Operational Semantics

Mooly Sagiv

Reference: Semantics with Applications

Chapter 2

H. Nielson and F. Nielson

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

Syntax vs. Semantics

- The pattern of formation of sentences or phrases in a language
- Examples
 - Regular expressions
 - Context free grammars

- The study or science of meaning in language
- Examples
 - Interpreter
 - Compiler
 - Better mechanisms will be given today

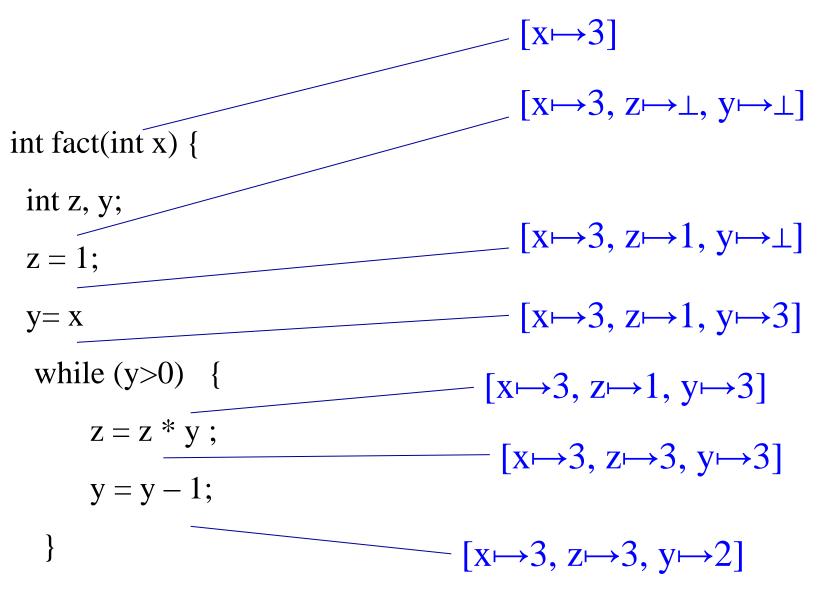
Benefits of Formal Semantics

- Programming language design
 - hard- to-define= hard-to-implement=hard-to-use
- Programming language implementation
- Programming language understanding
- Program correctness
- Program equivalence
- Compiler Correctness
 - Correctness of Static Analysis
 - Design of Static Analysis
- Automatic generation of interpreter
- But probably not
 - Automatic compiler generation

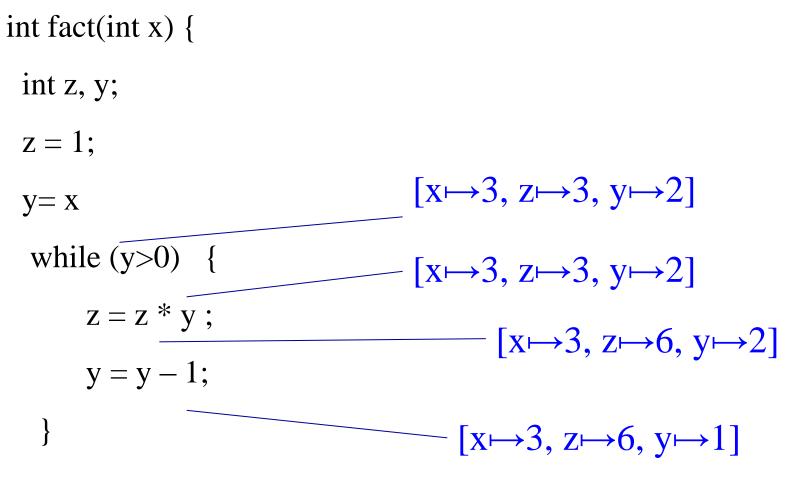
Alternative Formal Semantics

Operational Semantics

- The meaning of the program is described "operationally"
- Natural Operational Semantics
- Structural Operational Semantics
- Denotational Semantics
 - The meaning of the program is an input/output relation
 - Mathematically challenging but complicated
- Axiomatic Semantics
 - The meaning of the program are observed properties

