v] :=  

  df[s] =   

   WL = {s} 

   while (WL     )  do 

      select and remove an element u  WL 

      for each v, such that. (u, v) E do 

                 temp = f(e)(dfentry[u])  

  new := dfentry(v) temp 

                 if (new  dfentry[v]) then   

                            dfentry[v] := new; 

                            WL := WL {v}    



z =3 

x =1 

while (x>0) 

if (x=1) 

y =7 y =z+4 

x=3 

print y 

e.e[z3] 

e.e[x1] 

e. if x >0 then e     else  

e. if e x 0 then e     else  

e. e [x1, y , z] e. if e x 0 then e    else  

e.e[y7] e.e[ye(z)+4] 

e.e[x3] 

e.e 
 

1 

2 

3 

4 

5 
6 

7 

8 

[x0, y0, z0] 

WL dfentry]v] 

{1} 

{2} df[2]:=[x0, y0, z3] 

{3} df[3]:=[x1, y0, z3] 

{4} df[4]:=[x1, y0, z3] 

{5} df[5]:=[x1, y0, z3] 

{7} df[7]:=[x1, y7, z3] 

{8} df[8]:=[x3, y7, z3] 

{3} df[3]:=[x, y, z3] 

{4} df[4]:=[x, y, z3] 

{5,6} df[5]:=[x1, y, z3] 

{6,7} df[6]:=[x, y, z3] 

{7} df[7]:=[x, y7, z3] 



The Abstract Interpretation 

Technique (Cousot & Cousot) 

 The foundation of program analysis 

 Defines the meaning of the information computed 
by static tools 

 A mathematical framework 

 Allows proving that an analysis is sound in a local 
way 

 Identify design bugs 

 Understand where precision is lost 

 New analysis from old 

 Not limited to certain programming style 



Abstract (Conservative) interpretation 
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Abstract (Conservative) interpretation 

abstract  

representation 

Set of states 

concretization 

Abstract 

semantics 

statement  s 
abstract  

representation 

concretization 

Operational 

semantics 

statement  s 
Set of states Set of states  



 

 

Abstract 

Abstract Interpretation 

Concrete 

 

Sets of stores 
Descriptors of 
sets of stores 

 



Galois Connections 
 Lattices C and A and functions : C A and : A C 

 The pair of functions (, ) form  

 Galois connection if 

–  and   are monotone 

–  a    A 

» ( (a))  a 

–  c  C  

» c    ((C)) 

 Alternatively if: 

  c  C 

  a  A 

          (c)  a  iff c   (a)  

 

   and  uniquely  determine each other 



The Abstraction Function (CP) 
 Map collecting states into constants 

 The abstraction of an individual state 

CP:[Var* Z]  [Var* Z{, }] 

CP() =  

 The abstraction of set of states 

 CP:P([Var* Z])  [Var* Z{, }] 

 CP (CS) =   { CP () |   CS} = {|   CS}  

 Soundness 

 CP (Reach (v))  df(v)  

 Completeness 

 



The Concretization Function 
 Map constants into collecting states 

 The formal meaning of constants 

 The concretization 

 CP: [Var* Z{, }] P([Var* Z])  

  CP (df) =  {| CP ()  df} = { |   df} 

 Soundness 

 Reach (v)  CP (df(v))  

 Completeness 



Galois Connection Constant 

Propagation 

 CP is monotone 

 CP is monotone 

  df  [Var* Z{, }]  

–  CP( CP (df))  df 

  c  P([Var* Z])  

– c CP   CP ( CP(C)) 

 

 

 



Upper Closures 

 Define abstractions on sets of concrete states 

 : P() P() such that 

–  is monotone, i.e., X  Y   X   Y 

–  is extensive, i.e.,  X  X 

–  is closure, i.e., (  X) =  X 

 Every Galois connection defines an upper closure 

 

 

 

 



Proof of Soundness 

 Define an “appropriate” operational semantics 

 Define “collecting” operational semantics by pointwise 

extension  

 Establish a Galois connection between collecting states 

and abstract states 

 (Local correctness) Show that the abstract interpretation  

of every atomic statement is sound 

w.r.t. the collecting semantics 

 (Global correctness) Conclude that the analysis is sound 



Collecting Semantics 

The input state is not known at 

compile-time 

“Collect”  all the states for all 

possible inputs to the program 

No lost of precision 



A Simple Example Program 

z = 3 

x = 1 

while (x > 0) ( 

        if (x = 1) then y = 7 

                        else y = z + 4 

         x = 3 

         print y  

   )  

