
Applications of Program Analysis: CSSV and Shape Analysis
Ariel Jarovsky and Liron Schiff

Table of Contents
Applications of Program Analysis: CSSV and Shape Analysis ... 1

CSSV .. 1

Introduction .. 1

The CSSV approach .. 3

Technical Overiew ... 4

Procedure Calls – Contracts .. 5

Instrumented concrete semantics ... 7

Complete Example ... 9

Results ... 11

TVLA .. 13

Introduction to Shape Analysis .. 13

Concrete Interpretation.. 15

Concrete Interpretation Example ... 17

Abstract Interpretation .. 19

Another TVLA Example ... 22

CSSV: Towards a Realistic Tool for Statically Detecting All Buffer

Overflows in C, by Nurit Dor, Michael Rodeh, Mooly Sagiv.

Introduction

This work presents a static analysis scheme for C code. This pioneer work has influenced

successive works that dealt with more scenarios, for example Microsoft's SAL.

The target of the scheme is to statically verify the absence of buffer overflows in C code with

enormous string manipulations. This is a conservative tool that reports all such errors at the

expense of sometimes generating false alarms.

CSSV takes a modular approach as it analyses each procedure separately. The disadvantage

is that the programmer is required to supply a contract to each procedure.

Possible overflows:

 Null dereference – trying to read a value pointed by Null pointer.

 Out of bound arithmetic – advancing a pointer beyond the buffer 's bounds1

 Out of bound update - writing to an address beyond the buffer 's bounds

The Airbus code itself is confidential so we will use open source examples.

Examples to buffer overrun:

Such overruns are common, FUZZ study has found that in 9 different UNIX systems, 18%-

23% of hangs or crashes are caused by overruns. Another study, CERT, has shown direct

connection between buffer overruns and software attack (50% of the attacks are based on

buffer overflows).

We want an algorithm that is efficient, sound and fully supports C syntax. We also want it to

produce a few as possible false alarms that are very expensive in critical applications such as

aviation.

A complicated example:

In this example there are two possible overflows:TODO

 In statement strcpy(&temp[i],"(long)") if 7 + offset (cp) BUFSIZ

1
 ANSI C allows placing a pointer at maximum offset one beyond the bound of the buffer, for handling

loops. In case the pointer exceeds by more than one a warning should be issued.

 In command strcpy(&temp[i+6],cp) if offset(cp)+7 +len(cp) BUFSIZ

Verifying absence of buffer overflow is non-trivial, the conditions may become complex. In

the next example the conditions for the absence of buffer overflow are included:

These conditions are built in a bottom up manner. They use the following expressions:

 string(src) – indicates that src is null terminated.

 alloc(dst) – returns the size of buffer (or sub-buffer) pointed by dst.

 strlen(src) - returns the length of string (or sub-string) pointed by src.

The CSSV approach

Challenges

Challenge Selected Method Details

Complex linear relationships Use Polyhedra[CH78] Linear inequalities

Pointer arithmetic Pointer analysis Point-To

Loops Widening Might cause false-alarms

Procedures Procedure contracts In/out conditions per procedure

Highlights

• Detects string violations

– Buffer overflow (update beyond bounds)

– Unsafe pointer arithmetic

– References beyond null termination

– Unsafe library calls

• Handles full C

– Multi-level pointers, pointer arithmetic, structures, casting, …

• Applied to real programs

– Public domain software

– C code from Airbus

Technical Overiew

CSSV analyzes each procedure separately, it operates at the following 4 phases:

1. A source code transformer is applied (while preserving semantics) to the analyzed

procedure P. this transformation essentially inlines the contracts specified by the

programmer in the header file. In addition the inliner normalizes the C code to only

include statements in a C subset called CoreC which simplifies the task of

implementing CSSV.

2. The pointer interactions are analyzed. This is done by applying a whole-program

flow-insensitive pointer analysis to detect statically which pointers may point-to the

same base address. CSSV then applies an algorithm that extracts procedural point-to

information for the analyzed procedure P. this algorithm benefits from the fact that

memory locations not reachable from visible variables of P can not affect the

postcondition of P. Certain must-aliases are computed to improve the precision of

the global flow-insencitive pointer analysis.

