Iterative Program Analysis Abstract Interpretation

Mooly Sagiv http://www.cs.tau.ac.il/~msagiv/courses/pa12-13.html Tel Aviv University 640-6706

> Textbook: Principles of Program Analysis Chapter 4 CC79, CC92

```
Specialized Chaotic Iterations
System of Equations
```

S =

```
\begin{cases} df_{entry}[s] = \iota \\ df_{entry}[v] = \bigsqcup \{f(u, v) (df_{entry}[u]) \mid (u, v) \in E \} \end{cases}
F_{s}:L^{n} \rightarrow L^{n}
F_{s} (X)[s] = \iota
F_{s}(X)[v] = \bigsqcup \{f(u, v)(X[u]) \mid (u, v) \in E \}
```

 $lfp(S) = lfp(F_S)$

Specialized Chaotic Iterations

- Chaotic(G(V, E): Graph, s: Node, L: Lattice, $\iota: L, f: E \rightarrow (L \rightarrow L)$) for each v in V to n do $df_{entry}[v] := \bot$ $df[s] = \iota$ $WL = \{s\}$ while (WL $\neq \emptyset$) do select and remove an element $u \in WL$ for each v, such that. $(u, v) \in E$ do $temp = f(e)(df_{entry}[u])$ $new := df_{entry}(v) \sqcup temp$ if (new \neq df_{entry}[v]) then
 - $df_{entry}[v] := new;$ $WL := WL \cup \{v\}$

$$\begin{array}{c} WL & d\\ 1 & z=3 \\ 2 & x=1 \\ 2$$

WL

$$df_{entry}[v]$$

 {1}

 {2}
 $df[2]:=[x \mapsto 0, y \mapsto 0, z \mapsto 3]$

 {3}
 $df[3]:=[x \mapsto 1, y \mapsto 0, z \mapsto 3]$

 {4}
 $df[4]:=[x \mapsto 1, y \mapsto 0, z \mapsto 3]$

 {5}
 $df[5]:=[x \mapsto 1, y \mapsto 0, z \mapsto 3]$

 {7}
 $df[7]:=[x \mapsto 1, y \mapsto 0, z \mapsto 3]$

 {8}
 $df[8]:=[x \mapsto 3, y \mapsto 7, z \mapsto 3]$

 {8}
 $df[8]:=[x \mapsto x, y \mapsto y \mapsto x, z \mapsto 3]$

 {4}
 $df[4]:=[x \mapsto x, y \mapsto y \mapsto x, z \mapsto 3]$

 {6,7}
 $df[6]:=[x \mapsto x, y \mapsto y \mapsto x, z \mapsto 3]$

 {7}
 $df[6]:=[x \mapsto x, y \mapsto y \mapsto x, z \mapsto 3]$

 {7}
 $df[7]:=[x \mapsto y \mapsto y \mapsto x, z \mapsto 3]$

The Abstract Interpretation Technique (Cousot & Cousot)

- The foundation of program analysis
- Defines the meaning of the information computed by static tools
- A mathematical framework
- Allows proving that an analysis is sound in a local way
- Identify design bugs
- Understand where precision is lost
- New analysis from old
- Not limited to certain programming style

Abstract (Conservative) interpretation

Abstract (Conservative) interpretation

Galois Connections

- Lattices C and A and functions α : C \rightarrow A and γ : A \rightarrow C
- The pair of functions (α, γ) form
 Galois connection if
 - $-\alpha$ and γ are monotone
 - $\forall a \in A$
 - » $\alpha(\gamma(a)) \sqsubseteq a$
 - $\ \forall \ c \in C$
 - » c $\sqsubseteq \gamma(\alpha(C))$
- Alternatively if:
 - $\forall c \in C \\ \forall a \in A$
 - $\alpha(c) \sqsubseteq a \text{ iff } c \sqsubseteq \gamma(a)$

 α and γ uniquely determine each other

The Abstraction Function (CP)

- Map collecting states into constants
- The abstraction of an individual state $\beta_{CP}:[Var_* \rightarrow Z] \rightarrow [Var_* \rightarrow Z \cup \{\bot, \intercal\}]$ $\beta_{CP}(\sigma) = \sigma$
- The abstraction of set of states $\alpha_{CP}:P([Var_* \rightarrow Z]) \rightarrow [Var_* \rightarrow Z \cup \{\bot, \intercal\}]$ $\alpha_{CP}(CS) = \sqcup \{ \beta_{CP}(\sigma) \mid \sigma \in CS \} = \sqcup \{\sigma \mid \sigma \in CS \}$

