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Shape Analysis – Reminder 
The process of shape analysis is used to statically determine properties about a program’s 

dynamically allocated memory. It may be used to generate warnings about unwanted states that 

may arise during the execution of a program, or consequently verify and prove that they will not 

exist. For example, the following questions could be answered by shape analysis: 

 Does a variable p point to a shared memory? 

 Does a variable p point to an allocated element every time p is dereferenced? 

 Does a variable p point to an acyclic list? 

 Does a variable p point to a doubly-linked list? 

 Can a procedure introduce a memory-leak? 

As one can see, answering some of these questions may allow us to enhance the safety and 

performance of our program. For example, if the answer for the first question is “no”, we could 

skip the use of synchronization elements. We could also use the properties we discover about 

the memory to assert a block of memory is eventually freed (and only once). This will also 

provide us with helpful information assisting our program’s garbage collection (if we use such a 

mechanism). 

Shape analysis is a very powerful tool, however, running the analysis on large programs can take 

a significant amount of time, and therefore it is not widely used.  

Logical Structures (Labeled Graphs) 
The analysis defines a set of relation symbols that are used to describe the variables’ properties: 

 Nullary relation symbols 

 Unary relation symbols 

 Binary relation symbols 

In addition, we use first order logic with transitive closure (FOTC over TC,          ) to 

describe the invariants we must check during the analysis. 

The analysis only stores tables containing the following information: 
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 A set of individuals (nodes) U. 

 Properties given by the relation symbols in P: 

o P0() {0, 1} 

o P1(v) {0, 1} 

o P2(u, v) {0, 1} 

Representing Stores (Memory States) as Logical Structures 
The logical structures described above are used throughout the analysis to represent the 

memory states of the program and its variables. This is usually done as follows: 

 Memory locations are the set of individuals (nodes) U. 

 Program variables are described by unary relations (e.g. x(v)=1 means variable x points 

to the individual v). 

 Fields are described by binary relations (e.g. n(u1, u2)=1 means that the next field of u1 

directly points to u2). 

Following is an example of the above, for a program with a list of up to 4 elements: 

 

Figure 1 - Concrete State Representation as Logical Structures 



Concrete Interpretation Rules 
As seen above, throughout the analysis we store a set of tables representing the relations of the 

memory locations at each state. When dynamically going over the program’s execution, the 

concrete state of the program may change from one executed statement to another (i.e. the 

values in the tables may change at each state). The following table shows several examples of 

how a line of code may change the value of a given unary or binary relation (note that a tagged 

property means the new value, e.g. x’(v) is the updated value of x after running the current line 

of code, while x(v) is its value before running the current line of code): 

Statement Update Formula Explanation 

x = NULL x'(v) = 0 For every node v, the property x of v will be false 
(i.e. 0). 

x = malloc() x'(v) = IsNew(v) IsNew is a TVLA operation. It would return 1 if 
memory was allocated for node v, otherwise 0. 

x = y x'(v) = y(v) For every node v, the new value of x of v is the 
same as the value of y of v. 

x = y->next x’(v) = w: y(w)  n(w, v) 
 

For every node v, x of v is true (i.e. 1) iff there 
exists a node w pointed to by y, and the n-field of 
w is v. 

xnext = y n’(v, w) = (x(v) n(v, w))  

(x(v)   y(w)) 

This line changes the value of the binary property 
defined by n: For every pair (v, w), if v is not 
pointed to by x then it remains unchanged (i.e. 
with the value of n(v, w) ), however if v is pointed 
to by x, then the value n(v, w) becomes the same 
as y(w) (i.e. true iff w is pointed to by y). 