{[x0, y0, z0]} 

{[x1, y0, z3]} 

{[x1, y0, z3], [x3, y0, z3],} 

{[x0, y0, z3]} 

{[x1, y7, z3], [x3, y7, z3]} 

{[x1, y7, z3], [x3, y7, z3]} 

{[x3, y7, z3]} 

{[x3, y7, z3]} 



Another Example 

x= 0 

while (true) do 

   x = x +1 



An “Iterative” Definition  

 Generate a system of monotone equations 

 The least solution is well-defined 

 The least solution is the collecting interpretation 

 But may not be computable 



Equations Generated for Collecting Interpretation 

 Equations for elementary statements 

– [skip] 

 

CSexit(1) = CSentry(l)  

– [b] 

CSexit(1) = {:  CSentry(l), b=tt}  

– [x := a] 

CSexit(1) = {(s[x Aas]) | s  CSentry(l)} 

 Equations for control flow constructs 
 CSentry(l) =    CSexit(l’) l’ immediately precedes l 
in the control flow graph 

An equation for the entry 
CSentry(1) = { |   Var* Z} 



Specialized Chaotic Iterations 

System of Equations 

 (Collecting Semantics) 
S = 

  CSentry[s] ={0} 

 CSentry[v] = {f(e)(CSentry[u]) | (u, v)  E } 

where f(e) = X. {st(e)  |  X} for atomic statements 

           f(e) = X.{ | b(e)  =tt } 

 
FS:Ln Ln 

    Fs(X)[v] = {f(e)[u] | (u, v)  E }  

lfp(S) = lfp(FS) 



The Least Solution 

 2n sets of equations 

CSentry(1), …, CSentry (n), CSexit(1), …, CSexit (n) 

 Can be written in vectorial form 

 

 The least solution lfp(Fcs) is well-defined 

 Every component is minimal 

 Since Fcs is monotone such a solution always exists 

 CSentry(v) = {s|s0| <P, s0 > * (S’, s)),  

                                       init(S’)=v} 

 Simplify the soundness criteria 

)CS(CS csF



 

 

f() 

f() 

f2() 

f2() 

f(x)=x 

f(x)x 

f(x)x 

gfp(f) 

lfp(f) 

 

 
f#() 

f#() 

f#2() 

f#2() 

f#(y)=y 

f#(y)y 

f#(y)y 

gfp(f#) 

lfp(f#) 

 

a: f((a))  (f#(a))   



Finite Height Case 

 

   

   

f# 

f# 

Lfp(f#) 
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f 
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f 

f# 

 

  

   Lfp(f) 

f 
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Soundness Theorem(1) 

1. Let (, ) form Galois connection from C to A 

2. f: C  C  be a monotone function 

3. f# : A  A  be a monotone function 

4. aA: f((a))  (f#(a))   

lfp(f)  (lfp(f#))  

(lfp(f))  lfp(f#)  



Soundness Theorem(2) 

1. Let (, ) form Galois connection from C to A 

2. f: C  C  be a monotone function 

3. f# : A  A  be a monotone function 

4. cC: (f(c))  f#((c))   

(lfp(f))  lfp(f#)  

lfp(f)  (lfp(f#))  



Soundness Theorem(3) 

1. Let (, ) form Galois connection from C to A 

2. f: C  C  be a monotone function 

3. f# : A  A  be a monotone function 

4. aA: (f((a)))  f#(a)   

(lfp(f))  lfp(f#)  

lfp(f)  (lfp(f#))  



Proof of Soundness (Summary) 

 Define an “appropriate” structural operational 

semantics 

 Define “collecting” structural operational 

semantics  

 Establish a Galois connection between collecting 

states and reaching definitions 

 (Local correctness) Show that the abstract 

interpretation  of every atomic statement is sound 

w.r.t. the collecting semantics 

 (Global correctness) Conclude that the analysis is 

sound 



Completeness 

(lfp(f)) = lfp(f#)  

lfp(f) = (lfp(f#))  



Constant Propagation 

 : [Var  Z]  [Var  Z{, }]  

– () = () 

 : P([Var  Z])  [Var  Z{, }]  

– (X) =  {() |  X} =  { |  X}  

 :[Var  Z {, }]  P([Var  Z])  

– (#) = { | ()  # } = { |   # } 

 Local Soundness 

– st#(#)  ({st   |   (#) =  {st  |   # }  

 Optimality (Induced) 