Soundness

 α_{CP} (Reach (v)) $\sqsubseteq df(v)$

Completeness

The Concretization Function

- Map constants into collecting states
- The formal meaning of constants
- The concretization
 - $\gamma_{CP}: [Var_* \rightarrow Z \cup \{\bot, \mathsf{T}\}] \rightarrow P([Var_* \rightarrow Z])$
 - $\gamma_{CP} (df) = \{ \sigma | \beta_{CP} (\sigma) \sqsubseteq df \} = \{ \sigma | \sigma \sqsubseteq df \}$

Soundness

Reach (v) $\subseteq \gamma_{CP} (df(v))$

Completeness

Galois Connection Constant Propagation

 α_{CP} is monotone
 γ_{CP} is monotone
 ∀ df ∈ [Var_{*}→Z∪{⊥, τ}] – α_{CP}(γ_{CP} (df)) ⊑ df
 ∀ c ∈ P([Var_{*}→Z]) – c_{CP} ⊑ γ_{CP} (α_{CP}(C))

Upper Closures

- Define abstractions on sets of concrete states
- \uparrow : $P(\Sigma) \rightarrow P(\Sigma)$ such that
 - $-\uparrow$ is monotone, i.e., $X \subseteq Y \rightarrow \uparrow X \subseteq \uparrow Y$
 - $-\uparrow$ is extensive, i.e., $\uparrow X \supseteq X$
 - $-\uparrow$ is closure, i.e., $\uparrow(\uparrow X) = \uparrow X$

Every Galois connection defines an upper closure

Proof of Soundness

- Define an "appropriate" operational semantics
- Define "collecting" operational semantics by pointwise extension
- Establish a Galois connection between collecting states and abstract states
- (Local correctness) Show that the abstract interpretation of every atomic statement is sound w.r.t. the collecting semantics
- (Global correctness) Conclude that the analysis is sound

Collecting Semantics

The input state is not known at compile-time

"Collect" all the states for all possible inputs to the program
No lost of precision

A Simple Example Program $\{[x \mapsto 0, y \mapsto 0, z \mapsto 0]\}$

$$\begin{array}{c} z = 3 \\ \{ [x \mapsto 0, y \mapsto 0, z \mapsto 3] \} \\ x = 1 \qquad \{ [x \mapsto 1, y \mapsto 0, z \mapsto 3] \} \\ \text{while } (x > 0) (\{ [x \mapsto 1, y \mapsto 0, z \mapsto 3], [x \mapsto 3, y \mapsto 0, z \mapsto 3], \} \\ \text{if } (x = 1) \text{ then } y_{\{ \overline{[x} \mapsto 1, y \mapsto 7, z \mapsto 3], [x \mapsto 3, y \mapsto 7, z \mapsto 3] \} \\ \text{ else } y = z + 4 \\ x = 3 \underbrace{\{ [x \mapsto 1, y \mapsto 7, z \mapsto 3], [x \mapsto 3, y \mapsto 7, z \mapsto 3] \} \\ \text{ print } y \underbrace{\{ [x \mapsto 3, y \mapsto 7, z \mapsto 3] \} \\ } \\) \qquad \begin{array}{c} \\ \{ [x \mapsto 3, y \mapsto 7, z \mapsto 3] \} \end{array}$$

Another Example

x=0

while (true) do

 $\mathbf{x} = \mathbf{x} + \mathbf{1}$

An "Iterative" Definition

- Generate a system of monotone equations
- The least solution is well-defined
- The least solution is the collecting interpretation
- But may not be computable

Equations Generated for Collecting Interpretation

Equations for elementary statements

– [skip]

- $CS_{exit}(1) = CS_{entry}(1)$
- [b]
 - $CS_{exit}(1) = \{ \sigma : \sigma \in CS_{entry}(1), [[b]]\sigma = tt \}$
- [x := a] $CS_{exit}(1) = \{ (s[x \mapsto A[[a]]s]) \mid s \in CS_{entry}(1) \}$
- Equations for control flow constructs $CS_{entry}(l) = \bigcup CS_{exit}(l') l'$ immediately precedes *l* in the control flow graph
- An equation for the entry $CS_{entry}(1) = \{\sigma \mid \sigma \in Var_* \rightarrow Z\}$

Specialized Chaotic Iterations System of Equations (Collecting Semantics) S =

$$\begin{cases} CS_{entry}[s] = \{\sigma_0\} \\ CS_{entry}[v] = \cup \{f(e)(CS_{entry}[u]) \mid (u, v) \in E \} \\ where f(e) = \lambda X. \{ [st(e)] \sigma \mid \sigma \in X \} \text{ for atomic statements} \\ f(e) = \lambda X. \{\sigma \mid [b(e)] \sigma = tt \} \end{cases}$$

