
1

Iterative Program Analysis

Part II Mathematical

Background

Mooly Sagiv

http://www.cs.tau.ac.il/~msagiv/courses/pa11.html

Tel Aviv University

640-6706

Textbook: Principles of Program Analysis

Appendix A

Content

Mathematical Background

 Chaotic Iterations

 Soundness, Precision and more examples next

week

Mathematical Background

Declaratively define

– The result of the analysis

– The exact solution

– Allow comparison

Posets
 A partial ordering is a binary relation

 : L L {false, true}
– For all l L : l l (Reflexive)

– For all l1, l2, l3 L : l1 l2, l2 l3 l1 l3 (Transitive)

– For all l1, l2 L : l1 l2, l2 l1 l1 = l2
(Anti-Symmetric)

 Denoted by (L,)

 In program analysis

– l1 l2 l1 is more precise than l2
l1 represents fewer concrete states than l2

 Examples
– Total orders (N,)

– Powersets (P(S),)

– Powersets (P(S),)
– Constant propagation

Posets
 More notations

– l1 l2 l2 l1

– l1 l2 l1 l2 l1 l2

– l1 l2 l2 l1

Upper and Lower Bounds
 Consider a poset (L,)

 A subset L’ L has a lower bound l L if for all l’ L’ :
l l’

 A subset L’ L has an upper bound u L if for all l’
L’ : l’ u

 A greatest lower bound of a subset L’ L is a lower
bound l0 L such that l l0 for any lower bound l of L’

 A lowest upper bound of a subset L’ L is an upper
bound u0 L such that u0 u for any upper bound u of L’

 For every subset L’ L:
– The greatest lower bound of L’ is unique if at all exists

» L’ (meet) a b

– The lowest upper bound of L’ is unique if at all exists
» L’ (join) ab

Complete Lattices

A poset (L,) is a complete lattice if
every subset has least and upper bounds

L = (L,) = (L, , , , ,)
– = = L

– = L =

 Examples
– Total orders (N,)

– Powersets (P(S),)

– Powersets (P(S),)
– Constant propagation

Complete Lattices

Lemma For every poset (L,) the
following conditions are equivalent
– L is a complete lattice

– Every subset of L has a least upper bound

– Every subset of L has a greatest lower bound

Cartesian Products

A complete lattice
(L1, 1) = (L1, , 1, 1, 1, 1)

A complete lattice
(L2, 2) = (, , 2, 2, 2, 2)

Define a Poset L = (L1 L2 ,) where
– (x1, x2) (y1, y2) if

» x1 y1 and

» x2 y2

L is a complete lattice

Finite Maps

A complete lattice
(L1, 1) = (L1, , 1, 1, 1, 1)

A finite set V

Define a Poset L = (VL1 ,) where
– e1 e2 if for all v V

» e1v e2v

L is a complete lattice

Chains
 A subset Y L in a poset (L,) is a chain if every two

elements in Y are ordered
– For all l1, l2 Y: l1 l2 or l2 l1

 An ascending chain is a sequence of values
– l1 l2 l3 …

 A strictly ascending chain is a sequence of values
– l1 l2 l3…

 A descending chain is a sequence of values
– l1 l2 l3 …

 A strictly descending chain is a sequence of values
– l1 l2 l3 …

 L has a finite height if every chain in L is finite

 Lemma A poset (L,) has finite height if and only if
every strictly decreasing and strictly increasing chains are
finite

Monotone Functions

A poset (L,)

A function f: L L is monotone if for every

l1, l2 L:

– l1 l2 f(l1) f(l2)

Fixed Points

 A monotone function f: L L where
(L, , , , ,) is a complete lattice

 Fix(f) = { l: l L, f(l) = l}

 Red(f) = {l: l L, f(l) l}

 Ext(f) = {l: l L, l f(l)}

– l1 l2 f(l1) f(l2)

 Tarski’s Theorem 1955: if f is monotone
then:

– lfp(f) = Fix(f) = Red(f) Fix(f)

– gfp(f) = Fix(f) = Ext(f) Fix(f)

f()

f()

f2()

f2()

Fix(f)

Ext(f)

Red(f)

gfp(f)

lfp(f)

Example Constant Propagation

x =3

nop

e.e[x3]

e.e

1

2 3

CP(1) = [x 0]

CP(2) = CP(1)[x 3] CP(2)

CP(3) = CP(2)
exit

e.e

Chaotic Iterations
 A lattice L = (L, , , , ,) with finite strictly increasing chains

 Ln = L L … L

 A monotone function f: LnLn

 Compute lfp(f)

 The simultaneous least fixed of the system {x[i] = fi(x) : 1 i n }

x := (, , …,)

while (f(x) x) do

x := f(x)

for i :=1 to n do

x[i] =

WL = {1, 2, …, n}

while (WL) do

select and remove an element i WL

new := fi(x)

if (new x[i]) then

x[i] := new;

Add all the indexes that directly depends on i to WL

Chaotic Iterations
 Ln = L L … L

 A monotone function f: LnLn

 Compute lfp(f)

 The simultaneous least fixed of the system {x[i] = fi(x) : 1 i n }

 Minimum number of non-constant

 Maximum number of

for i :=1 to n do

x[i] =

WL = {1, 2, …, n}

while (WL) do

select and remove an element i WL

new := fi(x)

if (new x[i]) then

x[i] := new;

Add all the indexes that directly depends on i to WL

Specialized Chaotic Iterations

System of Equations

S =

dfentry[s] =

dfentry[v] = {f(u, v) (dfentry[u]) | (u, v) E }

FS:Ln Ln

FS (X)[s] =

FS(X)[v] = {f(u, v)(X[u]) | (u, v) E }

lfp(S) = lfp(FS)

Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, : L, f: E (L L)){

for each v in V to n do dfentry[v] :=

df[s] =

WL = {s}

while (WL) do

select and remove an element u WL

for each v, such that. (u, v) E do

temp = f(e)(dfentry[u])

new := dfentry(v) temp

if (new dfentry[v]) then

dfentry[v] := new;

WL := WL {v}

z =3

x =1

while (x>0)

if (x=1)

y =7 y =z+4

x=3

print y

e.e[z3]

e.e[x1]

e. if x >0 then e else

e. if e x 0 then e else

e. e [x1, y , z] e. if e x 0 then e else

e.e[y7] e.e[ye(z)+4]

e.e[x3]

e.e

1

2

3

4

5
6

7

8

[x0, y0, z0]

WL dfentry]v]

{1}

{2} df[2]:=[x0, y0, z3]

{3} df[3]:=[x1, y0, z3]

{4} df[4]:=[x1, y0, z3]

{5} df[5]:=[x1, y0, z3]

{7} df[7]:=[x1, y7, z3]

{8} df[8]:=[x3, y7, z3]

{3} df[3]:=[x, y, z3]

{4} df[4]:=[x, y, z3]

{5,6} df[5]:=[x1, y, z3]

{6,7} df[6]:=[x, y, z3]

{7} df[7]:=[x, y7, z3]

Complexity of Chaotic Iterations

 Parameters:

– n the number of CFG nodes

– k is the maximum outdegree of edges

– A lattice of height h

– c is the maximum cost of

» applying f(e)

»

» L comparisons

 Complexity

O(n * h * c * k)

Conclusions

 Chaotic iterations is a powerful technique

 Easy to implement

 Rather precise

 But expensive

– More efficient methods exist for structured programs

