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Mathematical Background

Declaratively define

– The result of the analysis

– The exact solution

– Allow comparison



Posets
 A partial ordering is a binary relation

 : L  L  {false, true} 
– For all l  L : l  l (Reflexive)

– For all l1, l2, l3  L : l1  l2, l2  l3  l1  l3 (Transitive)

– For all l1, l2 L : l1  l2, l2  l1  l1 = l2
(Anti-Symmetric)

 Denoted by (L,  )

 In program analysis

– l1  l2 l1 is more precise than l2 
l1 represents fewer concrete states than l2

 Examples
– Total orders (N, )

– Powersets (P(S), )

– Powersets (P(S), )
– Constant propagation



Posets
 More notations

– l1  l2  l2  l1

– l1  l2  l1  l2  l1 l2 

– l1  l2  l2 l1



Upper and Lower Bounds
 Consider a poset  (L,  )

 A subset L’  L has a lower bound l  L  if for all l’  L’ : 
l l’

 A subset L’  L has an  upper bound u  L  if for all l’ 
L’ : l’  u

 A greatest lower bound of a subset L’  L is a lower 
bound  l0 L such that l  l0 for  any lower bound l of L’ 

 A lowest upper bound of a subset L’  L is an upper 
bound  u0 L such that u0  u for  any upper bound u of L’

 For every subset  L’  L:
– The greatest lower bound of L’ is unique if at all exists

» L’ (meet)  a b

– The lowest upper bound of L’ is unique if at all exists
» L’ (join)   ab



Complete Lattices

A poset  (L,  ) is a complete lattice if 
every subset has least and upper bounds

L = (L, ) = (L, , , , , )
–  =   =  L

–  =  L =  

 Examples
– Total orders (N, )

– Powersets (P(S), )

– Powersets (P(S), )
– Constant propagation



Complete Lattices

Lemma For every poset  (L,  ) the 
following conditions are equivalent
– L is a complete lattice

– Every subset of L has a least upper bound

– Every subset of L has a greatest lower bound 



Cartesian Products

A complete lattice 
(L1, 1) = (L1, , 1, 1, 1, 1)

A complete lattice 
(L2, 2) = (, , 2, 2, 2, 2)

Define a Poset L = (L1 L2 , ) where
– (x1, x2)  (y1, y2)  if  

» x1  y1 and

» x2  y2

L is a complete lattice



Finite Maps

A complete lattice 
(L1, 1) = (L1, , 1, 1, 1, 1)

A finite set V

Define a Poset L = (VL1 , ) where
– e1  e2 if for all v  V

» e1v  e2v

L is a complete lattice



Chains
 A subset Y  L in a poset  (L,  ) is a chain if every two 

elements in Y are ordered
– For all l1, l2  Y: l1  l2 or l2  l1

 An ascending chain is a sequence of values
– l1  l2  l3  …

 A strictly ascending chain is a sequence of values
– l1  l2  l3…

 A descending chain is a sequence of values
– l1  l2  l3  …

 A strictly descending chain is a sequence of values
– l1  l2  l3  …

 L has a finite height if every chain in L is finite

 Lemma A poset  (L,  ) has finite height if and only if 
every strictly decreasing and strictly increasing chains are 
finite



Monotone Functions

A poset  (L,  ) 

A function f: L  L is monotone if for every 

l1, l2  L:

– l1  l2  f(l1 )  f(l2 )



Fixed Points

 A monotone function f: L  L where 
(L, , , , , ) is a complete lattice

 Fix(f) = { l: l  L, f(l) = l}

 Red(f) = {l: l  L, f(l)  l}

 Ext(f) = {l: l  L, l  f(l)}

– l1  l2  f(l1 )  f(l2 )

 Tarski’s Theorem 1955: if f is monotone 
then:

– lfp(f)  =   Fix(f) =  Red(f)  Fix(f)

– gfp(f) =   Fix(f) =  Ext(f)   Fix(f)




f()

f()

f2()

f2()

Fix(f)

Ext(f)

Red(f)

gfp(f)

lfp(f)



Example Constant Propagation

x =3

nop

e.e[x3]

e.e

1

2 3

CP(1) = [x 0]

CP(2) = CP(1)[x 3]  CP(2)

CP(3) = CP(2)
exit

e.e



Chaotic Iterations
 A lattice L = (L, , , , , ) with finite strictly increasing chains

 Ln = L  L  …  L

 A monotone function f: LnLn

 Compute lfp(f)

 The simultaneous  least fixed of the system  {x[i] = fi(x) : 1  i n }

x := (, , …, )

while (f(x)  x )  do

x := f(x)

for i :=1  to n do

x[i] = 

WL = {1, 2, …, n}

while (WL   )  do

select and remove an element i  WL

new := fi(x)

if (new  x[i]) then 

x[i] := new;

Add all the indexes that directly depends on i to WL



Chaotic Iterations
 Ln = L  L  …  L

 A monotone function f: LnLn

 Compute lfp(f)

 The simultaneous  least fixed of the system  {x[i] = fi(x) : 1  i n }

 Minimum number of non-constant

 Maximum number of 

for i :=1  to n do

x[i] = 

WL = {1, 2, …, n}

while (WL   )  do

select and remove an element i  WL

new := fi(x)

if (new  x[i]) then 

x[i] := new;

Add all the indexes that directly depends on i to WL



Specialized Chaotic Iterations

System of Equations

S =

dfentry[s] = 

dfentry[v] = {f(u, v) (dfentry[u]) | (u, v)  E }

FS:Ln Ln

FS (X)[s] = 

FS(X)[v] = {f(u, v)(X[u]) | (u, v)  E }

lfp(S) = lfp(FS)



Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, : L, f: E (L L) ){

for each v in V to n do dfentry[v] := 

df[s] = 

WL = {s}

while (WL   )  do

select and remove an element u  WL

for each v, such that. (u, v) E do

temp = f(e)(dfentry[u]) 

new := dfentry(v) temp

if (new  dfentry[v]) then  

dfentry[v] := new;

WL := WL {v}



z =3

x =1

while (x>0)

if (x=1)

y =7 y =z+4

x=3

print y

e.e[z3]

e.e[x1]

e. if x >0 then e     else 

e. if e x 0 then e     else 

e. e [x1, y , z] e. if e x 0 then e    else 

e.e[y7] e.e[ye(z)+4]

e.e[x3]

e.e


1

2

3

4

5
6

7

8

[x0, y0, z0]

WL dfentry]v]

{1}

{2} df[2]:=[x0, y0, z3]

{3} df[3]:=[x1, y0, z3]

{4} df[4]:=[x1, y0, z3]

{5} df[5]:=[x1, y0, z3]

{7} df[7]:=[x1, y7, z3]

{8} df[8]:=[x3, y7, z3]

{3} df[3]:=[x, y, z3]

{4} df[4]:=[x, y, z3]

{5,6} df[5]:=[x1, y, z3]

{6,7} df[6]:=[x, y, z3]

{7} df[7]:=[x, y7, z3]



Complexity of Chaotic Iterations

 Parameters:

– n  the number of CFG nodes

– k is the maximum outdegree of edges 

– A lattice of height h

– c is the maximum cost of

» applying f(e)

» 

» L comparisons

 Complexity

O(n * h * c * k)



Conclusions

 Chaotic iterations is a powerful technique

 Easy to implement

 Rather precise

 But expensive

– More efficient methods exist for structured programs 


