
May 11

Compile-Time Verification of Properties of Heap Intensive

Programs. Mooly Sagiv, Thomas Reps, Reinhard Wilhelm.
Notes by: Eran Kravitz & Oren Zomer

http://www.cs.tau.ac.il/~TVLA

http://www.cs.tau.ac.il/~msagiv/toplas02.pdf

Shape Analysis – Reminder
The process of shape analysis is used to statically determine properties about a program’s

dynamically allocated memory. It may be used to generate warnings about unwanted states that

may arise during the execution of a program, or consequently verify and prove that they will not

exist. For example, the following questions could be answered by shape analysis:

 Does a variable p point to a shared memory?

 Does a variable p point to an allocated element every time p is dereferenced?

 Does a variable p point to an acyclic list?

 Does a variable p point to a doubly-linked list?

 Can a procedure introduce a memory-leak?

As one can see, answering some of these questions may allow us to enhance the safety and

performance of our program. For example, if the answer for the first question is “no”, we could

skip the use of synchronization elements. We could also use the properties we discover about

the memory to assert a block of memory is eventually freed (and only once). This will also

provide us with helpful information assisting our program’s garbage collection (if we use such a

mechanism).

Shape analysis is a very powerful tool, however, running the analysis on large programs can take

a significant amount of time, and therefore it is not widely used.

Logical Structures (Labeled Graphs)
The analysis defines a set of relation symbols that are used to describe the variables’ properties:

 Nullary relation symbols

 Unary relation symbols

 Binary relation symbols

In addition, we use first order logic with transitive closure (FOTC over TC,) to

describe the invariants we must check during the analysis.

The analysis only stores tables containing the following information:

http://www.cs.tau.ac.il/~TVLA
http://www.cs.tau.ac.il/~msagiv/toplas02.pdf

 A set of individuals (nodes) U.

 Properties given by the relation symbols in P:

o P0() {0, 1}

o P1(v) {0, 1}

o P2(u, v) {0, 1}

Representing Stores (Memory States) as Logical Structures
The logical structures described above are used throughout the analysis to represent the

memory states of the program and its variables. This is usually done as follows:

 Memory locations are the set of individuals (nodes) U.

 Program variables are described by unary relations (e.g. x(v)=1 means variable x points

to the individual v).

 Fields are described by binary relations (e.g. n(u1, u2)=1 means that the next field of u1

directly points to u2).

Following is an example of the above, for a program with a list of up to 4 elements:

Figure 1 - Concrete State Representation as Logical Structures

Concrete Interpretation Rules
As seen above, throughout the analysis we store a set of tables representing the relations of the

memory locations at each state. When dynamically going over the program’s execution, the

concrete state of the program may change from one executed statement to another (i.e. the

values in the tables may change at each state). The following table shows several examples of

how a line of code may change the value of a given unary or binary relation (note that a tagged

property means the new value, e.g. x’(v) is the updated value of x after running the current line

of code, while x(v) is its value before running the current line of code):

Statement Update Formula Explanation

x = NULL x'(v) = 0 For every node v, the property x of v will be false
(i.e. 0).

x = malloc() x'(v) = IsNew(v) IsNew is a TVLA operation. It would return 1 if
memory was allocated for node v, otherwise 0.

x = y x'(v) = y(v) For every node v, the new value of x of v is the
same as the value of y of v.

x = y->next x’(v) = w: y(w) n(w, v)

For every node v, x of v is true (i.e. 1) iff there
exists a node w pointed to by y, and the n-field of
w is v.

xnext = y n’(v, w) = (x(v) n(v, w))

(x(v) y(w))

This line changes the value of the binary property
defined by n: For every pair (v, w), if v is not
pointed to by x then it remains unchanged (i.e.
with the value of n(v, w)), however if v is pointed
to by x, then the value n(v, w) becomes the same
as y(w) (i.e. true iff w is pointed to by y).

