
1

Iterative Program Analysis

Abstract Interpretation

Mooly Sagiv

http://www.cs.tau.ac.il/~msagiv/courses/pa12-13.html

Tel Aviv University

640-6706

Textbook: Principles of Program Analysis

Chapter 4

 CC79, CC92

Specialized Chaotic Iterations

System of Equations

S =

 dfentry[s] = 

 dfentry[v] = {f(u, v) (dfentry[u]) | (u, v)  E }

FS:Ln Ln

 FS (X)[s] = 

 FS(X)[v] = {f(u, v)(X[u]) | (u, v)  E }

lfp(S) = lfp(FS)

Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, : L, f: E (L L)){

 for each v in V to n do dfentry[v] := 

 df[s] = 

 WL = {s}

 while (WL  ) do

 select and remove an element u  WL

 for each v, such that. (u, v) E do

 temp = f(e)(dfentry[u])

 new := dfentry(v) temp

 if (new  dfentry[v]) then

 dfentry[v] := new;

 WL := WL {v}

z =3

x =1

while (x>0)

if (x=1)

y =7 y =z+4

x=3

print y

e.e[z3]

e.e[x1]

e. if x >0 then e else 

e. if e x 0 then e else 

e. e [x1, y , z] e. if e x 0 then e else 

e.e[y7] e.e[ye(z)+4]

e.e[x3]

e.e


1

2

3

4

5
6

7

8

[x0, y0, z0]

WL dfentry]v]

{1}

{2} df[2]:=[x0, y0, z3]

{3} df[3]:=[x1, y0, z3]

{4} df[4]:=[x1, y0, z3]

{5} df[5]:=[x1, y0, z3]

{7} df[7]:=[x1, y7, z3]

{8} df[8]:=[x3, y7, z3]

{3} df[3]:=[x, y, z3]

{4} df[4]:=[x, y, z3]

{5,6} df[5]:=[x1, y, z3]

{6,7} df[6]:=[x, y, z3]

{7} df[7]:=[x, y7, z3]

The Abstract Interpretation

Technique (Cousot & Cousot)

 The foundation of program analysis

 Defines the meaning of the information computed
by static tools

 A mathematical framework

 Allows proving that an analysis is sound in a local
way

 Identify design bugs

 Understand where precision is lost

 New analysis from old

 Not limited to certain programming style

Abstract (Conservative) interpretation

abstract

representation

Set of states

abstraction

Abstract

semantics

statement s
abstract

representation

abstraction

Operational

semantics

statement s
Set of states

abstract

representation


Abstract (Conservative) interpretation

abstract

representation

Set of states

concretization

Abstract

semantics

statement s
abstract

representation

concretization

Operational

semantics

statement s
Set of states Set of states 





Abstract

Abstract Interpretation

Concrete



Sets of stores
Descriptors of
sets of stores



Galois Connections
 Lattices C and A and functions : C A and : A C

 The pair of functions (, ) form

 Galois connection if

–  and  are monotone

–  a  A

» ( (a))  a

–  c  C

» c   ((C))

 Alternatively if:

  c  C

  a  A

 (c)  a iff c   (a)

  and  uniquely determine each other

The Abstraction Function (CP)
 Map collecting states into constants

 The abstraction of an individual state

CP:[Var* Z]  [Var* Z{, }]

CP() = 

 The abstraction of set of states

 CP:P([Var* Z])  [Var* Z{, }]

 CP (CS) =  { CP () |   CS} = {|   CS}

 Soundness

 CP (Reach (v))  df(v)

 Completeness

The Concretization Function
 Map constants into collecting states

 The formal meaning of constants

 The concretization

 CP: [Var* Z{, }] P([Var* Z])

  CP (df) = {| CP ()  df} = { |   df}

 Soundness

 Reach (v)  CP (df(v))

 Completeness

Galois Connection Constant

Propagation

 CP is monotone

 CP is monotone

  df  [Var* Z{, }]

–  CP( CP (df))  df

  c  P([Var* Z])

– c CP   CP ( CP(C))