Table 1 - Concrete Interpretation Rules 

Abstract Interpretation 
The former example represents a concrete state updates. We would now like to use abstract 

interpretation to perform the analysis. As always, the transformation from concrete to abstract 

states may cause a loss of information. While in the concrete state every predicate could only be 

true or false, in the abstract interpretation, due to the loss of information, we might have a third 

state which would represent “don’t-know”. We therefore use Kleene’s 3-valued logic for 

extracting information from the abstract value: 

AND True (1) Unknown (½) False (0) 

True (1) 1 ½  0 

Unknown (½) ½  ½  0 

False (0) 0 0 0 
Table 2 - Kleene's 3-Valued Logic - And Operation 

OR True (1) Unknown (½) False (0) 

True (1) 1 1 1 

Unknown (½) 1 ½  ½  

False (0) 1 ½  0 
Table 3 - Kleene's 3-Valued Logic - Or Operation 



As mentioned above, a value of ½ simply means we don’t know whether the predicate should be 

evaluated to true or false. The logic is actually a join semi-lattice where ½ functions as top, i.e. 

01 = ½. 

The canonical abstraction function () divides the nodes of the program into classes, based on 

the values of their unary relations. I.e. every two or more elements whose unary predicates are 

evaluated to the same values fall into the same class, and are represented in the graph by one 

summary node (the node is a summary node if it may represent more than one concrete value).  

The relations between the abstract elements are evaluated as follows: 

     
      

                            
            

   

Remember that we are using a 3-valued logic, so the resulted value may be in {0, 1, ½} . Also 

note that if A is the number of unary predicates, then we may have as many as 2A abstract 

classes. This number could of course be very large; however, in practice, if we run the analysis 

on a single procedure, this number will usually be reasonably small. 

Example: The following shows the transformation from a concrete state representing a linked 

list with 4 elements, to an abstract state representing (among other things) the same list: 

 

Figure 2 - Concrete to Abstract State Transformation 

As we can see, the concrete state has a list with 4 elements, whose head is pointed to by both x 

and y. In the abstract state, we see that the canonical abstraction created two classes: node u1 is 

the member of the class whose elements are pointed to by both x and y, and nodes u2, u3, u4 are 

members of the class whose elements are not pointed to by any variable (i.e. all their unary 

predicates evaluate to 0). Note that by looking at the unary predicates’ table in the concrete 

state, it is easy to see that theoretically speaking, if we have 4 variables (unary predicates), we 

could have as many as 16 (24) different classes. Also, we can see that the relations between the 

nodes are evaluated as follows, using the join operation:  

 n(u1, u1) = 0, because in the concrete case n(u1, u1) = 0. 

 n(u1, u234) = ½, because: n(u1, u234) = n(u1, u2)  n(u1, u3)  n(u1, u4) = 1  0  0 = ½. 

 n(u234, u1) = n(u2, u1)  n(u3, u1)  n(u4, u1) = 0  0  0 = 0. 



 n(u234, u234) = n(u2, u2)  n(u2, u3)  n(u2, u4)   

          n(u3, u2)  n(u3, u3)  n(u3, u4)   

          n(u4, u2)  n(u4, u3)  n(u4, u4) = 0  1  0  0  0  1  0  0  0 = ½. 

Also note that the abstract representation contains a new column “sm”, which stands for 

“summary”. This column specifies whether the given class is a summary node (i.e. may 

represent 2 or more concrete nodes) or not (i.e., represents just one concrete node). For 

technical reasons, this column may contain only 0 or ½ (where ½ means it is a summary node). 

As you may notice, the abstract interpretation is of course potentially less precise than the 

concrete one. There are other concrete lists that may be represented by the same abstract list 

shown above. However, we can conservatively test invariants we wish to verify on the abstract 

representation and if the verification succeeds, we are guaranteed that the same property 

would hold on the concrete state as well. We may, however, get warnings which would not be 

true (as we saw in the previous lecture with the example of the rotate method). 

The abstract interpretation can help us finish the iteration where the concrete interpretation 

may continue indefinitely: consider the list creation example given in class: 

 

Figure 3 - List Creation Example, Concrete Representation 

We would like to verify that: 

1. The code given in the example does not leak memory.  

2. The list created contains no cycles.  



This figure represents the concrete states for the code. We can see that we would have to 

continue indefinitely as we never get two subsequent states that are equal to one another for 

the same configuration node. However, if we used the abstract interpretation, we would get the 

following: 

 

Figure 4 - List Creation Example, Abstract Representation 

As we can see, the last two states for the last configuration node (x = t) are the same, and 

therefore we stop the iteration. Make note of the summary node, representing two or more 

concrete nodes (i.e. the list may be 3 or more elements long).  