Table 1 - Concrete Interpretation Rules

Abstract Interpretation
The former example represents a concrete state updates. We would now like to use abstract

interpretation to perform the analysis. As always, the transformation from concrete to abstract

states may cause a loss of information. While in the concrete state every predicate could only be

true or false, in the abstract interpretation, due to the loss of information, we might have a third

state which would represent “don’t-know”. We therefore use Kleene’s 3-valued logic for

extracting information from the abstract value:

AND True (1) Unknown (½) False (0)

True (1) 1 ½ 0

Unknown (½) ½ ½ 0

False (0) 0 0 0
Table 2 - Kleene's 3-Valued Logic - And Operation

OR True (1) Unknown (½) False (0)

True (1) 1 1 1

Unknown (½) 1 ½ ½

False (0) 1 ½ 0
Table 3 - Kleene's 3-Valued Logic - Or Operation

As mentioned above, a value of ½ simply means we don’t know whether the predicate should be

evaluated to true or false. The logic is actually a join semi-lattice where ½ functions as top, i.e.

01 = ½.

The canonical abstraction function () divides the nodes of the program into classes, based on

the values of their unary relations. I.e. every two or more elements whose unary predicates are

evaluated to the same values fall into the same class, and are represented in the graph by one

summary node (the node is a summary node if it may represent more than one concrete value).

The relations between the abstract elements are evaluated as follows:

Remember that we are using a 3-valued logic, so the resulted value may be in {0, 1, ½} . Also

note that if A is the number of unary predicates, then we may have as many as 2A abstract

classes. This number could of course be very large; however, in practice, if we run the analysis

on a single procedure, this number will usually be reasonably small.

Example: The following shows the transformation from a concrete state representing a linked

list with 4 elements, to an abstract state representing (among other things) the same list:

Figure 2 - Concrete to Abstract State Transformation

As we can see, the concrete state has a list with 4 elements, whose head is pointed to by both x

and y. In the abstract state, we see that the canonical abstraction created two classes: node u1 is

the member of the class whose elements are pointed to by both x and y, and nodes u2, u3, u4 are

members of the class whose elements are not pointed to by any variable (i.e. all their unary

predicates evaluate to 0). Note that by looking at the unary predicates’ table in the concrete

state, it is easy to see that theoretically speaking, if we have 4 variables (unary predicates), we

could have as many as 16 (24) different classes. Also, we can see that the relations between the

nodes are evaluated as follows, using the join operation:

 n(u1, u1) = 0, because in the concrete case n(u1, u1) = 0.

 n(u1, u234) = ½, because: n(u1, u234) = n(u1, u2) n(u1, u3) n(u1, u4) = 1 0 0 = ½.

 n(u234, u1) = n(u2, u1) n(u3, u1) n(u4, u1) = 0 0 0 = 0.

 n(u234, u234) = n(u2, u2) n(u2, u3) n(u2, u4)

 n(u3, u2) n(u3, u3) n(u3, u4)

 n(u4, u2) n(u4, u3) n(u4, u4) = 0 1 0 0 0 1 0 0 0 = ½.

Also note that the abstract representation contains a new column “sm”, which stands for

“summary”. This column specifies whether the given class is a summary node (i.e. may

represent 2 or more concrete nodes) or not (i.e., represents just one concrete node). For

technical reasons, this column may contain only 0 or ½ (where ½ means it is a summary node).

As you may notice, the abstract interpretation is of course potentially less precise than the

concrete one. There are other concrete lists that may be represented by the same abstract list

shown above. However, we can conservatively test invariants we wish to verify on the abstract

representation and if the verification succeeds, we are guaranteed that the same property

would hold on the concrete state as well. We may, however, get warnings which would not be

true (as we saw in the previous lecture with the example of the rotate method).

The abstract interpretation can help us finish the iteration where the concrete interpretation

may continue indefinitely: consider the list creation example given in class:

Figure 3 - List Creation Example, Concrete Representation

We would like to verify that:

1. The code given in the example does not leak memory.

2. The list created contains no cycles.

This figure represents the concrete states for the code. We can see that we would have to

continue indefinitely as we never get two subsequent states that are equal to one another for

the same configuration node. However, if we used the abstract interpretation, we would get the

following:

Figure 4 - List Creation Example, Abstract Representation

As we can see, the last two states for the last configuration node (x = t) are the same, and

therefore we stop the iteration. Make note of the summary node, representing two or more

concrete nodes (i.e. the list may be 3 or more elements long).