 $F_{S}:L^{n} \rightarrow L^{n}$ $F_{s}(X)[v] = \bigcup \{f(e)[u] \mid (u, v) \in E \}$

 $lfp(S) = lfp(F_S)$

The Least Solution

- ◆ 2n sets of equations CS_{entry}(1), ..., CS_{entry}(n), CS_{exit}(1), ..., CS_{exit}(n)

 ◆ Can be written in vectorial form CS = F_{cs}(CS)
- The least solution $lfp(F_{cs})$ is well-defined
- Every component is minimal
- \diamond Since F_{cs} is monotone such a solution always exists

◆
$$CS_{entry}(v) = \{s|\exists s_0| < P, s_0 > \Rightarrow^*(S', s)),$$

 $init(S')=v\}$

Simplify the soundness criteria

Soundness Theorem(1)

- 1. Let (α, γ) form Galois connection from C to A
- 2. $f: C \to C$ be a monotone function
- 3. $f^{\#}: A \rightarrow A$ be a monotone function
- 4. $\forall a \in A: f(\gamma(a)) \sqsubseteq \gamma(f^{\#}(a))$

 $lfp(f) \sqsubseteq \gamma(lfp(f^{\#}))$ $\alpha(lfp(f)) \sqsubseteq lfp(f^{\#})$

Soundness Theorem(2)

- 1. Let (α, γ) form Galois connection from C to A
- 2. $f: C \to C$ be a monotone function
- 3. $f^{\#}: A \rightarrow A$ be a monotone function
- 4. $\forall c \in C: \alpha(f(c)) \sqsubseteq f^{\#}(\alpha(c))$

 $\alpha(\text{lfp}(f)) \sqsubseteq \text{lfp}(f^{\#})$ $\text{lfp}(f) \sqsubseteq \gamma(\text{lfp}(f^{\#}))$

Soundness Theorem(3)

- 1. Let (α, γ) form Galois connection from C to A
- 2. $f: C \to C$ be a monotone function
- 3. $f^{\#}: A \rightarrow A$ be a monotone function
- 4. $\forall a \in A: \alpha(f(\gamma(a))) \sqsubseteq f^{\#}(a)$

 $\alpha(lfp(f)) \sqsubseteq lfp(f^{\#})$ $lfp(f) \sqsubseteq \gamma(lfp(f^{\#}))$

Proof of Soundness (Summary)

- Define an "appropriate" structural operational semantics
- Define "collecting" structural operational semantics
- Establish a Galois connection between collecting states and reaching definitions
- (Local correctness) Show that the abstract interpretation of every atomic statement is sound w.r.t. the collecting semantics
- (Global correctness) Conclude that the analysis is sound

Completeness

 $\alpha(lfp(f)) = lfp(f^{\#})$

 $lfp(f) = \gamma(lfp(f^{\#}))$

Constant Propagation

•
$$\beta: [\operatorname{Var} \to Z] \to [\operatorname{Var} \to Z \cup \{\mathsf{T}, \bot\}]$$

- $\beta(\sigma) = (\sigma)$

• $\alpha: P([Var \rightarrow Z]) \rightarrow [Var \rightarrow Z \cup \{\tau, \bot\}]$ - $\alpha(X) = \sqcup \{\beta(\sigma) \mid \sigma \in X\} = \sqcup \{\sigma \mid \sigma \in X\}$

•
$$\gamma:[\operatorname{Var} \to Z \cup \{\tau, \bot\}] \to P([\operatorname{Var} \to Z])$$

- $\gamma(\sigma^{\#}) = \{\sigma \mid \beta(\sigma) \sqsubseteq \sigma^{\#}\} = \{\sigma \mid \sigma \sqsubseteq \sigma^{\#}\}$

- Local Soundness
 - $\quad [\![st]\!]^{\#}\!(\sigma^{\#}) \sqsupseteq \alpha(\{ \ [\![st]\!] \ \sigma \ \mid \sigma \in \gamma(\sigma^{\#}) = \sqcup \ \{ \ [\![st]\!] \ \sigma \mid \sigma \sqsubseteq \sigma^{\#} \ \}$
- Optimality (Induced)
 - $\quad [\![st]\!]^{\#}(\sigma^{\#}) = \alpha(\{ \ [\![st]\!] \sigma \mid \sigma \in \gamma \ (\sigma^{\#})\} = \sqcup \ \{ \ [\![st]\!] \sigma \mid \sigma \sqsubseteq \sigma^{\#} \ \}$