Upper Closures

 Define abstractions on sets of concrete states

 : P() P() such that

–  is monotone, i.e., X  Y   X   Y

–  is extensive, i.e.,  X  X

–  is closure, i.e., ( X) =  X

 Every Galois connection defines an upper closure

Proof of Soundness

 Define an “appropriate” operational semantics

 Define “collecting” operational semantics by pointwise

extension

 Establish a Galois connection between collecting states

and abstract states

 (Local correctness) Show that the abstract interpretation

of every atomic statement is sound

w.r.t. the collecting semantics

 (Global correctness) Conclude that the analysis is sound

Collecting Semantics

The input state is not known at

compile-time

“Collect” all the states for all

possible inputs to the program

No lost of precision

A Simple Example Program

z = 3

x = 1

while (x > 0) (

 if (x = 1) then y = 7

 else y = z + 4

 x = 3

 print y

)

{[x0, y0, z0]}

{[x1, y0, z3]}

{[x1, y0, z3], [x3, y0, z3],}

{[x0, y0, z3]}

{[x1, y7, z3], [x3, y7, z3]}

{[x1, y7, z3], [x3, y7, z3]}

{[x3, y7, z3]}

{[x3, y7, z3]}

Another Example

x= 0

while (true) do

 x = x +1

An “Iterative” Definition

 Generate a system of monotone equations

 The least solution is well-defined

 The least solution is the collecting interpretation

 But may not be computable

Equations Generated for Collecting Interpretation

 Equations for elementary statements

– [skip]

CSexit(1) = CSentry(l)

– [b]

CSexit(1) = {:  CSentry(l), b=tt}

– [x := a]

CSexit(1) = {(s[x Aas]) | s  CSentry(l)}

 Equations for control flow constructs
 CSentry(l) =  CSexit(l’) l’ immediately precedes l
in the control flow graph

An equation for the entry
CSentry(1) = { |   Var* Z}

Specialized Chaotic Iterations

System of Equations

 (Collecting Semantics)
S =

 CSentry[s] ={0}

 CSentry[v] = {f(e)(CSentry[u]) | (u, v)  E }

where f(e) = X. {st(e)  |  X} for atomic statements

 f(e) = X.{ | b(e)  =tt }

FS:Ln Ln

 Fs(X)[v] = {f(e)[u] | (u, v)  E }

lfp(S) = lfp(FS)

The Least Solution

 2n sets of equations

CSentry(1), …, CSentry (n), CSexit(1), …, CSexit (n)

 Can be written in vectorial form

 The least solution lfp(Fcs) is well-defined

 Every component is minimal

 Since Fcs is monotone such a solution always exists

 CSentry(v) = {s|s0| <P, s0 > * (S’, s)),

 init(S’)=v}

 Simplify the soundness criteria

)CS(CS csF





f()

f()

f2()

f2()

f(x)=x

f(x)x

f(x)x

gfp(f)

lfp(f)




f#()

f#()

f#2()

f#2()

f#(y)=y

f#(y)y

f#(y)y

gfp(f#)

lfp(f#)



a: f((a))  (f#(a))

Finite Height Case



f#

f#

Lfp(f#)





f



f

f#

 Lfp(f)

f



Soundness Theorem(1)

1. Let (, ) form Galois connection from C to A

2. f: C  C be a monotone function

3. f# : A  A be a monotone function

4. aA: f((a))  (f#(a))

lfp(f)  (lfp(f#))

(lfp(f))  lfp(f#)

Soundness Theorem(2)

1. Let (, ) form Galois connection from C to A

2. f: C  C be a monotone function

3. f# : A  A be a monotone function

4. cC: (f(c))  f#((c))

(lfp(f))  lfp(f#)

lfp(f)  (lfp(f#))

Soundness Theorem(3)

1. Let (, ) form Galois connection from C to A

2. f: C  C be a monotone function

3. f# : A  A be a monotone function

4. aA: (f((a)))  f#(a)

(lfp(f))  lfp(f#)

lfp(f)  (lfp(f#))

Proof of Soundness (Summary)

 Define an “appropriate” structural operational

semantics

 Define “collecting” structural operational

semantics

 Establish a Galois connection between collecting

states and reaching definitions

 (Local correctness) Show that the abstract

interpretation of every atomic statement is sound

w.r.t. the collecting semantics

 (Global correctness) Conclude that the analysis is

sound

Completeness

(lfp(f)) = lfp(f#)

lfp(f) = (lfp(f#))

Constant Propagation

 : [Var  Z]  [Var  Z{, }]

– () = ()