Note that given the final state above, we would have to generate warning regarding both

questions we have asked (as we may have memory leaks, because the nodes of the summary

node may not be pointed to at all, and we may have cycles, as nodes within the summary node

may create a cycle with one another). We will see how to resolve these issues shortly.

Global Invariants
We may define other properties which may be interesting for our analysis. Such properties are

represented as unary (or nullary) predicates, and can be defined using first order logic. Let us

consider a few examples:

Cyclicity Relation (Nullary)

This relation is intended to check whether there exist cycles in the list, and it is defined as

follows:

c[x]() = v1, v2: x(v1) n*(v1, v2) n+(v2, v2)

This property checks whether at any given point we have some nodes v1 and v2 (which may

actually be the same node as well) such that v1 is pointed to by x (i.e. it is the head of the list),

there is a path of some length from v1 to v2, and there is a path of length at least 1 from v2 to

itself. As long as this property is false, we can guarantee that there are no cycles in the list.

For a list with no cycles, the following are the concrete representation and its corresponding

abstract representation:

Figure 5 - Cyclicity Relation with no Cycles

And for a list that does contain a cycle:

Figure 6 - Cyclicity Relation with Cycles

Although the graph representation looks the same, we keep track of the property we defined

and thus we can tell whether there is a cycle or not. We will later see how the values of

properties are kept and updated.

Heap Sharing Relation (Unary)

Another property we may define is heap sharing. This property is unary, and checks for each

node if there are (at least) two different heap objects that point to it. It is defined as follows:

is(v) = v1, v2:n(v1, v) n(v2, v) v1 ≠ v2

In other words – a node v is heap-shared if it has two nodes v1 and v2 pointing to it, and these

nodes v1 and v2 are not actually the same node. Note that this local property can help us

determine whether a list has cycles or not (even though its definition seemingly has nothing to

do with cycles):

Figure 7 - Heap Sharing Relation with no Cycles

As we can see, each node v has its own is(v) value. In the case above, for the concrete

representation, they are all 0 (note that although u1 is pointed to from both x and t – these are

not heap variables, therefore is(u1)=0 and not 1). When transforming into the abstract

representation, as before, we receive two classes: u1 and u2…n. Each of these nodes receives a

value of is(v)=0 as well (as it is simply the join of the corresponding unary properties in the

concrete representation).

However, if our list did contain a cycle, we would get:

Figure 8 - Heap Sharing Relation with Cycles

As we can see, node u2 in the concrete representation has a value of is(v)=1. Therefore, when

transforming into the abstract representation, we now obtain three classes: class u1 whose

elements have x(v)=1, t(v)=1, is(v)=0; class u2 whose elements have x(v)=0, t(v)=0, is(v)=1; and

class u3..n whose elements have x(v)=0, t(v)=0, is(v)=0. In the previous example we did not have a

cycle, therefore we obtained only two classes. Now, node u2 has the property is(v)=1 (unlike the

nodes u3, u4, … , un which have is(v)=0), thus we receive a third class. As a result, by looking at

the abstract representation alone, we know that node u2 is shared among two heap variables –

one of which is u1 and the other is one of {u3, u4, …, un} (which are represented by just one

summary node). Therefore, we can conclude that this list potentially has a cycle, and the

analysis would produce a warning. Note that this property can completely separate between

lists that have cycles and lists that don’t (so in the previous example of a list with no cycles, our

analysis would know not to produce such a warning).

Reachability Relation (Binary)

Lastly,let us consider an example for a binary property – reachability. This property defines for

any two nodes v1 and v2 whether there is a path of some length from v1 to v2
 or not. It is defined

as follows:

t[n](v1, v2) = n*(v1,v2)

The transformation from concrete to abstract representation looks as follows:

Figure 9 - Reachability Relation

As before, the property is evaluated for the abstract case simply as a 3-valued join between the

values of the corresponding concrete case. Therefore we get:

 t[n](u1, u1) = 1, because the value of t[n](u1, u1) in the concrete representation is 1.

 t[n](u1, u2..n) = t[n](u1, u2) t[n](u1, u3) … t[n](u1, un) = 1 1 … 1 = 1.

 t[n](u2..n, u1) = t[n](u2, u1) t[n](u3, u1) … t[n](un, u1) = 0 0 … 0 = 0.

 t[n](u2..n, u2..n) = t[n](u2, u2) t[n](u2, u3) … t*n+(u2, un)

t[n](u3, u2) t[n](u3, u3) … t*n+(u3, un)

…

t[n](un, u2) t[n](un, u3) … t*n+(un, un) = ½ (note that for t[n](ui, uj)

where i ≤ j we get 1, while

where i > j we get 0).