Note that given the final state above, we would have to generate warning regarding both 

questions we have asked (as we may have memory leaks, because the nodes of the summary 

node may not be pointed to at all, and we may have cycles, as nodes within the summary node 

may create a cycle with one another). We will see how to resolve these issues shortly. 

Global Invariants 
We may define other properties which may be interesting for our analysis. Such properties are 

represented as unary (or nullary) predicates, and can be defined using first order logic. Let us 

consider a few examples: 

Cyclicity Relation (Nullary) 

This relation is intended to check whether there exist cycles in the list, and it is defined as 

follows: 



c[x]() = v1, v2: x(v1)  n*(v1, v2)  n+(v2, v2) 

This property checks whether at any given point we have some nodes v1 and v2 (which may 

actually be the same node as well) such that v1 is pointed to by x (i.e. it is the head of the list), 

there is a path of some length from v1 to v2, and there is a path of length at least 1 from v2 to 

itself. As long as this property is false, we can guarantee that there are no cycles in the list. 

For a list with no cycles, the following are the concrete representation and its corresponding 

abstract representation: 

 

Figure 5 - Cyclicity Relation with no Cycles 

And for a list that does contain a cycle: 



 

Figure 6 - Cyclicity Relation with Cycles 

Although the graph representation looks the same, we keep track of the property we defined 

and thus we can tell whether there is a cycle or not. We will later see how the values of 

properties are kept and updated. 

Heap Sharing Relation (Unary) 

Another property we may define is heap sharing. This property is unary, and checks for each 

node if there are (at least) two different heap objects that point to it. It is defined as follows: 

is(v) = v1, v2:n(v1, v) n(v2, v)  v1 ≠ v2 

In other words – a node v is heap-shared if it has two nodes v1 and v2 pointing to it, and these 

nodes v1 and v2 are not actually the same node. Note that this local property can help us 

determine whether a list has cycles or not (even though its definition seemingly has nothing to 

do with cycles): 



 

Figure 7 - Heap Sharing Relation with no Cycles 

As we can see, each node v has its own is(v) value. In the case above, for the concrete 

representation, they are all 0 (note that although u1 is pointed to from both x and t – these are 

not heap variables, therefore is(u1)=0 and not 1). When transforming into the abstract 

representation, as before, we receive two classes: u1 and u2…n. Each of these nodes receives a 

value of is(v)=0 as well (as it is simply the join of the corresponding unary properties in the 

concrete representation). 

However, if our list did contain a cycle, we would get: 



 

Figure 8 - Heap Sharing Relation with Cycles 

As we can see, node u2 in the concrete representation has a value of is(v)=1. Therefore, when 

transforming into the abstract representation, we now obtain three classes: class u1 whose 

elements have x(v)=1, t(v)=1, is(v)=0; class u2 whose elements have x(v)=0, t(v)=0, is(v)=1; and 

class u3..n whose elements have x(v)=0, t(v)=0, is(v)=0. In the previous example we did not have a 

cycle, therefore we obtained only two classes. Now, node u2 has the property is(v)=1 (unlike the 

nodes u3, u4, … , un which have is(v)=0), thus we receive a third class. As a result, by looking at 

the abstract representation alone, we know that node u2 is shared among two heap variables – 

one of which is u1 and the other is one of {u3, u4, …, un} (which are represented by just one 

summary node). Therefore, we can conclude that this list potentially has a cycle, and the 

analysis would produce a warning. Note that this property can completely separate between 

lists that have cycles and lists that don’t (so in the previous example of a list with no cycles, our 

analysis would know not to produce such a warning). 

