
1

Iterative Program Analysis

Abstract Interpretation

Mooly Sagiv

http://www.cs.tau.ac.il/~msagiv/courses/pa12-13.html

Tel Aviv University

640-6706

Textbook: Principles of Program Analysis

Chapter 4

 CC79, CC92

Specialized Chaotic Iterations

System of Equations

S =

 dfentry[s] =

 dfentry[v] = {f(u, v) (dfentry[u]) | (u, v) E }

FS:Ln Ln

 FS (X)[s] =

 FS(X)[v] = {f(u, v)(X[u]) | (u, v) E }

lfp(S) = lfp(FS)

Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, : L, f: E (L L)){

 for each v in V to n do dfentry[v] :=

 df[s] =

 WL = {s}

 while (WL) do

 select and remove an element u WL

 for each v, such that. (u, v) E do

 temp = f(e)(dfentry[u])

 new := dfentry(v) temp

 if (new dfentry[v]) then

 dfentry[v] := new;

 WL := WL {v}

z =3

x =1

while (x>0)

if (x=1)

y =7 y =z+4

x=3

print y

e.e[z3]

e.e[x1]

e. if x >0 then e else

e. if e x 0 then e else

e. e [x1, y , z] e. if e x 0 then e else

e.e[y7] e.e[ye(z)+4]

e.e[x3]

e.e

1

2

3

4

5
6

7

8

[x0, y0, z0]

WL dfentry]v]

{1}

{2} df[2]:=[x0, y0, z3]

{3} df[3]:=[x1, y0, z3]

{4} df[4]:=[x1, y0, z3]

{5} df[5]:=[x1, y0, z3]

{7} df[7]:=[x1, y7, z3]

{8} df[8]:=[x3, y7, z3]

{3} df[3]:=[x, y, z3]

{4} df[4]:=[x, y, z3]

{5,6} df[5]:=[x1, y, z3]

{6,7} df[6]:=[x, y, z3]

{7} df[7]:=[x, y7, z3]

The Abstract Interpretation

Technique (Cousot & Cousot)

 The foundation of program analysis

 Defines the meaning of the information computed
by static tools

 A mathematical framework

 Allows proving that an analysis is sound in a local
way

 Identify design bugs

 Understand where precision is lost

 New analysis from old

 Not limited to certain programming style

Abstract (Conservative) interpretation

abstract

representation

Set of states

abstraction

Abstract

semantics

statement s
abstract

representation

abstraction

Operational

semantics

statement s
Set of states

abstract

representation

Abstract (Conservative) interpretation

abstract

representation

Set of states

concretization

Abstract

semantics

statement s
abstract

representation

concretization

Operational

semantics

statement s
Set of states Set of states

Abstract

Abstract Interpretation

Concrete

Sets of stores
Descriptors of
sets of stores

Galois Connections
 Lattices C and A and functions : C A and : A C

 The pair of functions (,) form

 Galois connection if

– and are monotone

– a A

» ((a)) a

– c C

» c ((C))

 Alternatively if:

 c C

 a A

 (c) a iff c (a)

 and uniquely determine each other

The Abstraction Function (CP)
 Map collecting states into constants

 The abstraction of an individual state

CP:[Var* Z] [Var* Z{, }]

CP() =

 The abstraction of set of states

 CP:P([Var* Z]) [Var* Z{, }]

 CP (CS) = { CP () | CS} = {| CS}

 Soundness

 CP (Reach (v)) df(v)

 Completeness

The Concretization Function
 Map constants into collecting states

 The formal meaning of constants

 The concretization

 CP: [Var* Z{, }] P([Var* Z])

 CP (df) = {| CP () df} = { | df}

 Soundness

 Reach (v) CP (df(v))

 Completeness

Galois Connection Constant

Propagation

 CP is monotone

 CP is monotone

 df [Var* Z{, }]

– CP(CP (df)) df

 c P([Var* Z])

– c CP CP (CP(C))

