Exercise 2: Due January 20
Note: The questions are specified in sloppy way to encourage you to formalize and prove the meaning of these questions and their answers.
Galois Connections
1. Prove that the two alternative definitions of Galois connections are indeed equivalent.

2. Let L be a lattice of abstract elements. Let (: State (L be the extraction function, i.e., ((() is the most precise conservative approximation of (in L (as defined in class).
Show the Galois connection from P(States) (L induced by (and prove that it is indeed a Galois connection.

3. Show that the opposite direction of 3. also holds, i.e., for every Galois connection from P(States) to L there exists such an extraction function (.
Pointer Analysis

1. Show that the abstract transformer of simple assignment x := y is indeed the best (induced)

2. Show that the abstract transformer of x :=y is distributive (additive)

3. Is the abstract transformer of *x := y distributive?

4. Is the abstract transformer of *x := y the best one (induced)?

Interval Analysis
1. Show that the abstract meaning of the statement x := x + c in the interval analysis is the best (induced).

2. Generalize the domain of intervals to handle arbitrary number of program variables and show that it is a lattice and the generalized widening and narrowing. Define the Galois connection. Is it a Galois insertion?
3. Apply the Chaotic iteration algorithm with widening and narrowing to the C program and determine which of the array references to stack are guaranteed to be safe and what kind of runtime test is needed to guarantee safety (using the resultant intervals.)
4. Consider the following generalized C program which illustrates the usage of dynamic arrays in C (Java offers better facilities to define such arrays). Apply interval analysis to determine the potential values of the variable top. You can ignore statements that cannot affect the values of top.

 (Bonus) Develop an abstract domain which is precise enough to show that no array violations in C (and Java) programs with dynamic arrays. For simplicity, you can assume that the program manipulates a single array allocated using malloc with a designated variable, say size. Hint: one way to do that is to combine the lattice of signs with a domain which includes binary relationships between program variables. In the example program, we need to know that inside the print loop just before stack[i] is accessed, 0 (i < top (size. This can be represented using three components:
 a. All the variables are positive
 b. The set
{(i, i), (i, top), (i, size), (top, top), (top, size), (size, size)} which represents the inequalities:
i (i, i (top, i (size, top (top, top (size, size (size
 c. The set {(i, top), (i, size)} which represents the inequalities: i < top, i < size.
 Define the domain and the Galois connection. Apply chaotic iterations to the example program with dynamic arrays.

Solve one of the following projects and the submit the files by Email to tomersbar@gmail.com
Project 1: Proving Partial Correctness of a Simple Mark and Sweep Garbage Collection

1. Document the predicates and the actions in the tvp files for the Mark and Sweep example. In particular, explain the instrumentation predicates and their meanings (15%).

2. Remove the focus operations in stat_set.tvp and study the resulting analysis (15%)

3. What are the difficulties in extending the analysis to handle Garbage Collection Algorithms like Copy Garbage Collection in which the garbage collector can mutate the heap (10%)

4. (Bonus) Add actions for showing that the Mark phase must eventually terminate. One way to show that is by showing that the set of nodes reachable from the pointer variable x (used in the while loop condition in mark.tvp) decreases in every loop iteration (15%)

Project 2: Proving Partial Correctness of Sorting Algorithm

1. Document the predicates and the actions in the tvp files for the sorting example. In particular, explain the instrumentation predicates and their meanings (5%).

2. Remove the focus operations in cond.tvp and study the resulting analysis (10%)

3. Write an improved version of bubble sort in C called smart-bubble-sort which stops once the list is sorted and doesn't compare elements which are already in place (using linked lists and pointers). Then, convert it manually into tvp and run it. Study the results of the analysis (25%)

4. (Bonus) Add actions for showing that the loops in insertion sort and bubble sort must eventually terminate. One way to show that is by showing that the set of nodes reachable from the temporary variable x decreases at every loop iteration (15%)