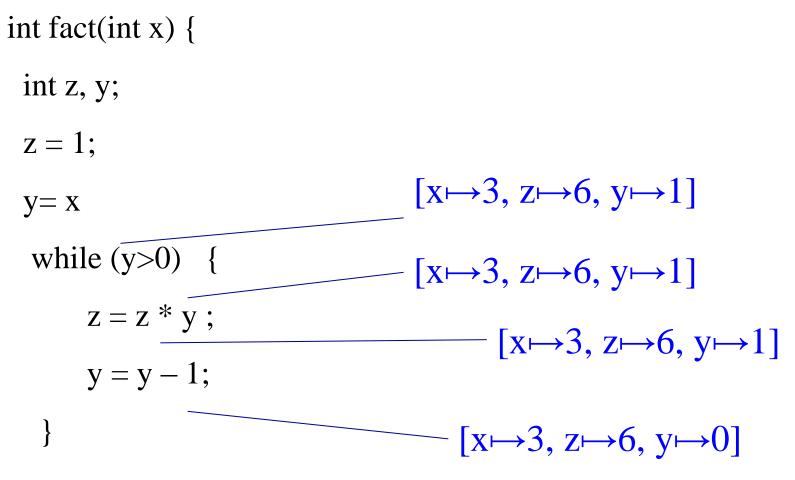


return z



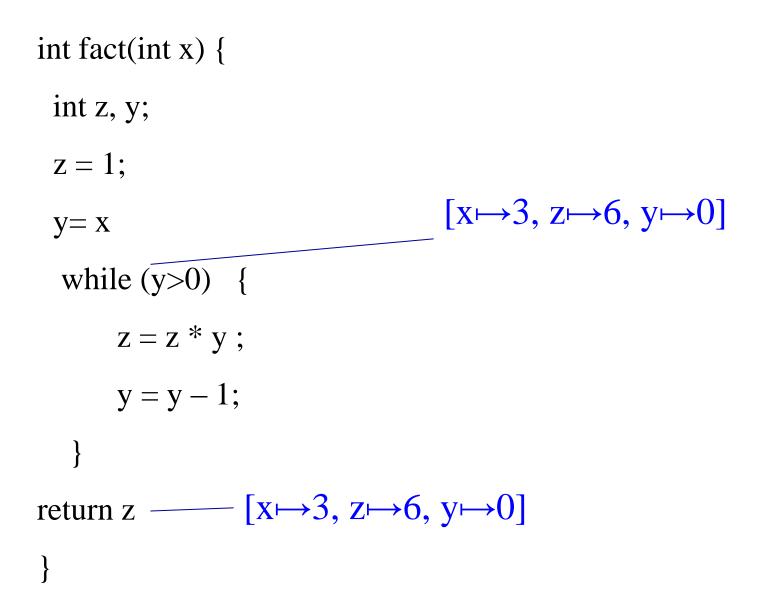
return z

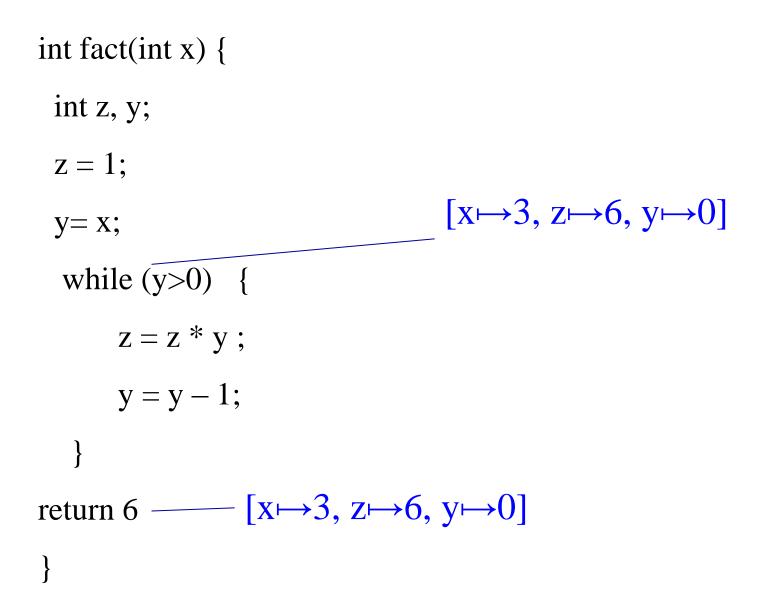
}



return z

}





Denotational Semantics int fact(int x) { int z, y; z = 1; y= x ; $f = \lambda x$. if x = 0 then 1 else x * f(x - 1)while (y>0) { z = z * y;y = y - 1;}

return z;