Upper Closures

 Define abstractions on sets of concrete states

 : P() P() such that

– is monotone, i.e., X Y X Y

– is extensive, i.e., X X

– is closure, i.e., (X) = X

 Every Galois connection defines an upper closure

Proof of Soundness

 Define an “appropriate” operational semantics

 Define “collecting” operational semantics by pointwise

extension

 Establish a Galois connection between collecting states

and abstract states

 (Local correctness) Show that the abstract interpretation

of every atomic statement is sound

w.r.t. the collecting semantics

 (Global correctness) Conclude that the analysis is sound

Collecting Semantics

The input state is not known at

compile-time

“Collect” all the states for all

possible inputs to the program

No lost of precision

A Simple Example Program

z = 3

x = 1

while (x > 0) (

 if (x = 1) then y = 7

 else y = z + 4

 x = 3

 print y

)

{[x0, y0, z0]}

{[x1, y0, z3]}

{[x1, y0, z3], [x3, y0, z3],}

{[x0, y0, z3]}

{[x1, y7, z3], [x3, y7, z3]}

{[x1, y7, z3], [x3, y7, z3]}

{[x3, y7, z3]}

{[x3, y7, z3]}

Another Example

x= 0

while (true) do

 x = x +1

An “Iterative” Definition

 Generate a system of monotone equations

 The least solution is well-defined

 The least solution is the collecting interpretation

 But may not be computable

Equations Generated for Collecting Interpretation

 Equations for elementary statements

– [skip]

CSexit(1) = CSentry(l)

– [b]

CSexit(1) = {: CSentry(l), b=tt}

– [x := a]

CSexit(1) = {(s[x Aas]) | s CSentry(l)}

 Equations for control flow constructs
 CSentry(l) = CSexit(l’) l’ immediately precedes l
in the control flow graph

An equation for the entry
CSentry(1) = { | Var* Z}

Specialized Chaotic Iterations

System of Equations

 (Collecting Semantics)
S =

 CSentry[s] ={0}

 CSentry[v] = {f(e)(CSentry[u]) | (u, v) E }

where f(e) = X. {st(e) | X} for atomic statements

 f(e) = X.{ | b(e) =tt }

FS:Ln Ln

 Fs(X)[v] = {f(e)[u] | (u, v) E }

lfp(S) = lfp(FS)

The Least Solution

 2n sets of equations

CSentry(1), …, CSentry (n), CSexit(1), …, CSexit (n)

 Can be written in vectorial form

 The least solution lfp(Fcs) is well-defined

 Every component is minimal

 Since Fcs is monotone such a solution always exists

 CSentry(v) = {s|s0| <P, s0 > * (S’, s)),

 init(S’)=v}

 Simplify the soundness criteria

)CS(CS csF

f()

f()

f2()

f2()

f(x)=x

f(x)x

f(x)x

gfp(f)

lfp(f)

f#()

f#()

f#2()

f#2()

f#(y)=y

f#(y)y

f#(y)y

gfp(f#)

lfp(f#)

a: f((a)) (f#(a))

Finite Height Case

f#

f#

Lfp(f#)

f

f

f#

 Lfp(f)

f

Soundness Theorem(1)

1. Let (,) form Galois connection from C to A

2. f: C C be a monotone function

3. f# : A A be a monotone function

4. aA: f((a)) (f#(a))

lfp(f) (lfp(f#))

(lfp(f)) lfp(f#)

Soundness Theorem(2)

1. Let (,) form Galois connection from C to A

2. f: C C be a monotone function

3. f# : A A be a monotone function

4. cC: (f(c)) f#((c))

(lfp(f)) lfp(f#)

lfp(f) (lfp(f#))

Soundness Theorem(3)

1. Let (,) form Galois connection from C to A

2. f: C C be a monotone function

3. f# : A A be a monotone function

4. aA: (f((a))) f#(a)

(lfp(f)) lfp(f#)

lfp(f) (lfp(f#))

Proof of Soundness (Summary)

 Define an “appropriate” structural operational

semantics

 Define “collecting” structural operational

semantics

 Establish a Galois connection between collecting

states and reaching definitions

 (Local correctness) Show that the abstract

interpretation of every atomic statement is sound

w.r.t. the collecting semantics

 (Global correctness) Conclude that the analysis is

sound

Completeness

(lfp(f)) = lfp(f#)

lfp(f) = (lfp(f#))

Constant Propagation

 : [Var Z] [Var Z{, }]

– () = ()

 : P([Var Z]) [Var Z{, }]