We may use this property with list segments. Consider the following example:

Figure 10 - List Segments without Reachability

As we can see, the abstract representation of the list has a few issues: even though there are no

cycles in the concrete case, the abstract representation suggests that there might be. Let us now

use a property similar (yet slightly changed) to the reachability property we just saw. Let us

define:

r[n,y](v) =w: y(w) n*(w, v)

If we add this property to our analysis, we now get:

Figure 11 - List Segments with Reachability

As we can see, the nodes u2, u3, u4 now conform a class separate than u6, u7, u8 due to the

difference in their r[n, y] property. This solves the cycle problem seen above.

Concrete Interpretation Rules
We saw several examples of how a transformation can be made from the concrete case to the

abstract case when global invariants are used. However, when running an abstract analysis, we

do not perform such a transformation but rather keep updating the configuration node’s state.

We saw in table 1 above how we update the unary properties for a given line of code. We can

similarly define how to update the values of all relevant properties (including the user-defined

global invariants). Consider the following example for the heap-sharing relation described

above:

Statement Update Formula Change from Table 1

x = NULL x'(v) = 0 No change – the heap sharing
property remains unchanged.

x = malloc() x'(v) = IsNew(v)

is’(v) = is(v) IsNew(v)

If the object was shared before,
and the IsNew operation was
not called on the current node
v, it will remain shared.
Otherwise it is not (i.e. a newly
allocated piece of memory
would always be unshared).

x = y x'(v) = y(v) No change.

x = y->next x’(v) = w: y(w) n(w, v) No change.

xnext = NULL n’(v, w) = x(v) n(v, w)

is’(v) = is(v) v1, v2: n(v1, v) x(v1)

n(v2, v) x(v2)

eq(v1, v2)

Note that in this example we
set xnext to null, while in
table 1 we set it to some
variable y.
In this example, node v is
shared iff two different nodes
(which are not the node
pointed to by x) point to v, and
the node was marked as shared
before the execution of this
statement.
This means that a node that
was not previously shared will
always remain unshared, but a
node which was shared before
may either be shared or
unshared after this line.

Previously the user of TVLA had to enter these update formulas himself. In the newer version,

TVLA can calculate it based on the definition of the property and the update formula for the

other predicates.

Instrumentation and Embedding
We have seen several examples for instrumentations – transforming a concrete structure B of

individuals (nodes) and properties , to an abstract structure S of individuals

 and properties , so that every two individuals are

mapped to the same individual () if and only if they give the same result for every

unary property in .

In the abstract structure, the unary properties are easy to define – they give the same result as

the concrete individuals that were mapped to them (recall that all the concrete individuals that

are mapped to the same abstract individual have the same result on every unary property). The

other properties (nullary, binary or k-ary) are defined by:

Or in other words:

The instrumentation created a structure S which is a "tight-embedding" of the structure B. We

say that a structure B can be embedded into a structure S via a surjective function if

all the properties are preserved (some information may be lost, be we won't get contradictions):

(for every k-ary property B Bp P , its corresponding property S Sp P , and any k individuals

in
BU)

By "tight-embedding" we mean that the value of the abstract property is the least upper bound:

Notice that the "can be embedded" and "tight embedding" relations are also defined if B is a 3-

valued logical structure, thus creating a partial-order between all abstract and concrete

structures.

Furthermore, we added the new property "sm" (summary node) defined by:

 We noticed that the number of individuals in the abstract structure is finite and limited by
 ,

so our analysis memory and time requirements are limited too (due to the lattice's finite depth).

On the other hand, we pay for this by losing information: our abstract structure may also

represent other concrete structures which cannot occur at runtime.