 ${x=n}$

int fact(int x) { int z, y; Axiomatic Semantics z = 1;

 $\{x=n \land z=1\}$

y = x

 $\{x=\!n \land z=\!1 \land y=\!n\}$

while

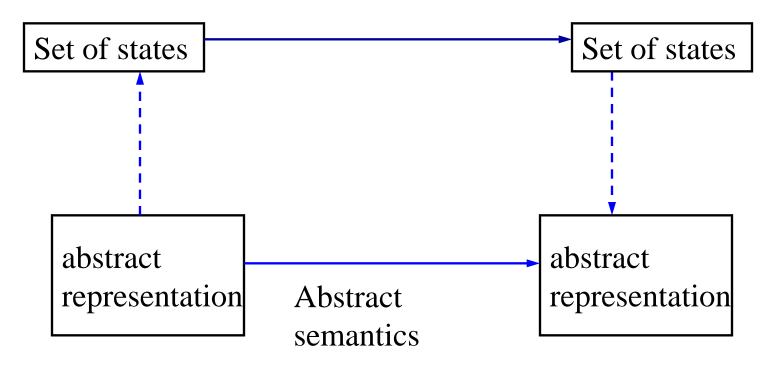
```
 \{x=n \land y \ge 0 \land z=n! / y! \} 
(y>0) {
 \{x=n \land y > 0 \land z=n! / y! \} 
 z = z * y; 
 \{x=n \land y > 0 \land z=n! / (y-1)! \} 
 y = y - 1; 
 \{x=n \land y \ge 0 \land z=n! / y! \} 
 \} return z \} \{x=n \land z=n! \}
```

Static Analysis

 Automatic derivation of static properties which hold on every execution leading to a program location

Abstract (Conservative) interpretation

Operational semantics



Example rule of signs

- Safely identify the sign of variables at every program location
- Abstract representation {P, N, ?}
- Abstract (conservative) semantics of *

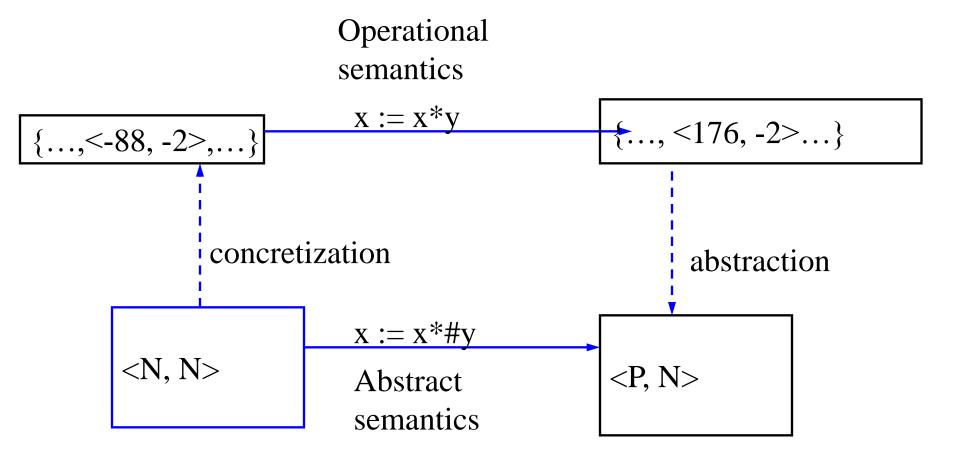
 *#
 P
 N
 ?

 P
 P
 N
 ?

 N
 P
 ?

 ?
 ?
 ?
 ?

Abstract (conservative) interpretation



Example rule of signs (cont)

- Safely identify the sign of variables at every program location
- Abstract representation {P, N, ?}
- α(C) = if all elements in C are positive then return P else if all elements in C are negative then return N else return ?

