Iterative Program Analysis Part II Mathematical Background

Mooly Sagiv
http://www.cs.tau.ac.il/~msagiv/courses/pal1.html
\[\begin{gathered} Tel Aviv University
640-6706 \end{gathered} \]

Textbook: Principles of Program Analysis
Appendix A

Content

- Mathematical Background
- Chaotic Iterations
- Soundness, Precision and more examples next week

Mathematical Background

\rightarrow Declaratively define

- The result of the analysis
- The exact solution
- Allow comparison

Posets

- A partial ordering is a binary relation
$\sqsubseteq: \mathrm{L} \times \mathrm{L} \rightarrow\{$ false, true $\}$
- For all $1 \in \mathrm{~L}: 1 \sqsubseteq 1$ (Reflexive)
- For all $1_{1}, 1_{2}, 1_{3} \in \mathrm{~L}: 1_{1} \sqsubseteq 1_{2}, 1_{2} \sqsubseteq 1_{3} \Rightarrow 1_{1} \sqsubseteq 1_{3}$ (Transitive)
- For all $1_{1}, 1_{2} \in L: 1_{1} \sqsubseteq 1_{2}, 1_{2} \sqsubseteq 1_{1} \Rightarrow 1_{1}=1_{2}$ (Anti-Symmetric)
- Denoted by (L, ㄷ)
- In program analysis
$-1_{1} \sqsubseteq l_{2} \Leftrightarrow 1_{1}$ is more precise than $1_{2} \Leftrightarrow$ 1_{1} represents fewer concrete states than 1_{2}
- Examples
- Total orders (N, \leq)
- Powersets (P(S), $\subseteq)$
- Powersets (P(S), $\supseteq)$
- Constant propagation

Posets

- More notations

$$
\begin{aligned}
& -1_{1} \sqsupseteq 1_{2} \Leftrightarrow l_{2} \sqsubseteq l_{1} \\
& -1_{1} \sqsubset l_{2} \Leftrightarrow 1_{1} \sqsubseteq l_{2} \wedge l_{1} \neq l_{2} \\
& -l_{1} \sqsupseteq l_{2} \Leftrightarrow l_{2} \sqsubset l_{1}
\end{aligned}
$$

Upper and Lower Bounds

- Consider a poset (L, \sqsubseteq)
- A subset $L^{\prime} \subseteq \mathrm{L}$ has a lower bound $\mathrm{l} \in \mathrm{L}$ if for all $\mathrm{l}^{\prime} \in \mathrm{L}^{\prime}$: 1 ㄷ 1
- A subset $\mathrm{L}^{\prime} \subseteq \mathrm{L}$ has an upper bound $\mathrm{u} \in \mathrm{L}$ if for all $\mathrm{l}^{\prime} \in$ $\mathrm{L}^{\prime}: \mathrm{l}^{\prime} \sqsubseteq \mathrm{u}$
- A greatest lower bound of a subset $\mathrm{L}^{\prime} \subseteq \mathrm{L}$ is a lower bound $\mathrm{l}_{0} \in \mathrm{~L}$ such that $l \sqsubseteq \mathrm{l}_{0}$ for any lower bound 1 of L '
- A lowest upper bound of a subset $\mathrm{L}^{\prime} \subseteq \mathrm{L}$ is an upper bound $\mathrm{u}_{0} \in \mathrm{~L}$ such that $\mathrm{u}_{0} \sqsubseteq \mathrm{u}$ for any upper bound u of L^{\prime}
- For every subset $L^{\prime} \subseteq L^{\prime}$:
- The greatest lower bound of L^{\prime} is unique if at all exists

$$
» ~ \sqcap L^{\prime}(\text { meet }) \mathrm{a} \sqcap \mathrm{~b}
$$

- The lowest upper bound of L^{\prime} is unique if at all exists

$$
\text { » } \sqcup L^{\prime} \text { (join) } a \sqcup b
$$

Complete Lattices

- A poset $(\mathrm{L}, \sqsubseteq)$ is a complete lattice if every subset has least and upper bounds
$\bullet \mathrm{L}=(\mathrm{L}, \sqsubseteq)=(\mathrm{L}, \sqsubseteq, \sqcup, \sqcap, \perp, \mathrm{T})$
$-\perp=\sqcup \emptyset=\sqcap \mathrm{L}$
$-\mathrm{T}=\sqcup \mathrm{L}=\Pi \emptyset$
- Examples
- Total orders (N, \leq)
- Powersets $(\mathrm{P}(\mathrm{S}), \subseteq)$
- Powersets (P(S),)
- Constant propagation

Complete Lattices

- Lemma For every poset (L, \sqsubseteq) the following conditions are equivalent
- L is a complete lattice
- Every subset of L has a least upper bound
- Every subset of L has a greatest lower bound

Cartesian Products

- A complete lattice

$$
\left(\mathrm{L}_{1}, \sqsubseteq_{1}\right)=\left(\mathrm{L}_{1}, \sqsubseteq, \bigsqcup_{1}, \sqcap_{1}, \perp_{1}, \mathrm{~T}_{1}\right)
$$