Embedding Theorem
During the instrumentation, we defined the values of the abstract-structure's properties so

they'll preserve the values of the concrete-structure properties. For example, the concrete one-

way-reachability property:

will be defined in the abstract structure as:

This raises the question whether the abstract definition of owr preserves the result of the

formula that defined it. According to the Embedding Theorem that we will soon prove, the

evaluation of any FOTC formula is preserved under the instrumentation. By FOTC formula we

mean that the formula can be constructed of:

 The structure's atom properties

 The first order-logic usage of:

 The Transitive Closure, which we use to mark with '+', such as in , and evaluated in

the 3-valued logic on an assignment Z in the following way:

For example, a formula like can be used to create the TC formula:

and would be evaluated as expected from a transitive operation:

o 1 – if the there is a sequence of individuals such that

for every following individuals the evaluation of is 1.

(for this sequence, the is 1, so the is 1)

o 0 – if for any sequence of individuals there is at least

one couple of following individuals that for them the evaluation of

 is 0. (for every sequence the is 0, so the is 0).

o ½ - otherwise

In our previous example of owr, using the Embedding Theorem we get:

Or in other words:

Therefore, from the definition of the "least upper bound":

This means that preserves the formula, and may even be more precise.

Using the Embedding Theorem, it is easy to see how we can prove this for any k-ary property

that is defined by formula – the new property will preserve the evaluation of the formula in the

abstract structure.

Here we have to note that a formula that includes equality, such as is not preserved

"as-is". If we look at the different concrete individuals that are mapped to the same

abstract summary node individual , we will obviously get a contradiction:

1.

2.

In order to fix this, such formulas are translated to the abstract world as:

1. If two different abstract individuals are compared, the result will be 0, as with any 2

concrete individuals that are mapped to 2 different abstract individuals.

2. If a non-summary individual is compared to itself the result will be 1, as with the only

concrete individual that was mapped to it.

3. If a summary individual is compared to itself the result will be ½, which means that we

don't know what result will be in the concrete structure.

Proof of Embedding Theorem
Let's look at a structure B which can be embedded into a structure S by a surjective

(denote as), and let be some formula with the free variables . By De Morgan

laws we can assume WLOG that is constructed only by and TC of smaller formulas, or

that is an atomic formula.

We will prove by induction that for any assignment Z of the free variables to some

individuals (respectively) we get , where:

1. is the assignment that maps the free variables to

(respectively)

2. is the same formula as , except for the terms of the form which are

replaced with

All the evaluations are done under the 3-valued logic. The theorem is also true in the sub-case

when B is a 2-values structure (a concrete structure).

In order to prove that , we have to show that:

1. If then

2. If then

3. If the claim is true (nothing to prove in this case).

Basis

 is an atomic formula. It is either a formula in the form or a formula that evaluates

some k-ary property. In the first case we get:

1. If then . According to the assignment

we get that and . From the definition of sm we get that

only a single individual is mapped to , which means that . Therefore

 .

2. If then . According to the assignment

and the 3-valued "and", we get that either or . sm can

only return 0 or , so the second case cannot happen. Therefore and

because is a function, we get . Finally, we get .

In the second case, is a formula that evaluates a k-ary property that has a

corresponding k-ary property , which is the evaluated property when we look at in S.

Because , we get:

Induction Hypothesis

Induction Step

 is constructed of smaller formulas in one of the following ways:

1.

o

 means that both
 and

 .

By the induction hypothesis, and , therefore

 .

o

 means that
 or

 . WLOG,

let's assume the first one happens. By the induction hypothesis ,

therefore .

2.

o
 means that

 . By the induction

hypothesis which means that .

o
 means that

 . By the induction

hypothesis which means that .

3. , where contains the free variables:

o
 means that there is an individual such

that
 . Because is surjective, there must be some

such that , therefore
 . By using the induction

hypothesis we get . Finally, we can see that this formula proofs

that .

o
 means that for any individual we

get
 . This is also true when . Thus, for any

we get
 . By using the induction hypothesis we get that for

any , . Finally, we can see that this proofs that

 .