 γ(a) = if (a==P) then return {0, 1, 2, ... } else if (a==N) return {-1, -2, -3, ..., } else return Z

Benefits of Operational Semantics for Static Analysis

Correctness (soundness) of the analysis

- The compiler will never change the meaning of the program
- All impacts are identified
- Establish the right mindset
- Design the analysis
- Becomes familiar with mathematical notations used in programming languages

The While Programming Language

Abstract syntax

- $S::= x := a | skip | S_1; S_2 | if b then S_1 else S_2 |$ while b do S
- Use parenthesizes for precedence
- Informal Semantics
 - skip behaves like no-operation
 - Import meaning of arithmetic and Boolean operations

Example While Program

y := 1; while ¬(x=1) do (y := y * x; x := x − 1

General Notations

- Syntactic categories
 - Var the set of program variables
 - Aexp the set of arithmetic expressions
 - Bexp the set of Boolean expressions
 - Stm set of program statements
- Semantic categories
 - Natural values $N=\{0, 1, 2, ...\}$
 - Truth values $T = {ff, tt}$
 - States State = Var \rightarrow N
 - Lookup in a state s: s x
 - Update of a state s: s $[x \mapsto 5]$

Example State Manipulations

[x→1, y→7, z→16] y =
[x→1, y→7, z→16] t =
[x→1, y→7, z→16][x→5] =
[x→1, y→7, z→16][x→5] x =
[x→1, y→7, z→16][x→5] y =

Semantics of arithmetic expressions

- Assume that arithmetic expressions are side-effect free
- A [[Aexp]] : State \rightarrow N
- Defined by induction on the syntax tree

$$- A[[n]] s = n$$

$$- A[[x]] s = s x$$

$$- A\llbracket e_1 + e_2 \rrbracket s = A\llbracket e_1 \rrbracket s + A\llbracket e_2 \rrbracket s$$

$$- A\llbracket e_1 * e_2 \rrbracket s = A\llbracket e_1 \rrbracket s * A\llbracket e_2 \rrbracket s$$

- $A\llbracket (e_1) \ \end{bmatrix} s = A\llbracket e_1 \rrbracket s \quad \text{--- not needed}$
- $A\llbracket e_1 \rrbracket s = -A\llbracket e_1 \rrbracket s$
- Compositional
- Properties can be proved by structural induction

Semantics of Boolean expressions

- Assume that Boolean expressions are side-effect free
- $B[Bexp]: State \rightarrow T$
- Defined by induction on the syntax tree
 - B[[true]] s = tt
 - B[[false]] s = ff

$$- \mathbf{B}\llbracket \mathbf{e}_1 = \mathbf{e}_2 \ \rrbracket \mathbf{s} =$$

$$- B[e_1 \land e_2] s = \begin{cases} tt \text{ if } A[[e_1]] s = A[[e_2]] s \\ ff \text{ if } A[[e_1]] s \neq A[[e_2]] s \end{cases}$$
$$\begin{cases} tt \text{ if } B[[e_1]] s = tt \text{ and } B[[e_2]] = tt \\ ff \text{ if } B[[e_1]] s = ff \text{ or } B[[e_2]] s = ff \end{cases}$$

 $- \quad B[\![e_1 \ge e_2 \]\!] s =$

Natural Operational Semantics

- Describe the "overall" effect of program constructs
- Ignores non terminating computations

Natural Semantics

Notations

- <S, s> the program statement S is executed on input state s
- s representing a terminal (final) state
- For every statement S, write meaning rules $\langle S, i \rangle \rightarrow o$

"If the statement S is executed on an input state i, it terminates and yields an output state o"

- The meaning of a program P on an input state s is the set of outputs states *o* such that $\langle P, i \rangle \rightarrow o$
- The meaning of compound statements is defined using the meaning immediate constituent statements

Natural Semantics for While
$$[ass_{ns}] < x := a, s > \rightarrow s[x \mapsto A[[a]]s]$$
axioms $[skip_{ns}] < skip, s > \rightarrow s$ $[comp_{ns}] < S_1, s > \rightarrow s', < S_2, s' > \rightarrow s''$ rules $[comp_{ns}] < S_1, s > \rightarrow s', < S_2, s > \rightarrow s''$ $[if^{ft}_{ns}] < S_1, s > \rightarrow s'$ $[if^{ft}_{ns}] < S_1, s > \rightarrow s'$ $[if^{ff}_{ns}] < S_1, s > \rightarrow s'$ $if b \ then \ S_1 \ else \ S_2, s > \rightarrow s'$ $[if^{ff}_{ns}] < S_2, s > \rightarrow s'$ $if \ B[[b]]s = tt$ $[if^{ff}_{ns}] < S_2, s > \rightarrow s'$ $if \ B[[b]]s = ff$