Reachability Relation (Binary) 

Lastly,let us consider an example for a binary property – reachability. This property defines for 

any two nodes v1 and v2 whether there is a path of some length from v1 to v2
 or not. It is defined 

as follows: 

t[n](v1, v2) = n*(v1,v2) 

The transformation from concrete to abstract representation looks as follows: 



 

Figure 9 - Reachability Relation 

As before, the property is evaluated for the abstract case simply as a 3-valued join between the 

values of the corresponding concrete case. Therefore we get: 

 t[n](u1, u1) = 1, because the value of t[n](u1, u1) in the concrete representation is 1. 

 t[n](u1, u2..n) = t[n](u1, u2)  t[n](u1, u3)  …  t[n](u1, un) = 1  1  …  1 = 1. 

 t[n](u2..n, u1) = t[n](u2, u1)  t[n](u3, u1)  …  t[n](un, u1) = 0  0  …  0 = 0. 

 t[n](u2..n, u2..n) = t[n](u2, u2)  t[n](u2, u3)  … t*n+(u2, un)   

t[n](u3, u2)  t[n](u3, u3)  … t*n+(u3, un)   

… 

t[n](un, u2)  t[n](un, u3)  … t*n+(un, un) = ½ (note that for t[n](ui, uj)  

where i ≤ j we get 1, while 

where i > j we get 0). 

 

We may use this property with list segments. Consider the following example: 



 

Figure 10 - List Segments without Reachability 

As we can see, the abstract representation of the list has a few issues: even though there are no 

cycles in the concrete case, the abstract representation suggests that there might be. Let us now 

use a property similar (yet slightly changed) to the reachability property we just saw. Let us 

define: 

r[n,y](v) =w: y(w)  n*(w, v) 

If we add this property to our analysis, we now get: 

 

Figure 11 - List Segments with Reachability 

As we can see, the nodes u2, u3, u4 now conform a class separate than u6, u7, u8 due to the 

difference in their r[n, y] property. This solves the cycle problem seen above. 



Concrete Interpretation Rules 
We saw several examples of how a transformation can be made from the concrete case to the 

abstract case when global invariants are used. However, when running an abstract analysis, we 

do not perform such a transformation but rather keep updating the configuration node’s state. 

We saw in table 1 above how we update the unary properties for a given line of code. We can 

similarly define how to update the values of all relevant properties (including the user-defined 

global invariants). Consider the following example for the heap-sharing relation described 

above: 

Statement Update Formula Change from Table 1 

x = NULL x'(v) = 0 No change – the heap sharing 
property remains unchanged. 

x = malloc() x'(v) = IsNew(v) 

is’(v) = is(v)  IsNew(v) 

If the object was shared before, 
and the IsNew operation was 
not called on the current node 
v, it will remain shared. 
Otherwise it is not (i.e. a newly 
allocated piece of memory 
would always be unshared). 

x = y x'(v) = y(v) No change. 

x = y->next x’(v) = w: y(w)  n(w, v) No change. 

xnext = NULL n’(v, w) = x(v) n(v, w) 

is’(v) = is(v)  v1, v2: n(v1, v)  x(v1)  

n(v2, v)  x(v2)  

eq(v1, v2) 

Note that in this example we 
set xnext to null, while in 
table 1 we set it to some 
variable y. 
In this example, node v is 
shared iff two different nodes 
(which are not the node 
pointed to by x) point to v, and 
the node was marked as shared 
before the execution of this 
statement.  
This means that a node that 
was not previously shared will 
always remain unshared, but a 
node which was shared before 
may either be shared or 
unshared after this line. 

 

Previously the user of TVLA had to enter these update formulas himself. In the newer version, 

TVLA can calculate it based on the definition of the property and the update formula for the 

other predicates. 



Instrumentation and Embedding 
We have seen several examples for instrumentations – transforming a concrete structure B of 

individuals (nodes)    and properties   , to an abstract structure S of individuals    

            and properties           , so that every two individuals          are 

mapped to the same individual (           ) if and only if they give the same result for every 

unary property in   . 

