Iterative Program Analysis Part II Mathematical Background

Mooly Sagiv http://www.cs.tau.ac.il/~msagiv/courses/pal1.html Tel Aviv University 640-6706

Textbook: Principles of Program Analysis Appendix A

Content

Mathematical Background

Chaotic Iterations

 Soundness, Precision and more examples next week

Mathematical Background

- Declaratively define
 - The result of the analysis
 - The exact solution
 - Allow comparison

Posets

- A partial ordering is a binary relation
 - $\sqsubseteq : L \times L \rightarrow \{ \text{false, true} \}$
 - For all $l \in L : l \sqsubseteq l$ (Reflexive)
 - For all $l_1, l_2, l_3 \in L : l_1 \sqsubseteq l_2, l_2 \sqsubseteq l_3 \implies l_1 \sqsubseteq l_3$ (Transitive)
 - For all $l_1, l_2 \in L : l_1 \sqsubseteq l_2, l_2 \sqsubseteq l_1 \Longrightarrow l_1 = l_2$ (Anti-Symmetric)
- Denoted by (L, \sqsubseteq)
- In program analysis
 - $-l_1 \sqsubseteq l_2 \Leftrightarrow l_1$ is more precise than $l_2 \Leftrightarrow l_1$ represents fewer concrete states than l_2
- Examples
 - Total orders (N, \leq)
 - Powersets (P(S), \subseteq)
 - Powersets $(P(S), \supseteq)$
 - Constant propagation

Posets

$$\begin{split} &-l_1 \sqsupseteq l_2 \Leftrightarrow l_2 \sqsubseteq l_1 \\ &-l_1 \sqsubset l_2 \Leftrightarrow l_1 \sqsubseteq l_2 \land l_1 \neq l_2 \\ &-l_1 \sqsupset l_2 \Leftrightarrow l_2 \sqsubset l_1 \end{split}$$

Upper and Lower Bounds

- Consider a poset (L, \sqsubseteq)
- A subset L' \subseteq L has a lower bound $l \in L$ if for all $l' \in L'$: $l \subseteq l'$
- ◆ A subset L' \subseteq L has an upper bound u \in L if for all l' \in L' : l' \sqsubseteq u
- A greatest lower bound of a subset L' \subseteq L is a lower bound $l_0 \in$ L such that $l \subseteq l_0$ for any lower bound l of L'
- A lowest upper bound of a subset L' \subseteq L is an upper bound $u_0 \in$ L such that $u_0 \subseteq$ u for any upper bound u of L'
- For every subset $L' \subseteq L$:
 - The greatest lower bound of L' is unique if at all exists
 » □L' (meet) a □b
 - The lowest upper bound of L' is unique if at all exists
 - » ⊔L' (join) a⊔b

Complete Lattices

- A poset (L, ⊑) is a complete lattice if every subset has least and upper bounds
 L = (L, ⊑) = (L, ⊑, ∐, □, ⊥, T)
 ⊥ = ∐ Ø = □ L
 T = ∐ L = □ Ø
- Examples
 - Total orders (N, \leq)
 - Powersets (P(S), \subseteq)
 - Powersets (P(S), \supseteq)
 - Constant propagation

Complete Lattices

- Lemma For every poset (L, ⊑) the following conditions are equivalent
 - L is a complete lattice
 - Every subset of L has a least upper bound
 - Every subset of L has a greatest lower bound

Cartesian Products

• A complete lattice $(L_1, \sqsubseteq_1) = (L_1, \sqsubseteq, \bigsqcup_1, \sqcap_1, \bot_1, \mathsf{T}_1)$ A complete lattice $(L_2, \sqsubseteq_2) = (, \sqsubseteq, \bigsqcup_2, \sqcap_2, \perp_2, \mathsf{T}_2)$ • Define a Poset $L = (L_1 \times L_2, \sqsubseteq)$ where $-(x_1, x_2) \sqsubseteq (y_1, y_2)$ if $\gg x_1 \sqsubseteq y_1$ and $\gg x_2 \sqsubseteq y_2$ ◆ L is a complete lattice

Finite Maps

A complete lattice (L₁, ⊑₁) = (L₁, ⊑, ⊔₁, ⊓₁, ⊥₁, T₁)
A finite set V
Define a Poset L = (V→L₁, ⊑) where - e₁ ⊑ e₂ if for all v ∈ V » e₁v ⊑ e₂v
L is a complete lattice

Chains

- A subset Y ⊆ L in a poset (L, ⊑) is a chain if every two elements in Y are ordered
 - For all $l_1, l_2 \in Y$: $l_1 \sqsubseteq l_2$ or $l_2 \sqsubseteq l_1$
- An ascending chain is a sequence of values
 - $l_1 \sqsubseteq l_2 \sqsubseteq l_3 \sqsubseteq \dots$
- A strictly ascending chain is a sequence of values
 l₁ ⊏ l₂ ⊏ l₃⊏...
- ♦ A descending chain is a sequence of values
 - $l_1 \sqsupseteq l_2 \sqsupseteq l_3 \sqsupseteq \dots$
- A strictly descending chain is a sequence of values $-l_1 \sqsupset l_2 \sqsupset l_3 \sqsupset ...$
- ◆ L has a finite height if every chain in L is finite
- Lemma A poset (L, ⊑) has finite height if and only if every strictly decreasing and strictly increasing chains are finite

Monotone Functions

♦ A poset (L, \sqsubseteq)