Natural Semantics for While (More rules)

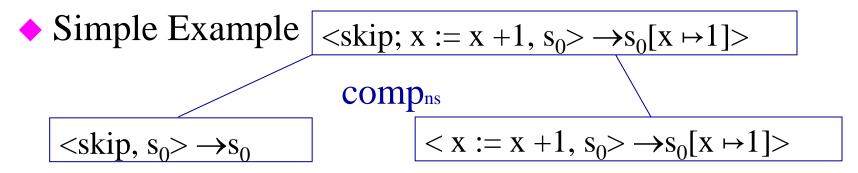
[while^{ff}_{ns}]

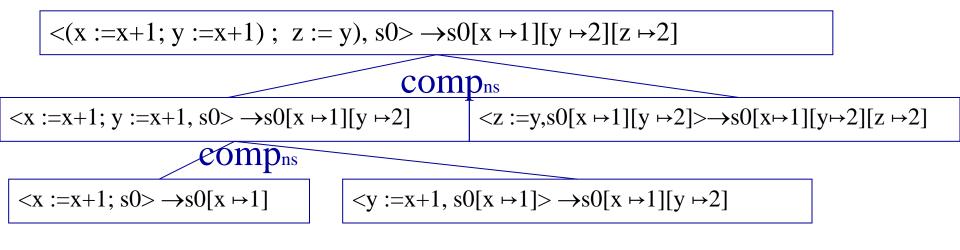
 $\langle while b do S, s \rangle \rightarrow s$

$$[\text{while}_{ns}^{tt}] < S, s \rightarrow s', < \text{while } b \text{ do } S, s' \rightarrow s'' \qquad \text{if } \mathbf{B}[\![b]\!]s = tt$$

A Derivation Tree

- A "proof" that $\langle S, s \rangle \rightarrow s$
- The root of tree is $\langle S, s \rangle \rightarrow s'$
- Leaves are instances of axioms
- Internal nodes rules
 - Immediate children match rule premises





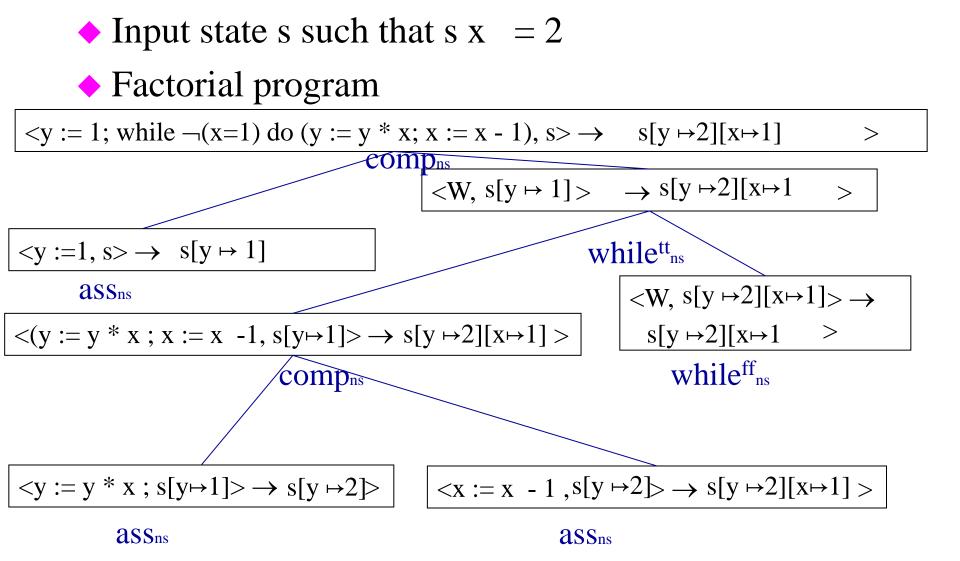
assns

assns

Top Down Evaluation of Derivation Trees

- Given a program S and an input state s
- Find an output state s' such that $\langle S, s \rangle \rightarrow s'$
- Start with the root and repeatedly apply rules until the axioms are reached
- Inspect different alternatives in order
- In While s' and the derivation tree is unique

Example of Top Down Tree Construction



Semantic Equivalence

- S₁ and S₂ are semantically equivalent if for all s and s'
 - $\langle S_1, s \rangle \rightarrow s$ ' if and only if $\langle S_2, s \rangle \rightarrow s$ '
- Simple example
 - "while b do S"
 - is semantically equivalent to:
 - "if b then (S; while b do S) else skip"