In the abstract structure, the unary properties are easy to define – they give the same result as 

the concrete individuals that were mapped to them (recall that all the concrete individuals that 

are mapped to the same abstract individual have the same result on every unary property). The 

other properties (nullary, binary or k-ary) are defined by: 

     
      

                            
            

   

Or in other words: 

     
      

    

                                                                              
      

              

                                                                              
      

              
 
           

  

The instrumentation created a structure S which is a "tight-embedding" of the structure B. We 

say that a structure B can be embedded into a structure S via a surjective function         if 

all the properties are preserved (some information may be lost, be we won't get contradictions): 

                              

(for every k-ary property B Bp P , its corresponding property S Sp P , and any k individuals 

in 
BU ) 

By "tight-embedding" we mean that the value of the abstract property is the least upper bound:  

     
      

                            
            

   

Notice that the "can be embedded" and "tight embedding" relations are also defined if B is a 3-

valued logical structure, thus creating a partial-order    between all abstract and concrete 

structures. 

Furthermore, we added the new property "sm" (summary node) defined by: 

        
                                              
 
                                             

  

 We noticed that the number of individuals in the abstract structure is finite and limited by    
  , 

so our analysis memory and time requirements are limited too (due to the lattice's finite depth). 

On the other hand, we pay for this by losing information: our abstract structure may also 

represent other concrete structures which cannot occur at runtime. 



Embedding Theorem 
During the instrumentation, we defined the values of the abstract-structure's properties so 

they'll preserve the values of the concrete-structure properties. For example, the concrete one-

way-reachability property: 

                                            

will be defined in the abstract structure as:  

       
    

                              
          

   

This raises the question whether the abstract definition of owr preserves the result of the 

formula that defined it. According to the Embedding Theorem that we will soon prove, the 

evaluation of any FOTC formula is preserved under the instrumentation. By FOTC formula we 

mean that the formula can be constructed of: 

 The structure's atom properties 

 The first order-logic usage of:           

 The Transitive Closure, which we use to mark with '+', such as in   , and evaluated in 

the 3-valued logic on an assignment Z in the following way: 

                          
                

                   

   
     

                      

For example, a formula like             can be used to create the TC formula: 

                                    

and                 would be evaluated as expected from a transitive operation: 

o 1 – if the there is a sequence of individuals                  such that 

for every following individuals         the evaluation of                     is 1. 

(for this sequence, the     is 1, so the         is 1) 

o 0 – if for any sequence of individuals                  there is at least 

one couple of following individuals         that for them the evaluation of 

                    is 0. (for every sequence the     is 0, so the         is 0). 

o ½ - otherwise 

In our previous example of owr, using the Embedding Theorem we get: 

              
         

                      
          

                         

Or in other words: 

                                    

                         
    

                   
          

  

Therefore, from the definition of the "least upper bound": 

       
    

                             
          

             
    

   



This means that      preserves the formula, and may even be more precise.  

Using the Embedding Theorem, it is easy to see how we can prove this for any k-ary property 

that is defined by formula – the new property will preserve the evaluation of the formula in the 

abstract structure. 

Here we have to note that a formula that includes equality, such as       is not preserved 

"as-is". If we look at the different concrete individuals       that are mapped to the same 

abstract summary node individual               , we will obviously get a contradiction: 

1.                     

2.                           

In order to fix this, such formulas are translated to the abstract world as: 

             

1. If two different abstract individuals are compared, the result will be 0, as with any 2 

concrete individuals that are mapped to 2 different abstract individuals. 

2. If a non-summary individual is compared to itself the result will be 1, as with the only 

concrete individual that was mapped to it. 

3. If a summary individual is compared to itself the result will be ½, which means that we 

don't know what result will be in the concrete structure.  

Proof of Embedding Theorem 
Let's look at a structure B which can be embedded into a structure S by a surjective         

(denote as     ), and let   be some formula with the free variables        . By De Morgan 

laws we can assume WLOG that   is constructed only by       and TC of smaller formulas, or 

that   is an atomic formula. 