 : P([Var  Z])  [Var  Z{, }]

– (X) =  {() |  X} =  { |  X}

 :[Var  Z {, }]  P([Var  Z])

– (#) = { | ()  # } = { |   # }

 Local Soundness

– st#(#)  ({st  |   (#) =  {st  |   # }

 Optimality (Induced)

– st#(#) = ({st  |   (#)} =  {st  |   # }

 Soundness

 Completeness

Proof of Soundness (Summary)

 Define an “appropriate” structural operational

semantics

 Define “collecting” structural operational

semantics

 Establish a Galois connection between collecting

states and reaching definitions

 (Local correctness) Show that the abstract

interpretation of every atomic statement is sound

w.r.t. the collecting semantics

 (Global correctness) Conclude that the analysis is

sound

Best (Conservative) interpretation

abstract

representation

Set of states

concretization

Abstract

semantics

statement s
abstract

representation

abstraction

Operational

semantics

statement s
Set of states

concretization

Set of states 

Induced Analysis

(Relatively Optimal)

 It is sometimes possible to show that a given
analysis is not only sound but optimal w.r.t. the
chosen abstraction

– but not necessarily optimal!

 Define
 S# (df) = ({S|    (df)})

 But this S# may not be computable

 Derive (at compiler-generation time) an
alternative form for S#

 A useful measure to decide if the abstraction must
lead to overly imprecise results

Example Dataflow Problem

 Formal available expression analysis

 Find out which expressions are available at a given
program point

 Example program
 x = y + t
 z = y + r
 while (…) {
 t = t + (y + r)
 }

 Lattice

 Galois connection

 Basic statements

 Soundness

Example: May-Be-Garbage

 A variable x may-be-garbage at a program point v

if there exists a execution path leading to v in

which x’s value is unpredictable:

– Was not assigned

– Was assigned using an unpredictable expression

 Lattice

 Galois connection

 Basic statements

 Soundness

Points-To Analysis
Determine if a pointer variable p may point

to q

on some path leading to a program point

 “Adapt” other optimizations

– Constant propagation

x = 5;

*p = 7 ;

… x …

 Pointer aliases

– Variables p and q are may-aliases at v if the points-to

set at v contains entries (p, x) and (q, x)

 Side-effect analysis

 *p = *q + * * t

The PWhile Programming Language

Abstract Syntax

a := x | *x | &x | n | a1 opa a2

b := true | false | not b | b1 opb b2 | a1 opr a2

S := x := a | *x := a | skip | S1 ; S2 |

 if b then S1 else S2 | while b do S

Concrete Semantics 1 for PWhile

For every atomic statement S

S  : States1 States1

x := a ()=[loc(x) Aa ]

x := &y ()

x := *y ()

x := y ()

*x := y ()

State1= [LocLocZ]

Points-To Analysis
 Lattice Lpt =

 Galois connection

Abstract Semantics for PWhile

•For every atomic statement S

S  #: P(Var* Var*) P(Var* Var*)

x := &y #

x := *y #

x := y #

*x := y #

t := &a;

y := &b;

z := &c;

 if x> 0;

 then p:= &y;

 else p:= &z;

 *p := t;

/*  */ t := &a; /* {(t, a)}*/
 /* {(t, a)}*/ y := &b; /* {(t, a), (y, b) }*/

/* {(t, a), (y, b)}*/ z := &c; /* {(t, a), (y, b), (z, c) }*/

 if x> 0;
 then p:= &y; /* {(t, a), (y, b), (z, c), (p, y)}*/

 else p:= &z; /* {(t, a), (y, b), (z, c), (p, z)}*/
/* {(t, a), (y, b), (z, c), (p, y), (p, z)}*/

 *p := t;

/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)}*/

Flow insensitive points-to-analysis

Steengard 1996

 Ignore control flow

 One set of points-to per program

 Can be represented as a directed graph

 Conservative approximation

– Accumulate pointers

 Can be computed in almost linear time

t := &a;

y := &b;

z := &c;

 if x> 0;

 then p:= &y;

 else p:= &z;

 *p := t;

Precision

 We cannot usually have

– (CS) = DF

on all programs

 But can we say something about precision in all

programs?

Summary

 Abstract interpretation Connects Abstract and

Concrete Semantics

 Galois Connection

 Local Correctness

 Global Correctness