Deterministic Semantics for While

- If $\langle S, s \rangle \rightarrow s_1$ and $\langle S, s \rangle \rightarrow s_2$ then $s_1 = s_2$
- The proof uses induction on the shape of derivation trees
 - Prove that the property holds for all simple derivation trees by showing it holds for axioms
 - Prove that the property holds for all composite trees:
 - » For each rule assume that the property holds for its premises (induction hypothesis) and prove it holds for the conclusion of the rule

The Semantic Function S_{ns}

- The meaning of a statement S is defined as a partial function from State to State
- ♦ S_{ns} : Stm → (State \hookrightarrow State)
- ◆ $S_{ns} \llbracket S \rrbracket s = s' \text{ if } \langle S, s \rangle \rightarrow s' \text{ and otherwise}$ $S_{ns} \llbracket S \rrbracket s \text{ is undefined}$
- Examples
 - $S_{ns} \llbracket skip \rrbracket s = s$
 - $S_{ns} [[x := 1]] s = s [x \mapsto 1]$
 - S_{ns} [[while true do skip]]s = undefined

Structural Operational Semantics

- Emphasizes the individual steps
- Usually more suitable for analysis
- For every statement S, write meaning rules <S, i> ⇒ γ
 "If the **first** step of executing the statement S on an input state *i* leads to γ"
- Two possibilities for γ
 - $\gamma = \langle S', s' \rangle$ The execution of S is not completed, S' is the remaining computation which need to be performed on s'
 - $-\gamma = o$ The execution of S has terminated with a final state o
 - $-\gamma$ is a stuck configuration when there are no transitions
- The meaning of a program P on an input state s is the set of final states that can be executed in arbitrary finite steps

Structural Semantics for While $[ass_{sos}] < x := a, s > \Rightarrow s[x \mapsto A[[a]]s]$

axioms $[skip_{sos}] < skip, s > \Rightarrow s$

 $[\text{comp}_{\text{sos}}^1] < S_1, s > \Rightarrow < S'_1, s' >$

rules

$$\langle S_1; S_2, s \rangle \Rightarrow \langle S'_1; S_2, s' \rangle$$

 $[\text{comp}_{\text{sos}}^2] < S_1, s > \Rightarrow s'$ $< S_1; S_2, s > \Rightarrow < S_2, s' >$

Structural Semantics for While if construct

 $[if_{sos}^{tt}] < if b then S_1 else S_2, s \ge < S_1, s \ge if B[[b]]s = tt$

 $[if_{os}^{ff}] < if b then S_1 else S_2, s > \Rightarrow < S_2, s > if B[[b]]s = ff$

Structural Semantics for While while construct

[while_{sos}] <while b do S, s> \Rightarrow <if b then (S; while b do S) else skip, s>

Derivation Sequences

- A finite derivation sequence starting at <S, s> $\gamma_0, \gamma_1, \gamma_2 \dots, \gamma_k$ such that
 - $\gamma_0 = <S, s>$
 - $-\gamma_i \Rightarrow \gamma_{i+1}$
 - $-\gamma_k$ is either stuck configuration or a final state
- An infinite derivation sequence starting at <S, s> $\gamma_0, \gamma_1, \gamma_2 \dots$ such that
 - $\gamma_0 = <S, s>$
 - $-\gamma_i \Longrightarrow \gamma_{i+1}$
- $\gamma_0 \Rightarrow^i \gamma_i$ in i steps
- $\gamma_0 \Rightarrow^* \gamma_i$ in finite number of steps
- For each step there is a derivation tree