– (X) = {() | X} = { | X}

 :[Var Z {, }] P([Var Z])

– (#) = { | () # } = { | # }

 Local Soundness

– st#(#) ({st | (#) = {st | # }

 Optimality (Induced)

– st#(#) = ({st | (#)} = {st | # }

 Soundness

 Completeness

Proof of Soundness (Summary)

 Define an “appropriate” structural operational

semantics

 Define “collecting” structural operational

semantics

 Establish a Galois connection between collecting

states and reaching definitions

 (Local correctness) Show that the abstract

interpretation of every atomic statement is sound

w.r.t. the collecting semantics

 (Global correctness) Conclude that the analysis is

sound

Best (Conservative) interpretation

abstract

representation

Set of states

concretization

Abstract

semantics

statement s
abstract

representation

abstraction

Operational

semantics

statement s
Set of states

concretization

Set of states

Induced Analysis

(Relatively Optimal)

 It is sometimes possible to show that a given
analysis is not only sound but optimal w.r.t. the
chosen abstraction

– but not necessarily optimal!

 Define
 S# (df) = ({S| (df)})

 But this S# may not be computable

 Derive (at compiler-generation time) an
alternative form for S#

 A useful measure to decide if the abstraction must
lead to overly imprecise results

Example Dataflow Problem

 Formal available expression analysis

 Find out which expressions are available at a given
program point

 Example program
 x = y + t
 z = y + r
 while (…) {
 t = t + (y + r)
 }

 Lattice

 Galois connection

 Basic statements

 Soundness

Example: May-Be-Garbage

 A variable x may-be-garbage at a program point v

if there exists a execution path leading to v in

which x’s value is unpredictable:

– Was not assigned

– Was assigned using an unpredictable expression

 Lattice

 Galois connection

 Basic statements

 Soundness

Points-To Analysis
Determine if a pointer variable p may point

to q

on some path leading to a program point

 “Adapt” other optimizations

– Constant propagation

x = 5;

*p = 7 ;

… x …

 Pointer aliases

– Variables p and q are may-aliases at v if the points-to

set at v contains entries (p, x) and (q, x)

 Side-effect analysis

 *p = *q + * * t

The PWhile Programming Language

Abstract Syntax

a := x | *x | &x | n | a1 opa a2

b := true | false | not b | b1 opb b2 | a1 opr a2

S := x := a | *x := a | skip | S1 ; S2 |

 if b then S1 else S2 | while b do S

Concrete Semantics 1 for PWhile

For every atomic statement S

S : States1 States1

x := a ()=[loc(x) Aa]

x := &y ()

x := *y ()

x := y ()

*x := y ()

State1= [LocLocZ]

Points-To Analysis
 Lattice Lpt =

 Galois connection

Abstract Semantics for PWhile

•For every atomic statement S

S #: P(Var* Var*) P(Var* Var*)

x := &y #

x := *y #

x := y #

*x := y #

t := &a;

y := &b;

z := &c;

 if x> 0;

 then p:= &y;

 else p:= &z;

 *p := t;

/* */ t := &a; /* {(t, a)}*/
 /* {(t, a)}*/ y := &b; /* {(t, a), (y, b) }*/

/* {(t, a), (y, b)}*/ z := &c; /* {(t, a), (y, b), (z, c) }*/

 if x> 0;
 then p:= &y; /* {(t, a), (y, b), (z, c), (p, y)}*/

 else p:= &z; /* {(t, a), (y, b), (z, c), (p, z)}*/
/* {(t, a), (y, b), (z, c), (p, y), (p, z)}*/

 *p := t;

/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)}*/

Flow insensitive points-to-analysis

Steengard 1996

 Ignore control flow

 One set of points-to per program

 Can be represented as a directed graph

 Conservative approximation

– Accumulate pointers

 Can be computed in almost linear time

t := &a;

y := &b;

z := &c;

 if x> 0;

 then p:= &y;

 else p:= &z;

 *p := t;

Precision

 We cannot usually have

– (CS) = DF

on all programs

 But can we say something about precision in all

programs?

Summary

 Abstract interpretation Connects Abstract and

Concrete Semantics

 Galois Connection

 Local Correctness

 Global Correctness