– st#(#) = ({st  |   (#)} =  {st  |   # }  

 Soundness 

 Completeness 

 

 

 



Proof of Soundness (Summary) 

 Define an “appropriate” structural operational 

semantics 

 Define “collecting” structural operational 

semantics  

 Establish a Galois connection between collecting 

states and reaching definitions 

 (Local correctness) Show that the abstract 

interpretation  of every atomic statement is sound 

w.r.t. the collecting semantics 

 (Global correctness) Conclude that the analysis is 

sound 



Best (Conservative) interpretation 

abstract  

representation 

Set of states 

concretization 

Abstract 

semantics 

statement  s 
abstract  

representation 

abstraction 

Operational 

semantics 

statement  s 
Set of states 

concretization 

Set of states  



Induced Analysis  

(Relatively Optimal) 

 It is sometimes possible to show that a given 
analysis is not only sound but optimal w.r.t. the 
chosen abstraction  

– but not necessarily optimal! 

 Define  
 S# (df) = ({S|    (df)})  

 But this S#  may not be computable 

 Derive (at compiler-generation time) an 
alternative form for S#  

 A useful measure to decide if the abstraction must 
lead to overly imprecise results 



Example Dataflow Problem 

 Formal available expression analysis 

 Find out which expressions are available at a given 
program point 

 Example program 
  x = y + t 
  z = y + r 
  while (…) { 
         t = t + (y + r) 
                    } 

 Lattice 

 Galois connection 

 Basic statements 

 Soundness 



Example: May-Be-Garbage 

 A variable x may-be-garbage at a program point v 

if there exists a execution path leading to v in 

which x’s value is unpredictable: 

– Was not assigned 

– Was assigned using an unpredictable expression 

 Lattice 

 Galois connection 

 Basic statements 

 Soundness 



Points-To Analysis  
Determine if a pointer variable p may point 

to q  

on some path leading to a program point 

 “Adapt” other optimizations  

– Constant propagation 

x = 5; 

*p = 7 ; 

… x … 

 Pointer aliases 

– Variables p and q are may-aliases at v if the points-to 

set at v contains entries (p, x) and (q, x)  

 Side-effect analysis 

   *p = *q + * * t 



The PWhile Programming Language  

Abstract Syntax 

a := x | *x | &x | n | a1 opa a2  

b := true | false | not b |  b1 opb b2 | a1 opr a2 

S := x := a | *x := a | skip | S1 ; S2 |  

        if b then S1 else S2 | while b do S 



Concrete Semantics 1 for PWhile 

For every atomic statement S 

S  : States1  States1  

x := a ()=[loc(x) Aa ] 

x := &y ()  

x := *y () 

x := y () 

*x := y () 

State1= [LocLocZ] 



Points-To Analysis  
 Lattice Lpt =  

 Galois connection 



Abstract Semantics for PWhile 

•For every atomic statement S 

S  #: P(Var* Var*) P(Var* Var*)  

x := &y #  

x := *y # 

x := y # 

*x := y # 



t := &a;  

y := &b;  

z := &c; 

 if x> 0;    

 then p:= &y;  

       else p:= &z; 

 *p := t; 

 



/*   */ t := &a; /* {(t, a)}*/ 
 /* {(t, a)}*/  y := &b; /* {(t, a), (y, b) }*/  

/* {(t, a), (y, b)}*/ z := &c; /* {(t, a), (y, b), (z, c) }*/ 

 if x> 0;    
 then p:= &y; /* {(t, a),  (y, b), (z, c), (p, y)}*/ 
  

 else p:= &z; /* {(t, a),  (y, b), (z, c), (p, z)}*/  
/* {(t, a),  (y, b), (z, c), (p, y), (p, z)}*/   

 *p := t; 

/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)}*/ 



Flow insensitive points-to-analysis 

Steengard 1996 

 Ignore control flow  

 One set of points-to per program 

 Can be represented as a directed graph 

 Conservative approximation 

– Accumulate pointers 

 Can be computed in almost linear time 



t := &a;  

y := &b;  

z := &c; 

 if x> 0;    

 then p:= &y;  

       else p:= &z; 

 *p := t; 

 



Precision 

 We cannot usually have 

– (CS) = DF  

on all programs 

 But can we say something about precision in all 

programs? 



Summary 

 Abstract interpretation Connects Abstract and 

Concrete Semantics 

 Galois Connection 

 Local Correctness 

 Global Correctness 