3. The procedure’s code and points to information are fed into the C2IP transformer.

C2IP generates a procedure that manipulates integers. It transforms the CoreC code

into another CoreC code which maintains pointer relations relevant for the Inferred

Concrete Semantics of the program (for example, a pointer assignment x = y will be

transformed in x.offset = y.offset and x.base = y.base). C2IP guarantees that if there

is a runtime string-manipulation error in a procedure invocation then either (i) the

procedure’s precondition did not hold on this invocation, or (ii) an assert statement

in the resultant integer program is violated on a corresponding input.

4. The resultant integer program is analyzed using a conservative integer-analysis

algorithm to determine all potential violations of assert statements. Because the

integer and pointer analyses are sound and because contracts are verified both at

call sites and at the procedural level, all string errors are reported. In particular, the

integer analysis reports an error when the specified post condition is not guaranteed

to hold. For minimizing the number of false alarms, CSSV uses Polyhedra, an integer

analysis that represents linear relationships on integer variables.

The final result is a list of potential errors. For every error, a counter example is generated

that can assist the programmer in determining if the message is a real error or a false alarm.

False alarms may occur due to (i) erroneous or overly weak contracts, (ii) abstractions

conducted by C2IP, or (iii) imprecision of the pointer or integer analyses.

Procedure Calls – Contracts

Motivation

One important aspect of CSSV is the use of contracts to handle each procedure by its own.

This modular aspect enables the analysis to take place even when not all the code is

available. It also allows the user to fine tune the analysis and its outcome. The user can

decide to check additional properties and many errors are logically contract-related which

helps to understand them.

One should have in mind that writing bad contracts cannot violate the soundness of the

analysis2, it can however generate more false alarms and makes the outcome less relevant.

Syntax

Contracts are specified in the .h file. Every prototype declaration of a function f has the

form:

 is a C expression, without function calls, over global variables and the arguments of f.

The following attributes are also available:

2
 We assume that the contracts are not used as replacement to unavailable code.

The syntax denotes the value of when f is invoked.

More shorthand expressions:

1. string(arg) – indicating that arg points to a null-terminated string.

2. Is_within_bounds(arg) – indicating that arg points within the bounds of a buffer.

Example

Function code:

Function prototype with contract:

Instrumented concrete semantics

Point-To expansion

Simple point-to analysis, as we have seen in class, cannot be directly applied to C language in

order to verify correctness. It can't express the continuality notion of allocated buffers. For

example it can't ensure that pointer arithmetic is bounded inside a buffer.

CSSV defines the C concrete semantics introducing the Shadow Memory that stores the base

address and size for each location. CSSV extends Point-To abstraction by tracking also the

size and base address for each variable, ignoring exact locations.

Pointer Validation

In order to validate pointer arithmetic, CSSV tracks offsets from origin for each pointer, and

it tracks numeric values. When numeric values are unknowns CSSV tracks integer's

relationships, for example, the statement p2 = p1 + i when i is unknown will yield the relation

p2.offset = p1 .offset + i. These relations are used as steps in the integer program constructed

by C2IP (in the 3rd phase).

We define the effect of the statement p1 =alloc(m) by the relations p2.offset = 0 and

heap1.size = m.3 we also support null termination tracking by adding the relation

heap1.is_nullt = false.

More translations are defined in the paper.

We validate a pointer arithmetic statement such as p2 = p1 + i, by requiring an inequality of

the form *p1.size p1 .offset + I 0. We validate a pointer dereference statement such as p3

= *p2, by requiring an inequality of the form *p2.size p2 .offset. Such inequalities are

3
 heap1 is actually *p1 which appear as lp1 in the paper as the join over all possible abstract locations

pointed by p1. The location of p1 itself appears as rp1 in the paper.

combined as asserts and checked in the last phase, against the polyhedral, yielding an error

in case of possible violation.

Notice that we validate dereferences even though we validate all pointer arithmetic, this is

because pointer arithmetic (according to ANSI C) is allowed to bypass buffer's upper bound

by one.

Complete Example

We will present the CSSV process on the SkipLine function:

The input function and contract:

The points to result for the whole program and the induced part for SkipLine (where lvpt(x) and

rvpt(x) are the possible locations of x and the possible location pointed by x corresponding):

The integer relations computed using the code, the points-to information and contract:

A report on the error in line [5] of main; the inequalities before execution of line [5] and a

counter example:

Results

These are the results of running CSSV on extreme string manipulation procedures. As can be

seen the outcome is very good, detects errors with low false alarm rate. But the consumed

time and space resources are very high, increasing with procedure size. Time can be reduced

by simplifying the constrains, as in Microsoft SAL which uses only {0,1} coefficients in the

conditions.

