Iterative Program Analysis
Abstract Interpretation

Mooly Sagiv
http://www.cs.tau.ac.il/~msagiv/courses/pal2-13.html
Tel Aviv Unilversity

640-07060

Textbook: Principles of Program Analysis
Chapter 4

CC79, CC92

Specialized Chaotic Iterations
System of Equations

S =
(d1:entry[s] =1
dfentry[V] = L{f(u, v) (dfentry[u]) | (u,v) e E}

A

" Fg:L"—L"
Fs (X)[s] =1
Fs(X)[v] = L{f(u, v)(X[u]) | (u, v) e E}

Ifp(S) = Ifp(Fs)

~

Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, . L, f: E >(L —»L)
for each v in V to n do df,, [V] := L
dffs] =1
WL = {s}
while (WL = @) do

select and remove an element u € WL
for each v, such that. (u, v) €E do
temp = f(e)(dfnern [U])
new := dfgy, (V)L temp
If (new = dfg,, [V]) then
dfenin V] := new;

WL := WL W{v}

3

4

Ne. e M[x—1,
5

[x—0, y—0, z—0]

1 7 =3
, »e.e[z—3]
2 |x=1
e.e[x—1]
while (oDF] TeX<0thene else .
| xe.ifx>0thene elsel

if (x=1)

H}%—»MX #0 thene else |13}

NE.E

y =1

6 1

y =z+4

xee[y—
/ X=3

ne.e[y—e(2)+4]

ne.e[x—3]

\ 4

printy

WL | dfg,[V]
{1}
{2} | df[2]:=[x—0, y—0, z—3]
{3} | df[3]:=[x—1,y—0, z—3]
{4} | df[4]:=[x—1,y—0, z—3]
{5} | df[5]:=[x—1, y—0, z—3]
{7} | df[7]:=[x—1, y—7, z—3]
{8} | df[8]:=[x—3,y—7, 23]
df[3]:=[x—T, y—orT, 2—3]
{4} | df[4]:=[x—T, y—T, 2—3]
{5,6} | df[5]:=[x—1, y—>T1, 2—3]
{6,7} | df[6]:=[x—T, y—T, 2—3]
{7} | df[7]:=[x—>T, y—7, 2—3]

The Abstract Interpretation
Technique (Cousot & Cousot)

¢ The foundation of program analysis

¢ Defines the meaning of the information computed
by static tools

¢ A mathematical framework

¢ Allows proving that an analysis Is sound in a local
way

¢ ldentify design bugs

¢ Understand where precision is lost

¢ New analysis from old

¢ Not limited to certain programming style

Abstract (Conservative) interpretation

statement S

Set of states

abstraction

I
I
I
I
I
I
I

y

abstract

statement S

Set of states

representation

abstract
representation

abstraction

L

~A

abstract
representation

Abstract (Conservative) interpretation

statement S

Set of states
A

abstract
representation

concretization

statement S

Set oOf states — | Set of states
- . .

7
e
7
7
'
7

concretization

7

Y
2

-| abstract
representation

Abstract Interpretation

Y
oL l
_
o
Abstract
Concrete
o Descriptors of

Sets Of SIOreS m———— sets of stores

GGalois Connections

¢ Lattices Cand A and functions a.: C >A and y: A—C
¢ The pair of functions (a., y) form
Galois connection if

— o and y are monotone
— Va €A

» afy (@) =a
— VceC

» ¢ =y (a(C))

¢ Alternatively if:
VceC
YVae A

ofc)=a iffcc=y (a)

¢ o and y uniquely determine each other

The Abstraction Function (CP)

¢ Map collecting states into constants

¢ The abstraction of an individual state
Bep:[Vars—>Z] — [Var. >Zu{L, T}]

Bep(o) =0
¢ The abstraction of set of states

acp-P([Var. —>Z]) — [Var. >ZU{L, T}]

ocp (CS) = U{Bcp (o) | o € CS} = L{o] o € CS}
¢ Soundness

acp (Reach (v)) = df(v)
¢ Completeness

The Concretization Function

¢ Map constants into collecting states
¢ The formal meaning of constants

¢ The concretization
Vep [Var-—ZU{L, T}] —»P([Var.—>Z])

Y cp (dF) = {o]| Bep (0) Edf} = {c |c = df}
¢ Soundness
Reach (V) < ycp (df(V))

¢ Completeness

Galois Connection Constant
Propagation

op IS monotone
ycp IS monotone
¢ V df e [Var.>Zu{L, 1}]

— o cp(Y cp (df)) = df
¢ V ¢ € P([Var.—>Z])