4.

o
 means that there's a sequence of

individuals

 such that the assignment maps
 and

 and for every following individuals

 we have

 . Because is surjective, we can find for that

sequence a sequence in which:

In the sequence that we choose, we can specifically choose and

 .

For every following individuals we get:

And from the induction hypothesis we get:

We found a sequence which gives us:

Finally we get:

o
 means that for every sequence of

individuals

 such that the assignment maps
 and

 there is at least one couple of following individuals

 which

give:

 . This is particularly true for any

 where and , and the derived

sequence:

meaning that for some :

By the induction hypothesis, we get for that :

Therefore:

Finally we get:

The proof of the induction proves the Embedding Theorem.

Transformers

Best Transformer
As we mentioned before, instead of maintaining all the possible concrete structures in every

code line in the shape analysis, we only maintain a collection possible of abstract structures,

knowing that every possible concrete structure is represented by the abstract structure that it

can be embedded to.

Suppose that we have a collection of abstract structures for some code line. We now have to

transform them into a new abstract collection, which will represent (by embedding) all the

concrete structures after the code line has been executed.

Obviously, the most accurate transformer would be to look at all the concrete structures

represented by the current abstract collection, execute the code line (the concrete

transformation) on each one, and find their abstract representations.

However, this "Best Transformer" is not feasible – the number of concrete structures

represented by an abstract structure can be infinite (for example, in the case of a linked list,

which can represent any linked list of any length).

Kleene Transformer
We have seen before the "Concrete Interpretation Rules", which tell us how to evaluate the

relations in the new concrete structure, based on the current concrete structure and the code

line to execute. For example:

Statement Update Formula Explanation

x = y->next x’(v) = w: y(w) n(w, v)

For every node v, x of v is true (i.e. 1) iff there
exists a node w pointed to by y, and there is a path
(of length 1) from w to v.

The Kleene Transformer simply evaluates the update-formula on the abstract structure, in a 3-

valued logic. According to the Embedding Theorem, if we have a concrete structure that can be

embedded into an abstract structure
 (maps the concrete individuals to

their abstract individuals) then evaluations of such a formula will obey:

Therefore, every nullary, unary, binary or k-ary property will be preserved:

This means that can be embedded into , so with this transformation the new

abstract structures for sure represent all the required concrete structures.

However, this technique may lose important information, as the new properties may resolve in

½.

For example, let's look at the simple execution of the statement , on an abstract

structure where points to the first node of a linked list.

As we can see, we lost the information about the node that is pointed by (we can still

conclude that it is not null because there are reachable nodes).

Focusing
We want to have a transformation which will be more accurate than the Kleene transformation,

and will also be feasible. We do that by picking an indecisive property in our abstract structure

(a property that evaluates to ½), and from all the abstract structures that can be embedded into

our structure, we find all the maximal abstract structures in which this property is decisive: all

the maximal abstract structures in which this property evaluates to 1 and all the maximal

abstract structures in which this property

evaluates to 0.

It is easy to see that every concrete structure

that can be embedded into the original

abstract structure can be embedded into one

of the new abstract structures, because the

properties of concrete structures are always

decisive. Furthermore, because of the

transitivity of the embedding, every concrete

structure that can be embedded into one of

the new abstract structure can be also

Abstract Lattice Concrete Lattice

op

Example for a Semantic Reduction operation "op":

 and

embedded into the original structure. Therefore, the original abstract structure and the

collection of new abstract structures represent the same set of concrete structures.

This technique is called Focusing. The idea of taking an element in our lattice (the original

abstract structure) and converting it to a more precise element (the collection of new abstract

structures), in a way that preserves their transformation to the concrete world, is called

Semantic Reduction.

The property that we focus on does not necessarily have to be one of the properties that we

track during the analysis. It can also be defined by a new formula. After focusing, we can apply

the Kleene Transformer on every new abstract structure, and then "unfocus" by forgetting

about the new property and non-maximal abstract structures - after removing the property, we

can ignore structures that can be embedded into other structures in the collection. In case the

removed property was unary, we must also merge individuals that differed from each other only

in that property, and have identical values in all the other properties.