We will prove by induction that for any assignment Z of the free variables          to some 

individuals            (respectively) we get             , where: 

1.     is the assignment that maps the free variables          to               

(respectively) 

2.    is the same formula as  , except for the terms of the form         which are 

replaced with                 

All the evaluations are done under the 3-valued logic. The theorem is also true in the sub-case 

when B is a 2-values structure (a concrete structure). 

In order to prove that              , we have to show that: 

1. If           then        

2. If           then        



3. If           the claim is true (nothing to prove in this case). 

Basis 

  is an atomic formula. It is either a formula in the form         or a formula that evaluates 

some k-ary property. In the first case we get: 

1. If           then                       . According to the     assignment 

we get that             and            . From the definition of sm we get that 

only a single individual is mapped to      , which means that      . Therefore 

                  . 

2. If           then                       . According to the     assignment 

and the 3-valued "and", we get that either             or            . sm can 

only return 0 or  , so the second case cannot happen. Therefore             and 

because   is a function, we get      . Finally, we get                   . 

In the second case,   is a formula that evaluates a k-ary property       that has a 

corresponding k-ary property      , which is the evaluated property when we look at   in S. 

Because     , we get:  

                                            

Induction Hypothesis 

              

Induction Step 

  is constructed of smaller formulas in one of the following ways: 

1.         

o            
    

        means that both    
        and    

       . 

By the induction hypothesis,         and        , therefore      

          . 

o            
    

         means that    
        or    

       . WLOG, 

let's assume the first one happens. By the induction hypothesis        , 

therefore                . 

2.       

o             
        means that    

       . By the induction 

hypothesis         which means that               . 

o             
        means that    

       . By the induction 

hypothesis         which means that              . 

3.       , where    contains the free variables:           

o              
        means that there is an individual       such 

that    
               . Because   is surjective, there must be some      

such that        , therefore    
              . By using the induction 



hypothesis we get             . Finally, we can see that this formula proofs 

that               . 

o              
        means that for any individual       we 

get    
               . This is also true when        . Thus, for any      

we get    
              . By using the induction hypothesis we get that for 

any      ,             . Finally, we can see that this proofs that 

                . 

4.                         

o                      
                means that there's a sequence of 

individuals   
        

     such that the assignment     maps      
  and  

       
  and for every following individuals   

      
  we have 

   
             

         
    . Because   is surjective, we can find for that 

sequence a sequence              in which: 

   
              

          

In the sequence that we choose, we can specifically choose          and 

          .  

For every following individuals         we get: 

   
                          

                               

And from the induction hypothesis we get: 

                       

We found a sequence which gives us: 

   
     

                         

Finally we get: 

                                 
               

  

                   

   
     

      

o                      
                means that for every sequence of 

individuals   
        

     such that the assignment     maps      
  and  

       
  there is at least one couple of following individuals   

      
  which 

give:    
             

         
    . This is particularly true for any  

             where           and           , and the derived 

sequence: 

  
              

          

meaning that for some      : 

   
                          

                               

By the induction hypothesis, we get for that  : 

                       

Therefore: 

   
     

                         

Finally we get: 



                                 
               

  

                   

   
     

      

The proof of the induction proves the Embedding Theorem. 

 

Transformers 

Best Transformer 
As we mentioned before, instead of maintaining all the possible concrete structures in every 

code line in the shape analysis, we only maintain a collection possible of abstract structures, 

knowing that every possible concrete structure is represented by the abstract structure that it 

can be embedded to. 

Suppose that we have a collection of abstract structures for some code line. We now have to 

transform them into a new abstract collection, which will represent (by embedding) all the 

concrete structures after the code line has been executed.  

Obviously, the most accurate transformer would be to look at all the concrete structures 

represented by the current abstract collection, execute the code line (the concrete 

transformation) on each one, and find their abstract representations. 