♦ A function f: L → L is monotone if for every $l_1, l_2 \in L$:

 $- l_1 \sqsubseteq l_2 \Longrightarrow f(l_1) \sqsubseteq f(l_2)$

Fixed Points

Example Constant Propagation

 $CP(1) = [x \mapsto 0]$ $CP(2) = CP(1)[x \mapsto 3] \sqcup CP(2)$ CP(3) = CP(2)

Chaotic Iterations

- A lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \tau)$ with finite strictly increasing chains
- $\bullet \quad L^n = L \times L \times \ldots \times L$
- A monotone function $\underline{f}: L^n \rightarrow L^n$
- Compute $lfp(\underline{f})$
- The simultaneous least fixed of the system $\{x[i] = \underline{f}_i(x) : 1 \le i \le n\}$

for i := 1 to n do $x[i] = \bot$ $WL = \{1, 2, ..., n\}$ $\mathbf{X} := (\bot, \bot, \ldots, \bot)$ while (WL $\neq \emptyset$) do select and remove an element $i \in WL$ while $(\underline{f}(x) \neq \underline{x})$ do new := $f_i(\underline{x})$ $\mathbf{x} := \mathbf{f}(\mathbf{x})$ if (new \neq x[i]) then x[i] := new;Add all the indexes that directly depends on i to WL

Chaotic Iterations

- $\bullet \quad L^n = L \times L \times \ldots \times L$
- A monotone function $\underline{f}: L^n \rightarrow L^n$
- Compute lfp(<u>f</u>)
- The simultaneous least fixed of the system $\{x[i] = \underline{f}_i(x) : 1 \le i \le n\}$
- Minimum number of non-constant
- Maximum number of \perp

for i :=1 to n do $x[i] = \bot$ $WL = \{1, 2, ..., n\}$ while ($WL \neq \emptyset$) do select and remove an element $i \in WL$ $new := f_i(\underline{x})$ if ($new \neq x[i]$) then x[i] := new;

Add all the indexes that directly depends on i to WL

```
Specialized Chaotic Iterations
System of Equations
```

S =

```
\begin{cases} df_{entry}[s] = \iota \\ df_{entry}[v] = \bigsqcup \{f(u, v) (df_{entry}[u]) \mid (u, v) \in E \} \end{cases}
F_{s}:L^{n} \rightarrow L^{n}
F_{s} (X)[s] = \iota
F_{s}(X)[v] = \bigsqcup \{f(u, v)(X[u]) \mid (u, v) \in E \}
```

 $lfp(S) = lfp(F_S)$

Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, ι : L, f: E \rightarrow (L \rightarrow L)){ for each v in V to n do $df_{entry}[v] := \bot$ $df[s] = \iota$ $WL = \{s\}$ while (WL $\neq \emptyset$) do select and remove an element $u \in WL$ for each v, such that. $(u, v) \in E$ do $temp = f(e)(df_{entry}[u])$ $new := df_{entry}(v) \sqcup temp$ if (new \neq df_{entry}[v]) then $df_{entry}[v] := new;$ WL := WL \cup {v}

	WL	df _{entry} [v]
$[x \mapsto 0, y \mapsto 0, z \mapsto 0]$	{1}	
$\begin{bmatrix} z = 3 \end{bmatrix}$	{2}	$df[2]:=[x\mapsto 0, y\mapsto 0, z\mapsto 3]$
$2 x = 1 \qquad \qquad$	{3}	$df[3]:=[x\mapsto 1, y\mapsto 0, z\mapsto 3]$
$\times e.e[x \mapsto 1]$	{4}	$df[4]:=[x\mapsto 1, y\mapsto 0, z\mapsto 3]$
3 while $(x>0)$ if $e \ge 1$ then $e = else \perp$	{5}	$df[5]:=[x\mapsto 1, y\mapsto 0, z\mapsto 3]$
\rightarrow e. if x >0 then e else \perp	{7}	$df[7]:=[x\mapsto 1, y\mapsto 7, z\mapsto 3]$
4 $if(x=1)$	{8}	$df[8]:=[x\mapsto 3, y\mapsto 7, z\mapsto 3]$
$\lambda e. e \sqcap [x \mapsto 1, y \mapsto T, z \mapsto T]$ $\lambda e. if e x \neq 0$ then e else	L{3}	$df[3]:=[x\mapsto T, y\mapsto T, z\mapsto 3]$
x = 1 $x = 1$ $x =$	{4}	$df[4]:=[x\mapsto \mathbf{T}, y\mapsto \mathbf{T}, z\mapsto 3]$
$\times e.e[y \mapsto 7]$ $\times e.e[y \mapsto e(z)+4]$	{5,6}	$df[5]:=[x\mapsto 1, y\mapsto \mathbf{T}, z\mapsto 3]$
x=3 x=3 x=3	{6,7}	$df[6]:=[x\mapsto \mathbf{T}, y\mapsto \mathbf{T}, z\mapsto 3]$
8 print y	{7}	$df[7]:=[x\mapsto \mathbf{T}, y\mapsto 7, z\mapsto 3]$

Complexity of Chaotic Iterations

Parameters:

- n the number of CFG nodes
- k is the maximum outdegree of edges
- A lattice of height h
- c is the maximum cost of
 - » applying $f_{(e)}$
 - » ∐
 - » L comparisons

Complexity
 O(n * h * c * k)

Conclusions

- Chaotic iterations is a powerful technique
- Easy to implement
- Rather precise
- But expensive

More efficient methods exist for structured programs