Not all formulas can be used in the focusing process. For example, let's look at the formula:

And the abstract structure for a linked list pointed by x:

In , gets an indecisive value because

 . In we also get an indecisive

value because

 . Let's look at some abstract structures that can be embedded

into our structure, and have decisive values for .

All of the structures above can be embedded into the original structure. They also represent

different concrete structures: a list of length m can be embedded only to the structure number

m. Therefore, they cannot be embedded into one another. Finally, and most important, any

union of any couple of these structures will create an abstract structure with an individual that

all of its outgoing edges are ½'s, and therefore it will have an indecisive

 . This means

that all of the abstract structures do not have common maximal "focused" abstract structures

(in fact, these structures are maximal, but we won't prove it here). The Focus transformation

will generate an infinite number of abstract structures, and therefore it is not feasible.

Luckily, we have a smart way of choosing our focus formulas for statements of the form

 , as we can see in Table XI. The idea behind this table is:

1. In the "read" part (), we want to be decisive on which individual the pointer that we

read points to, or in other words we want to know decisively whether it points or

doesn't point to every node. For example, the statement and its focus

formula , or the statement

(reading from), and its focus formula

 .

2. In the "write" part (), we want to be

decisive on which individual is going to

change. For example in , no nodes

are going to change, but in , the

node pointed by is going to change (its

"next" attribute will change), so we want to

be decisive on the formula .

We can see that our focus formulas ask questions of: "Is there a route of length <specific length>

from the stack pointer <specific stack pointer> to the node?" – For example, in the case of

reading , the focus formula asks the

question: "Is there a route of length 3 from the pointer to the node ?".

If, for some node, there are indecisive routes (with indecisive edges) of the required length from

the pointer to the node, and there are no decisive routes of the required length from the

pointer to the node, the evaluation of this formula will be indecisive.

For such a node, we create the focused structures in 3 ways:

1. For every indecisive route from the pointer to the node, create the structure in which

the edges of this graph are resolved to 1 – this will make the formula resolve to 1.

2. In every indecisive route from the pointer to the node, pick a single indecisive edge and

make it resolve to 0 (if 2 routes share a common indecisive edge, it can be picked for

both of them) – this will make the formula resolve to 0.

3. If the node is a summary node, we should recall that the abstract individuals are

distinguished by their unary properties. If we add a new unary property, we should split

the summary node to 2 (duplicating its relations with the other nodes), and make one

copy resolve to 1 and the other copy resolve to 0 like before.

For example, in the

statement ,

where point to the

first node of a linked list,

we get (the property is

the reachability):

Eventually, we should "drop" the new property. We do that by finding individuals that are

equivalent to each other by the values of all "normal" unary properties, and merging them.

Coercion
We can see in the last example that we reached the output structure:

This structure represents all the concrete structures where decisively points to NULL, and

there are list-nodes, represented by , that are reachable from . Obviously, no concrete

structures can create this situation, and a smart algorithm would drop this irrelevant structure.

The Coercion is another type of semantic reduction. It takes a collection of known constrains

between some properties, and try to use them in order to make the indecisive properties more

precise. The Coercion Principle (or Sharpening Principle) states that if in the concrete world a

property equals to an assignment in some FOTC formula: (from

definition or from a known constraint) then in any abstract structure,

 should be at

least as precise as the evaluation of

 . Furthermore, if

 has a

definite value and

 has an incomparable definite value, then the abstract

structure does not represent any concrete structure at all.

Some examples for known constraints:

1.

2.

3.

4.

5.

6.

7.

In our last example, assigning in the 7th constraint with results in two

incomparable definite values:

n

Therefore, we can drop the whole structure.

We can also apply the coercion on the

other two output structures in our last

focusing example. Using the third

constraint with , we can see

that and are not summary

nodes. Looking at the "is shared"

property (not shown in the diagrams

because all nodes have) in

the 6th constraint, with

 in the central case (), results in removing the indefinite self edge of

(). The 6th constraint can

also be used in the right case (),

with , to remove all

the indefinite edges towards :

(for and

 for .

In the following "list-insertion"

example (Table X), we can see the big

accuracy difference in the final states

between the Kleene (Strawman)

simplistic analysis, and the refined

analysis that uses Focusing and

Coercion.