Example

◆ Let s₀ such that s₀ x = 5 and s₀ y = 7
◆ S = (z:=x; x := y); y := z

Factorial Program

• Input state s such that s x = 3

y := 1; while $\neg(x=1)$ do (y := y * x; x := x - 1)<y :=1 ; W, s> $\Rightarrow \langle W, s[y \mapsto 1] \rangle$ $\Rightarrow \langle \text{if} \neg \neg (x = 1) \text{ then skip else } ((y := y * x ; x := x - 1); W), s[y \mapsto 1] \rangle$ $\Rightarrow \langle ((y := y * x ; x := x - 1); W), s[y \mapsto 1] \rangle$ $\Rightarrow \langle (x := x - 1 : W), s[y \mapsto 3] \rangle$ $\Rightarrow \langle W, s[v \mapsto 3][x \mapsto 2] \rangle$ $\Rightarrow \langle if \neg \neg (x = 1) \text{ then skip else } ((y := y * x ; x := x - 1); W), s[y \mapsto 3][x \mapsto 2] \rangle$ $\Rightarrow \langle ((y := y * x ; x := x - 1); W), s[y \mapsto 3] [x \mapsto 2] \rangle$ $\Rightarrow \langle (x := x - 1; W), s[y \mapsto 6] [x \mapsto 2] \rangle$ $\Rightarrow \langle W, s[y \mapsto 6][x \mapsto 1] \rangle$

 $\Rightarrow \langle \text{if} \neg \neg (x = 1) \text{ then skip else } ((y \coloneqq y * x ; x \coloneqq x - 1); W), s[y \mapsto 6][x \mapsto 1] \rangle \Rightarrow \langle \text{skip, } s[y \mapsto 6][x \mapsto 1] \rangle \Rightarrow s[y \mapsto 6][x \mapsto 1]$

Program Termination

Given a statement S and input s

- S terminates on s if there exists a finite derivation sequence starting at <S, s>
- S terminates successfully on s if there exists a finite derivation sequence starting at <S, s> leading to a final state
- S loops on s if there exists an infinite derivation sequence starting at <S, s>

Properties of the Semantics

- S_1 and S_2 are semantically equivalent if:
 - for all s and γ which is either final or stuck $\langle S_1, s \rangle \Rightarrow^* \gamma$ if and only if $\langle S_2, s \rangle \Rightarrow^* \gamma$
 - there is an infinite derivation sequence starting at $<S_1$, s> if and only if there is an infinite derivation sequence starting at $<S_2$, s>
- Deterministic

- If $\langle S, s \rangle \Rightarrow^* s_1$ and $\langle S, s \rangle \Rightarrow^* s_2$ then $s_1 = s_2$

- The execution of S₁; S₂ on an input can be split into two parts:
 - execute S₁ on s yielding a state s'
 - execute S_2 on s'

Sequential Composition

• If $\langle S_1; S_2, s \rangle \Rightarrow^k s$ it then there exists a state s' and numbers k_1 and k_2 such that

$$- \langle \mathbf{S}_1, \mathbf{s} \rangle \Longrightarrow^{k_1} \mathbf{s}'$$

$$- \langle \mathbf{S}_2, \mathbf{s} \rangle \Rightarrow^{\mathbf{k}2} \mathbf{s}'$$

- $\text{ and } \mathbf{k} = \mathbf{k}_1 + \mathbf{k}_2$
- The proof uses induction on the length of derivation sequences
 - Prove that the property holds for all derivation sequences of length 0
 - Prove that the property holds for all other derivation sequences:
 - » Show that the property holds for sequences of length k+1 using the fact it holds on all sequences of length k (induction hypothesis)

The Semantic Function S_{sos}

- The meaning of a statement S is defined as a partial function from State to State
- $\diamond S_{sos}: Stm \rightarrow (State \hookrightarrow State)$
- ◆ S_{sos} [[S]]s = s' if <S, s> ⇒*s' and otherwise
 S_{sos} [[S]]s is undefined

An Equivalence Result

• For every statement S of the While language $-S_{nat}[S] = S_{sos}[S]$

Extensions to While

- Abort statement (like C exit w/o return value)
- Non determinism
- Parallelism
- Local Variables
- Procedures
 - Static Scope
 - Dynamic scope

The **While** Programming Language with Abort

Abstract syntax

- $$\begin{split} \mathbf{S} &::= \mathbf{x} \; := \mathbf{a} \mid \textbf{skip} \mid \mathbf{S}_1 \; ; \; \mathbf{S}_2 \mid \textbf{if} \; \textbf{b} \; \textbf{then} \; \mathbf{S}_1 \; \textbf{else} \; \mathbf{S}_2 \mid \\ & \textbf{while} \; \mathbf{b} \; \textbf{do} \; \mathbf{S} \mid \textbf{abort} \end{split}$$
- Abort terminates the execution
- No new rules are needed in natural and structural operational semantics