However, this "Best Transformer" is not feasible – the number of concrete structures 

represented by an abstract structure can be infinite (for example, in the case of a linked list, 

which can represent any linked list of any length). 

Kleene Transformer 
We have seen before the "Concrete Interpretation Rules", which tell us how to evaluate the 

relations in the new concrete structure, based on the current concrete structure and the code 

line to execute. For example: 

Statement Update Formula Explanation 

x = y->next x’(v) = w: y(w)  n(w, v) 
 

For every node v, x of v is true (i.e. 1) iff there 
exists a node w pointed to by y, and there is a path 
(of length 1) from w to v. 

 

The Kleene Transformer simply evaluates the update-formula on the abstract structure, in a 3-

valued logic. According to the Embedding Theorem, if we have a concrete structure that can be 

embedded into an abstract structure         
         (  maps the concrete individuals to 

their abstract individuals) then evaluations of such a formula   will obey: 

    
               

        



Therefore, every nullary, unary, binary or k-ary property            will be preserved: 

                                        

This means that        can be embedded into       , so with this transformation the new 

abstract structures for sure represent all the required concrete structures. 

However, this technique may lose important information, as the new properties may resolve in 

½. 

For example, let's look at the simple execution of the statement      , on an abstract 

structure where   points to the first node of a linked list. 

 

As we can see, we lost the information about the node that is pointed by   (we can still 

conclude that it is not null because there are reachable nodes). 

Focusing 
We want to have a transformation which will be more accurate than the Kleene transformation, 

and will also be feasible. We do that by picking an indecisive property in our abstract structure 

(a property that evaluates to ½), and from all the abstract structures that can be embedded into 

our structure, we find all the maximal abstract structures in which this property is decisive: all 

the maximal abstract structures in which this property evaluates to 1 and all the maximal 

abstract structures in which this property 

evaluates to 0.  

It is easy to see that every concrete structure 

that can be embedded into the original 

abstract structure can be embedded into one 

of the new abstract structures, because the 

properties of concrete structures are always 

decisive. Furthermore, because of the 

transitivity of the embedding, every concrete 

structure that can be embedded into one of 

the new abstract structure can be also 
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Example for a Semantic Reduction operation "op": 
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embedded into the original structure. Therefore, the original abstract structure and the 

collection of new abstract structures represent the same set of concrete structures. 

This technique is called Focusing. The idea of taking an element in our lattice (the original 

abstract structure) and converting it to a more precise element (the collection of new abstract 

structures), in a way that preserves their transformation to the concrete world, is called 

Semantic Reduction. 

The property that we focus on does not necessarily have to be one of the properties that we 

track during the analysis. It can also be defined by a new formula. After focusing, we can apply 

the Kleene Transformer on every new abstract structure, and then "unfocus" by forgetting 

about the new property and non-maximal abstract structures - after removing the property, we 

can ignore structures that can be embedded into other structures in the collection. In case the 

removed property was unary, we must also merge individuals that differed from each other only 

in that property, and have identical values in all the other properties. 

Not all formulas can be used in the focusing process. For example, let's look at the formula: 

                      

And the abstract structure for a linked list pointed by x: 

 

In   ,       gets an indecisive value because          
 
  . In    we also get an indecisive 

value because          
 
   . Let's look at some abstract structures that can be embedded 

into our structure, and have decisive values for      . 

      

      
 
         

 
   

  



  

All of the structures above can be embedded into the original structure. They also represent 

different concrete structures: a list of length m can be embedded only to the structure number 

m. Therefore, they cannot be embedded into one another. Finally, and most important, any 

union of any couple of these structures will create an abstract structure with an individual that 

all of its outgoing edges are ½'s, and therefore it will have an indecisive       
 
  . This means 

that all of the abstract structures do not have common maximal "focused" abstract structures 

(in fact, these structures are maximal, but we won't prove it here). The Focus transformation 

will generate an infinite number of abstract structures, and therefore it is not feasible. 