In common cases where less complicated string manipulation is performed, the results are

even better. Also one should have in mind that due to the fact that each procedure is

analyzed alone, the memory consumption of the whole analysis is mostly influenced by the

largest procedure.

Compile-Time Verification of Properties of Heap Intensive Programs

by Mooly Sagiv, Thomas Reps, Reinhard Wilhem.

For more information you can look at:

 http://www.cs.tau.ac.il/~TVLA

 http://www.cs.tau.ac.il/~msagiv/toplas02.pdf

Introduction to Shape Analysis

The intention of this collaborative work is to verify through static analysis a code that makes

intensive use of the heap.

The TVLA system was developed at Tel Aviv University. It produces static analysis of the code

using set of rules given by the programmer. It handles specially issues and deals with

dynamic allocations and pointers. In fact, TVLA does Shape Analysis of the code.

The purpose of Shape analysis is to determine the possible shape of a dynamically allocated

data structure at a given program point, i.e., we want to prove some properties about

pointers in the program. The motivation for such analysis is based on the fact that programs

dealing with pointers and data structure allocated on the heap are more error prone.

As a compile time static analysis, shape analysis identifies complicated bugs at compile time,

but it does more than this, it also automatically prove correctness!

Some of the relevant questions to shape analysis are:

 Does a pointer points to a shared element?

 Does a variable p points to an allocated element every time p is dereferenced, i.e., is

our program trying to dereference a null pointer?

 Can a procedure cause a memory-leak?

 Does a variable point to an acyclic list?

 Does a variable point to a double linked list?

As you can see, some of the questions may be relevant to all the programs (as the first

three), and some may be specific only to a small set of programs (as the last two). Shape

analysis combines the two approaches: we can check general properties as specific

properties that sometimes are relevant only to our program.

Some of the properties of heap manipulating programs which shape analysis can deal with

are:

 No null dereference – for example, the Java JVM checks it at runtime, and if it finds

one, it throws a NullPointerException.

 No memory leaks – in Java, the Garbage Collector is the responsible of cleaning all

the unreferenced and not freed memory.

http://www.cs.tau.ac.il/~TVLA
http://www.cs.tau.ac.il/~msagiv/toplas02.pdf

 Preservation of data structure invariant – we can define invariants which must be

correct during the life of the program as first order logic predicates and the shape

analysis proves them.

 Correct API usage – as in the previous one, we can define logic rules for verifying

preconditions and post-conditions.

 Partial Correctness – shape analysis proves the correctness of each procedure alone,

assuming that the preconditions are met in the entry to the procedure and proving

that the set of invariants and the post-conditions are met at the exit of the

procedure.

 Total Correctness – based on partial correctness shape analysis proves the total

correctness of the program.

Let’s look at an example of a function that rotates a linked list with a running example at its

side:

rotate(List first, List last) {

if (first != NULL) {

 last next = first;

 first = first next;

 last = last next;

 last next = NULL;

}

}

Note, that we started with an acyclic linked list, so that the data structure invariant is met at

the entry of the procedure. During its run, the invariant is broken, but it is again met at the

procedure exit. Static analysis should discover this and report it to the user.

Moreover, the shape analysis will report us that there are no null de-references and no

memory leaks, as well as partially correctness hold (in order to prove partially correctness

the programmer must specify assertions for the procedure entry and exit).

A word about partial correctness: even if the procedure contains recursion and other

procedure calls which modify the heap and pointer values by themselves, our shape analysis

will success proving the procedure correctness which yields the partial correctness of the

code.

For example in the following quicksort code, it calls the partition method, which changes the

value of the pointer p and q and the recursive call to the quicksort method which changes

pointers as well as the list elements in order to sort the sub-lists.

List quickSort(List p, List q) {

 if(p==q || q == NULL)

 return p;

List h = partition(p,q);

List x = pn;

p n = NULL;

List low = quickSort(h, p);

List high = quickSort(x, NULL);

pn = high;

return low;

}

The challenges of shape analysis are to specify the program semantics and the desired

properties as a set of logic rules (axioms, predicates) and to automatically verify them. The

shape analysis should prove the desired properties using the program semantics. This is an

undecidable problem even for simple programs and properties. Therefore TVLA uses a

canonical heap abstraction which beyond of being conservative will allow us to prove

partially correctness of the whole program.