Soundness

• Completeness

Proof of Soundness (Summary)

- Define an "appropriate" structural operational semantics
- Define "collecting" structural operational semantics
- Establish a Galois connection between collecting states and reaching definitions
- (Local correctness) Show that the abstract interpretation of every atomic statement is sound w.r.t. the collecting semantics
- (Global correctness) Conclude that the analysis is sound

Best (Conservative) interpretation Operational semantics statement s \subset concretization abstraction concretization statement s Abstract semantics

Induced Analysis (Relatively Optimal)

- It is sometimes possible to show that a given analysis is not only sound but optimal w.r.t. the chosen abstraction
 - but not necessarily optimal!
- Define $\llbracket S \rrbracket^{\#} (df) = \alpha(\{\llbracket S \rrbracket \sigma | \sigma \in \gamma (df)\})$
- But this $[S]^{\#}$ may not be computable
- Derive (at compiler-generation time) an alternative form for [[S]]#
- A useful measure to decide if the abstraction must lead to overly imprecise results

Example Dataflow Problem

- Formal available expression analysis
- Find out which expressions are available at a given program point
- Example program

```
x = y + t
z = y + r
while (...) {
t = t + (y + r)
}
```

- Lattice
- Galois connection
- Basic statements
- Soundness

Example: May-Be-Garbage

- A variable x may-be-garbage at a program point v if there exists a execution path leading to v in which x's value is unpredictable:
 - Was not assigned
 - Was assigned using an unpredictable expression
- Lattice
- Galois connection
- Basic statements
- Soundness

 Points-To Analysis
 Determine if a pointer variable p may point to q on some path leading to a program point

- "Adapt" other optimizations
 - Constant propagation
 - x = 5; *p = 7; ...x...
- Pointer aliases
 - Variables p and q are may-aliases at v if the points-to set at v contains entries (p, x) and (q, x)
- Side-effect analysis

*p = *q + * * t

The **PWhile** Programming Language Abstract Syntax

 $a := x | *x | \&x | n | a_1 op_a a_2$

 $b := \text{true} | \text{false} | \text{not } b | b_1 o p_b b_2 / a_1 o p_r a_2$

 $S := x := a | *x := a | \text{skip} | S_1; S_2 |$ if b then S₁ else S₂ | while b do S

Concrete Semantics 1 for PWhile

State1= [Loc \rightarrow Loc \cup Z]

For every atomic statement S [S] : States1 \rightarrow States1 $\llbracket \mathbf{x} := \mathbf{a} \llbracket (\sigma) = \sigma [\operatorname{loc}(\mathbf{x}) \mapsto \mathbf{A} \llbracket \mathbf{a} \rrbracket \sigma]$ $\|\mathbf{x} := \& \mathbf{y} \|(\sigma)$ $\mathbf{x} := \mathbf{y} (\sigma)$ $\mathbf{x} := \mathbf{y} (\sigma)$ $\llbracket *\mathbf{X} := \mathbf{y} \rrbracket(\sigma)$

Points-To Analysis

- Lattice $L_{pt} =$
- Galois connection

Abstract Semantics for PWhile

•For every atomic statement S

 $\begin{bmatrix} S \end{bmatrix} #: P(Var* \vee Var*) \rightarrow P(Var* \vee Var*)$ $\begin{bmatrix} x := & y \end{bmatrix} #$ $\begin{bmatrix} *x := & y \end{bmatrix} #$

t := &a; y := &b; z := &c;if x > 0; then p := & y;else p := &z;

*p := t;

/* Ø */ t := &a; /* {(t, a)}*/
/* {(t, a)}*/ y := &b; /* {(t, a), (y, b)}*/
/* {(t, a), (y, b)}*/ z := &c; /* {(t, a), (y, b), (z, c)}*/
if x> 0;
 then p:= &y; /* {(t, a), (y, b), (z, c), (p, y)}*/

else p:= &z; /* {(t, a), (y, b), (z, c), (p, z)}*/ /* {(t, a), (y, b), (z, c), (p, y), (p, z)}*/

*p := t;

/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)}*/

Flow insensitive points-to-analysis Steengard 1996

- Ignore control flow
- One set of points-to per program
- Can be represented as a directed graph
- Conservative approximation
 - Accumulate pointers
- Can be computed in almost linear time

t := &a; y := &b; z := &c;if x > 0; then p := & y;else p := &z;

*p := t;

Precision

We cannot usually have

 - α(CS) = DF
 on all programs

 But can we say something about precision in all programs?

Summary

- Abstract interpretation Connects Abstract and Concrete Semantics
- Galois Connection
- Local Correctness
- Global Correctness