Statements

- if x = 0 then abort else y := y / x
- skip
- abort
- while true do skip

Conclusion

- The natural semantics cannot distinguish between looping and abnormal termination (unless the states are modified)
- In the structural operational semantics looping is reflected by infinite derivations and abnormal termination is reflected by stuck configuration

The **While** Programming Language with Non-Determinism

Abstract syntax S::= x := a | skip | S₁; S₂ | if b then S₁ else S₂ | while b do S| S₁ or S₂
Either S₁ or S₂ is executed
Example

- x := 1 or (x := 2; x := x+2)

The While Programming Language with Non-Determinism Natural Semantics

$$[\text{or}_{ns}^1] \leq S_1, s > \rightarrow s'$$

$$\langle S_1 \text{ or } S_2, s \rangle \rightarrow s^2$$

$$[\text{or}_{ns}^2] \langle S_2, s \rangle \rightarrow s'$$

$$<$$
S₁ or S₂, s> \rightarrow s'

The While Programming Language with Non-Determinism Structural Semantics

The While Programming Language with Non-Determinism Examples

- x := 1 or (x := 2; x := x+2)
- (while true do skip) or (x :=2 ; x := x+2)

Conclusion

- In the natural semantics non-determinism will suppress looping if possible (mnemonic)
- In the structural operational semantics nondeterminism does suppress not termination configuration

The **While** Programming Language with Parallel Constructs

Abstract syntax

$$\begin{split} \mathbf{S} &::= \mathbf{x} \; := \mathbf{a} \mid \mathbf{skip} \mid \mathbf{S}_1 \; ; \; \mathbf{S}_2 \mid \mathbf{if} \; \mathbf{b} \; \mathbf{then} \; \mathbf{S}_1 \; \mathbf{else} \; \mathbf{S}_2 \mid \\ \mathbf{while} \; \mathbf{b} \; \mathbf{do} \; \mathbf{S} \mid \mathbf{S}_1 \; \mathbf{par} \; \mathbf{S}_2 \end{split}$$

• All the interleaving of S_1 or S_2 are executed

Example

$$-x := 1 \text{ par} (x := 2; x := x+2)$$

The While Programming Language with Parallel Constructs Structural Semantics

$$[par_{sos}^{1}] \langle \underline{S}_{1}, s \rangle \Rightarrow \langle \underline{S}_{1}, s' \rangle$$

$$\langle \underline{S}_{1} par \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{1} par \underline{S}_{2}, s' \rangle$$

$$[par_{sos}^{2}] \langle \underline{S}_{1}, s \rangle \Rightarrow s'$$

$$\langle \underline{S}_{1} par \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{2}, s' \rangle$$

$$[par_{sos}^{3}] \langle \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{2}, s' \rangle$$

$$\langle \underline{S}_{1} par \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{1} par \underline{S}_{2}, s' \rangle$$

$$[par_{sos}^{4}] \langle \underline{S}_{2}, s \rangle \Rightarrow s'$$

$$\langle \underline{S}_{1} par \underline{S}_{2}, s \rangle \Rightarrow \langle \underline{S}_{1}, s' \rangle$$

The While Programming Language with Parallel Constructs Natural Semantics

Conclusion

- In the natural semantics immediate constituent is an atomic entity so we cannot express interleaving of computations
- In the structural operational semantics we concentrate on small steps so interleaving of computations can be easily expressed

The **While** Programming Language with local variables and procedures

 Abstract syntax
 S::= x := a | skip | S₁; S₂ | if b then S₁ else S₂ | while b do S|
 begin D_v D_p S end | call p
 D_v ::= var x := a ; D_v | ε
 D_p ::= proc p is S ; D_p | ε

Conclusions Local Variables

The natural semantics can "remember" local states
Need to introduce stack or heap into state of the structural semantics

Transition Systems

- Low-level semantics
- Include program counter in the set of states Σ
- The meaning of a program is a relation $\tau \subseteq \Sigma \times \Sigma$
- Execution is a finite sequence of states

Example

1: y := 1; while 2: \neg (x=1) do (3: y := y * x; 4: x := x - 1) 5:

Summary

- SOS is powerful enough to describe imperative programs
 - Can define the set of traces
 - Can represent program counter implicitly
 - Handle gotos
- Natural operational semantics is an abstraction
- Different semantics may be used to justify different behaviors
- Thinking in concrete semantics is essential for a compiler writer