Concrete Interpretation

Logical Structures (Labeled Graphs)

We will partially represent the concrete semantics. The concrete state will be an unbounded

table of logical relations. The table will contain the following relations:

 Nullary relation symbols – represent boolean axioms in the program, such as

that a variable x is positive.

 Unary relation symbols – represent the program reasoning, i.e. the properties of

unbounded memory, as for example, for each variable we will remember where

it points to.

 Binary relation symbols – represents the structures field relations (for example

a next field in a list cell structure), these are in fact relations between memory

locations.

We will use first order logic with transitive closure (FOTC) over TC, ∀, ∃, , ⋀, ⋁ to

express logical structure properties (for example to express that our linked list is

acyclic).

The concrete semantics will be composed of logical structures which provide meaning

for the relations. There will be:

 A set of individuals (nodes) U – representing memory locations.

 Relation symbols P:

o p0() {0,1} – representing nullary relations.

o p1(u) {0,1} – representing unary relations – for each variable we will have

such a relation p1, which is 1 in the unique heap position pointed by this

variable (if not pointing to null) and giving 0 to all the other positions.

Similarly,

 ,
 ,

o p2(u,v) {0,1} - representing binary relations – for each structure field f, if

the field p2 of the memory location u points to v, p2(u,v) will be 1, and for

any memory location w different from v, p2(u,w) = 0. Similarly,

 ,
 ,
 ,

These relations will help us to cope with the problem that when defining the semantics

of the language we don’t know how much memory the program will allocate and which

memory location will be allocated in each case.

These relations will also work well for variables pointing to the stack, not just to the

heap.

Example – List creation:

We will use as an example a linked list given by:

typedef struct node {

 int val;

 struct node *next;

} *List;

The respective relations for the following list will be:

– U = {u1, u2, u3, u4, u5}

– x = {u1}, p = {u3}

– n = {<u1, u2>, <u2, u3>, <u3, u4>, <u4, u5>}

List create (…)

{

List x, t;

x = NULL;

while (…) do {

 t = malloc();

 t next=x;

 x = t ;}

return x;

}

TVLA analysis will success showing that:

 There are no null dereferences.

 No memory leaks, i.e. there are no allocated memory locations which are not

reachable from variables in the stack.

 The function returns an acyclic list.

Concrete Interpretation Example

Now, we will show the concrete interpretation for the list creation example:

In the example we can appreciate the control flow graph (CFG) of the create function.

As expected, the concrete interpretation does not lose information about the pointer

relationships in the function execution. We can see in each phase whether there are

memory leaks or for example whether x and t point to the same memory location (in

this case, list node).

Next we will present the concrete interpretation rules:

Statement Update formula Explanation

x =NULL x’(v)= 0 x does not point to any location in the
current state of the program

x= malloc() x’(v) = IsNew(v) This is a special tvla predicate, stating
that x points to the new allocated
memory location (there is only one new
allocated)

x=y x’(v)= y(v) x now points to the same location that y
points.

x=y next x’(v)= w: y(w) n(w, v) x points to v only if it is pointed by the
next field of a memory location w which
is pointed by y.

x next=y n’(v, w) =

 (x(v) n(v, w))

 (x(v) y(w))

In the first part of the “or” we cover all
the memory location not pointed by x. in
the second one we cover the one that is
pointed by x.

Notes:

 In the updated formula column, x represents the “old value” and x’ the “new

value”.

 In the x = ynext statement we also check null dereference! If Y points to null,

there will be no such w sustaining the condition.

 The last updated formula can be written in a more readable way:

 ,
 , ,

 ,

We can also define invariants, this will be defined as first order logic predicates, and

generally will deal with the general state of the program. Here are some examples:

Invariant formula Explanation

no garbage v: {x PVar} w: x(w) n*(w,
v)

True iff all the memory locations are
reachable from some variable. N*(w,v) is
the transitive closure, which indicates
that v is pointed by 0 or more next field
pointers.

acyclic list (x) v, w: x(v) n*(v, w)

n+(w, v)

True iff there is no next field relation
(v,w) reachable from x such that v is
reachable from w.

reverse(x) v, w, r: (x(v) n*(v, w)

n(w, r)) n’(r, w)

The represents a procedure since it
defines for each two memory locations
the next relation after applying the
reverse procedure in terms of the
previous relations before the procedure
call.