— Ccp =7 cp (a0 cp(C))

Upper Closures

¢ Define abstractions on sets of concrete states

¢ T: P(Z) »>P(Z) such that
— Tismonotone, ie., XcY > TXcTY
— Tisextensive, i.e., T X o X
— Tisclosure, ie, T(TX)=T X

¢ Every Galois connection defines an upper closure

Proof of Soundness

¢ Define an “appropriate” operational semantics

¢ Define “collecting” operational semantics by pointwise
extension

¢ Establish a Galois connection between collecting states
and abstract states

¢ (Local correctness) Show that the abstract interpretation
of every atomic statement is sound
w.r.t. the collecting semantics

¢ (Global correctness) Conclude that the analysis is sound

Collecting Semantics

¢ The Input state I1s not known at
compile-time

¢“Collect” all the states for all
possible Iinputs to the program

¢ No lost of precision

A Simple Example Program
{[x—0, y—0, z—0]}

223 {[x—0, y—0, 3]}

X :1/ {[x—1, y—0, z—3]}

while (x > 0) (_{Ix—1,y—0, 23], [x—3,y—0, 2—3] }

T DR, y7, 23], [x3, yo7, 23]}
elsey=z+14
{[x—1,y—7, 23], [x—3,y—7, 23]}

{[x—3, y—7, z—3]}

X=3

printy
) {[x—3, y—7, z—3]}

Another Example

x=0
while (true) do

X=X+1

An “Iterative” Definition

¢ Generate a system of monotone equations

¢ The least solution is well-defined

¢ The least solution is the collecting interpretation
¢ But may not be computable

Equations Generated for Collecting Interpretation

¢ Equations for elementary statements
— [skip]
CSexit(l) - CSentry(I)

— [b]
CSuit(1) ={o: o ECSentry(I)’ [b]o=tt}

— [x:=14]
CSexit(1) = {(s[x ~Alafs]) | s € CSepyry (N}
¢ Equations for control flow constructs
CSenmy(l) = W CSg,i¢(/7) I” immediately precedes |
In the control flow graph

¢ An equation for the entry
CSentry(1) ={o| o € Var. -1}

Specialized Chaotic Iterations
System of Equations
(Collecting Semantics)

S =

(CSqunyls] ={o0}

CSenry[V] = ULF(E)(CSennyu]) | (U, V) € E }

yvhere f(e) = AX. {[st(e)] o | ce X} for atomic statements
fle) = AX{c | [b(e)] o =tt }

A

Fo:L"—L"
F()LIv] = u{f(e)[u] [(u, v) e E }

Ifp(S) = Ifp(Fs)

J

The Least Solution

¢ 2n sets of equations

CSentry(l)a e CSentry (n)’ CSexit(l)a e CSexit (n)
Can be written In vectorial form .

CS= Fs(CS)
¢ The least solution Ifp(F,) is well-defined
¢ Every component is minimal
¢ Since F_, Is monotone such a solution always exists
¢ CSentry(v) = {s|3sg| <P, 55> ="(5’, 5)),
INit(S’)=v}

¢ Simplify the soundness criteria

va: f(y(a)) = v(f(a))

Finite Height Case

Lfp(f)

Soundness Theorem(1)

1. Let (o, v) form Galois connection from C to A
2. . C —> C be a monotone function
3. fF: A—> A be a monotone function

1. VaeA: f(y(a)) = y(f(a))

Ifp(f) = v(Ifp(f))
a(Ifp(f)) = Ifp(f*)

Soundness Theorem(2)

1. Let (o, v) form Galois connection from C to A
2. . C —> C be a monotone function
3. fF: A—> A be a monotone function

1. VeeC: aff(c)) = F(a(c))

aIfp(f)) = Ifp(F)
Ifp(f) = v(Ifp(f%))

Soundness Theorem(3)

1. Let (o, v) form Galois connection from C to A
2. . C —> C be a monotone function
3. fF: A—> A be a monotone function

4. YaeA: a(f(y(a))) = ()

aIfp(f)) = Ifp(F)
Ifp(f) = v(Ifp(f%))

Proof of Soundness (Summary)

¢ Define an “appropriate” structural operational
semantics

¢ Define “collecting” structural operational
semantics

¢ Establish a Galois connection between collecting
states and reaching definitions

¢ (Local correctness) Show that the abstract
Interpretation of every atomic statement is sound
w.r.t. the collecting semantics

¢ (Global correctness) Conclude that the analysis is
sound

Completeness

oIfp(f)) = Ifp(f)

Ifp(f) = y(Ifp(f))