Luckily, we have a smart way of choosing our focus formulas for statements of the form 

       , as we can see in Table XI. The idea behind this table is: 

1. In the "read" part (   ), we want to be decisive on which individual the pointer that we 

read points to, or in other words we want to know decisively whether it points or 

doesn't point to every node. For example, the statement         and its focus 

      

                

  

      

                

  

  
     

                

  

  
  

        

  
     

                

  
  

        

  
  

        

  
     

                

  
  

        

  
  

        

  
  

        



formula     , or the statement       

(reading from    ), and its focus formula 

                 . 

2. In the "write" part (   ), we want to be 

decisive on which individual is going to 

change. For example in       , no nodes 

are going to change, but in        , the 

node pointed by   is going to change (its 

"next" attribute will change), so we want to 

be decisive on the formula     . 

We can see that our focus formulas ask questions of: "Is there a route of length <specific length> 

from the stack pointer <specific stack pointer> to the node?" – For example, in the case of 

reading      , the focus formula                                    asks the 

question: "Is there a route of length 3 from the pointer   to the node  ?". 

If, for some node, there are indecisive routes (with indecisive edges) of the required length from 

the pointer to the node, and there are no decisive routes of the required length from the 

pointer to the node, the evaluation of this formula will be indecisive. 

For such a node, we create the focused structures in 3 ways: 

1. For every indecisive route from the pointer to the node, create the structure in which 

the edges of this graph are resolved to 1 – this will make the formula resolve to 1. 

2. In every indecisive route from the pointer to the node, pick a single indecisive edge and 

make it resolve to 0 (if 2 routes share a common indecisive edge, it can be picked for 

both of them) – this will make the formula resolve to 0. 

3. If the node is a summary node, we should recall that the abstract individuals are 

distinguished by their unary properties. If we add a new unary property, we should split 

the summary node to 2 (duplicating its relations with the other nodes), and make one 

copy resolve to 1 and the other copy resolve to 0 like before. 

For example, in the 

statement      , 

where     point to the 

first node of a linked list, 

we get (the   property is 

the reachability): 

  



Eventually, we should "drop" the new property. We do that by finding individuals that are 

equivalent to each other by the values of all "normal" unary properties, and merging them. 

Coercion 
We can see in the last example that we reached the output structure: 

 

This structure represents all the concrete structures where   decisively points to NULL, and 

there are list-nodes, represented by  , that are reachable from  . Obviously, no concrete 

structures can create this situation, and a smart algorithm would drop this irrelevant structure. 

The Coercion is another type of semantic reduction. It takes a collection of known constrains 

between some properties, and try to use them in order to make the indecisive properties more 

precise. The Coercion Principle (or Sharpening Principle) states that if in the concrete world a 

property           equals to an assignment in some FOTC formula:                    (from 

definition or from a known constraint) then in any abstract structure,     
     

   should be at 

least as precise as the evaluation of          
         

  . Furthermore, if     
     

   has a 

definite value and          
         

   has an incomparable definite value, then the abstract 

structure does not represent any concrete structure at all. 

Some examples for known constraints: 

1.                       

2.               

3.                

4.                           

5.                                  

6.                                    

7.                
        

In our last example, assigning     in the 7th constraint with       results in two 

incomparable definite values: 

          

        
                      

     

                 

n 



Therefore, we can drop the whole structure. 

We can also apply the coercion on the 

other two output structures in our last 

focusing example. Using the third 

constraint with      , we can see 

that   and     are not summary 

nodes. Looking at the "is shared" 

property (not shown in the diagrams 

because all nodes have        ) in 

the 6th constraint, with        

        in the central case (      ), results in removing the indefinite self edge of   

(       ). The 6th constraint can 

also be used in the right case (      ), 

with            , to remove all 

the indefinite edges towards    : 

(       for             and 

       for            . 

In the following "list-insertion" 

example (Table X), we can see the big 

accuracy difference in the final states 

between the Kleene (Strawman) 

simplistic analysis, and the refined 

analysis that uses Focusing and 

Coercion. 

 

 

 