Note that in the reverse invariant there is a potential threat of memory leak if the last

element of the list is not reachable from another variable. The formula can be improved

by adding a “last” relation, which indicates whether a location is the last node in a list.

By this way we can check if the last node is reachable from a variable other than x.

Why do we use logical structures?

 Logical structures allow us to naturally model pointers and dynamic allocation.

 They also don’t bind us on the number of memory location (unbounded

memory).

 We can (relatively easily) use logical formulas to express semantics.

 Quantifiers allow us to represent store updates and the procedure concept (like

we saw in the reverse example).

 Other models like concurrency and abstract fields (in Object Oriented

Programming) can be modeled using logical structures.

Abstract Interpretation

Canonical Abstraction

For the abstract interpretation we will use 3-valued Logical Structures. The abstract

semantics will be composed of logical structures which provide meaning for the

relations. There will be:

 A set of individuals (nodes) U – representing memory locations.

 Relation symbols P:

o p0() {0,1, 1/2}

o p1(u) {0,1, 1/2}

o p2(u,v) {0,1, 1/2}

About the ½ value:

 The relations are defined as before, except that now we add the ½ value.

 It will be like T (Top). We define a join semi-lattice: 0 U 1 = 1/2

 The reason why we call it ½ is because it adapts to the concept of min (we think

about it as logical or) and max (we think about it as logical and).

We will define a canonical abstraction function, . We will define equivalence classes

based on the values of the unary relations. In other words we will merge nodes which are

pointed by the same set of variables. The equivalence classes which contain more than one

node will be called summary nodes.

Now we define the abstract relations:

pS (u’1, ..., u’k) = {pB (u1, ..., uk) | f(u1)=u’1, ..., f(uk)=u’k) }

That is, we will define the unary relations of a merged set of locations as the join of all the

unary relations of the original nodes.

If we have A memory location, they will yield to at most 2A abstract individuals.

Example:

In this example there are 2 equivalence classes: u1 (pointed by x and t) and u2,u3 which are

not directly pointed by any variable.

Now, we apply the join to each relation (in blue all the relation that are equal to 0). The

dashed lines indicate ½ values. This are relations that in some cases are true (u1, u2) and in

other false (u1,u3) and finally we get the following graph:

Canonical Abstraction and Equality

Since summary nodes may represent more than one element, in our abstraction we lose

the information about the equality of locations and pointers. We need a predicate, eq,

that will indicate the abstract interpretation whether this is a summary node or not.

Summary nodes will be nodes with eq(u,u)=1/2 (since for each u,v such that u=v

eq(u,v)=1, and for each u,v such that u≠v eq(u,v)=0).

The example with eq relations:

Abstract Interpretation Example

Now, we present the list creation example abstract interpretation:

We can observe that from the third iteration a summary node was created representing

the tail of the list, in which no node is pointed by any variable. As we can see the value

of the next relation between the first node and the summary node is ½, since the first

node points only to the second. Also the next relation between the summary node and

itself is ½ since each node points to the next one but not to the others.

Finally, we note that this shape analysis does the following abstractions:

 It ignores data types – the only thing that matters the analysis is pointer

relationships.

 It ignores the values stored in the different variables or memory locations that

are not pointers.

Another TVLA Example

We will analyze a small program that produces a memory leak. Next, we present the

program code with the corresponding update logic statements.

1. y = malloc(1); y’(v) = IsNew(v)
2. x = malloc(1); x’(v) = IsNew(v)
3. y = x; y’(v) = x(v)

Let v1 be the memory location allocated at line 1, and v2 be the memory location allocated at

line 2. Recall the “No Garbage” invariant: v: {x PVar} w: x(w) n*(w, v). Next, we will

show how TVLA produces an error in this example:

Statement y(v1) y(v2) x(v1) x(v2) Allocated locations No Garbage

Initial state False False False False ⌀ True

y = malloc(1); True False False False {v1} True

x = malloc(1); True False False True {v1, v2} True

y = x; False True False True {v1, v2} False

In blue, the updated predicates. In yellow, we show the predicates that give the error. As

you can appreciate, after line 3, v1 is not more reachable from any variable in the program.