Constant Propagation

¢ [:[Var - Z] - [Var »> Zu{T, 1}]
— B(o) = (o)
¢ o: P([Var —» Z]) - [Var > Z{T, 1}]
— a(X) = {B(oc) |oe X} =L {c|ce X}
¢ v:[Var > Z U{T, 1}] > P([Var —> Z])
—- y(6")={c|B(c)Ec*}={c|cE=0c"}
¢ Local Soundness
— [st]{(c) 2 o{[st] o |oc ey(c)=U{[st] c|c ="}
¢ Optimality (Induced)
— [st]*(c®) =a{[stl o lo ey ()} =U{[stlo|c=0c"}
¢ Soundness
¢ Completeness

Proof of Soundness (Summary)

¢ Define an “appropriate” structural operational
semantics

¢ Define “collecting” structural operational
semantics

¢ Establish a Galois connection between collecting
states and reaching definitions

¢ (Local correctness) Show that the abstract
Interpretation of every atomic statement is sound
w.r.t. the collecting semantics

¢ (Global correctness) Conclude that the analysis is
sound

Best (Conservative) interpretation

[setofsaes] [Setof states]|

N

concretization

- statement s

abstractign
concretization

Induced Analysis
(Relatively Optimal)

¢ It I1s sometimes possible to show that a given
analysis 1s not only sound but optimal w.r.t. the
chosen abstraction

— but not necessarily optimal!
¢ Define
[S]* (df) = a({[S]ol & € v (dH)})
But this [S]#* may not be computable

¢ Derive (at compiler-generation time) an
alternative form for [S]*

¢ A useful measure to decide If the abstraction must
lead to overly imprecise results

Example Dataflow Problem

¢ Formal available expression analysis
¢ Find out which expressions are available at a given
program point
¢ Example program
X=y+t
Z=Yy+r
while (...) {
t=t+(y+rn
}
¢ Lattice
¢ Galois connection
¢ Basic statements

¢ Soundness

Example: May-Be-Garbage

¢ A variable x may-be-garbage at a program point v
If there exists a execution path leading to v In
which x’s value 1s unpredictable:

— Was not assigned
— Was assigned using an unpredictable expression

¢ Lattice

¢ Galois connection
¢ Basic statements
¢ Soundness

Points-To Analysis
¢ Determine If a pointer variable p may point
tog
on some path leading to a program point

¢ “Adapt” other optimizations

— Constant propagation
X =5

o X ...

¢ Pointer aliases

— Variables p and g are may-aliases at v if the points-to
set at v contains entries (p, X) and (g, X)

¢ Side-effect analysis
*p o *q + * *

The PWhile Programming Language
Abstract Syntax

a:=x|*|&x|n|a,op,a,

b :=true | false |notb | b, op, b, | a, op,a,

S:=x:=al|*x:=a|skip|S;;S,|
if bthen S, else S, | while b do S

Concrete Semantics 1 for PWhile

Statel= [Loc—LocuZ]

For every atomic statement S

[S]| : Statesl —Statesl
[X := a [(c)=c[loc(x) »A[a] o]

[x:= &y (o)
[x:=*y](c)
[x:=y (o)
[*x:=y (o)

Points-To Analysis
¢ Lattice L =

¢ Galois connection

Abstract Semantics for PWhile

-For every atomic statement S

[S [#: P(Var*x Var*)— P(Var*x Var*)

[x =&y [
[x =y [
[x:=y [

[*x:=y [

* o *t:= &a: I* {(t, a)}*/
* {(t, a)}*/ y:= &b: [¥{(t, a), (y, b) }*/
I* {(t, a), (y, D)}/ z := &c: [* {(t, a), (y, b), (z, ¢) ¥*/

If x> 0;
then p:= &y; /* {(t, a), (v, b), (z,), (p, y)}*/

else p:= &z; /* {(t, a), (y, b), (z, c), (p, 2)}*/
I*{(t, a), (¥, b), (z c), (p.Y) (P, 2)}*/

*p =1,
P a), (v, b), (v, ©), (P, ¥), (P, 2), (¥ @), (2, @)}/

Flow Insensitive points-to-analysis
Steengard 1996

¢ Ignore control flow
¢ One set of points-to per program
¢ Can be represented as a directed graph

¢ Conservative approximation
— Accumulate pointers

¢ Can be computed in almost linear time

Precision

¢ We cannot usually have
— o(CS) =DF
on all programs

¢ But can we say something about precision in all
programs?

Summary

¢ Abstract interpretation Connects Abstract and
Concrete Semantics

¢ Galois Connection
¢ Local Correctness
¢ Global Correctness