- A complete lattice

$$
\left(\mathrm{L}_{2}, \sqsubseteq_{2}\right)=\left(, \sqsubseteq, \bigsqcup_{2}, \sqcap_{2}, \perp_{2}, \mathrm{~T}_{2}\right)
$$

\rightarrow Define a Poset $\mathrm{L}=\left(\mathrm{L}_{1} \times \mathrm{L}_{2}\right.$, $\left.\sqsubseteq\right)$ where

$$
\begin{aligned}
& -\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \sqsubseteq\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \text { if } \\
& \quad \geqslant \mathrm{x}_{1} \sqsubseteq \mathrm{y}_{1} \text { and } \\
& \quad>\mathrm{x}_{2} \sqsubseteq \mathrm{y}_{2}
\end{aligned}
$$

-L is a complete lattice

Finite Maps

- A complete lattice
$\left(\mathrm{L}_{1}, \sqsubseteq_{1}\right)=\left(\mathrm{L}_{1}, \sqsubseteq, \bigsqcup_{1}, \sqcap_{1}, \perp_{1}, \mathrm{~T}_{1}\right)$
- A finite set V
\rightarrow Define a Poset $\mathrm{L}=\left(\mathrm{V} \rightarrow \mathrm{L}_{1}\right.$, $\left.\sqsubseteq\right)$ where
$-\mathrm{e}_{1} \sqsubseteq \mathrm{e}_{2}$ if for all $\mathrm{v} \in \mathrm{V}$ » $\mathrm{e}_{1} \mathrm{v} \subseteq \mathrm{e}_{2} \mathrm{v}$
$\bullet \mathrm{L}$ is a complete lattice

Chains

- A subset $\mathrm{Y} \subseteq \mathrm{L}$ in a poset $(\mathrm{L}, \sqsubseteq)$ is a chain if every two elements in Y are ordered
- For all $1_{1}, 1_{2} \in \mathrm{Y}: 1_{1} \sqsubseteq 1_{2}$ or $1_{2} \sqsubseteq 1_{1}$
- An ascending chain is a sequence of values
$-1_{1} \sqsubseteq 1_{2} \sqsubseteq 1_{3} \sqsubseteq \ldots$
- A strictly ascending chain is a sequence of values
$-1_{1} \sqsubset 1_{2} \sqsubset l_{3} \sqsubset \ldots$
- A descending chain is a sequence of values
- $1_{1} \sqsupseteq l_{2} \sqsupseteq l_{3} \sqsupseteq \ldots$
- A strictly descending chain is a sequence of values
- $1_{1} \sqsupset l_{2} \sqsupset l_{3} \sqsupset \ldots$
- L has a finite height if every chain in L is finite
- Lemma A poset (L, \sqsubseteq) has finite height if and only if every strictly decreasing and strictly increasing chains are finite

Monotone Functions

- A poset (L, \sqsubseteq)
\rightarrow A function $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{L}$ is monotone if for every $1_{1}, l_{2} \in \mathrm{~L}$:
$-\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Rightarrow \mathrm{f}\left(\mathrm{l}_{1}\right) \sqsubseteq \mathrm{f}\left(\mathrm{l}_{2}\right)$

Fixed Points

- A monotone function $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{L}$ where $(\mathrm{L}, \sqsubseteq, \sqcup, \sqcap, \perp, \mathrm{T})$ is a complete lattice
$-\operatorname{Fix}(\mathrm{f})=\{1: 1 \in \mathrm{~L}, \mathrm{f}(\mathrm{l})=1\}$
- $\operatorname{Red}(\mathrm{f})=\{1: 1 \in \mathrm{~L}, \mathrm{f}(\mathrm{l}) \sqsubseteq 1\}$
$-\operatorname{Ext}(\mathrm{f})=\{1: 1 \in \mathrm{~L}, 1 \sqsubseteq \mathrm{f}(\mathrm{l})\}$
$-\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Rightarrow \mathrm{f}\left(\mathrm{l}_{1}\right) \sqsubseteq \mathrm{f}\left(\mathrm{l}_{2}\right)$
- Tarski's Theorem 1955: if f is monotone then:
$-\operatorname{lfp}(\mathrm{f})=\sqcap \operatorname{Fix}(\mathrm{f})=\sqcap \operatorname{Red}(\mathrm{f}) \in \operatorname{Fix}(\mathrm{f})$
$-\operatorname{gfp}(\mathrm{f})=\sqcup \operatorname{Fix}(\mathrm{f})=\sqcup \operatorname{Ext}(\mathrm{f}) \in \operatorname{Fix}(\mathrm{f})$

Example Constant Propagation

$$
\begin{gathered}
\mathrm{CP}(2)=\mathrm{CP}(1)[\mathrm{x} \mapsto 3] \sqcup \mathrm{CP}(2) \\
\mathrm{CP}(3)=\mathrm{CP}(2)
\end{gathered}
$$

Chaotic Iterations

- A lattice $\mathrm{L}=(\mathrm{L}, \sqsubseteq, \sqcup, \sqcap, \perp, \mathrm{T})$ with finite strictly increasing chains
- $\mathrm{L}^{\mathrm{n}}=\mathrm{L} \times \mathrm{L} \times \ldots \times \mathrm{L}$
- A monotone function $\underline{\mathrm{f}}: \mathrm{L}^{\mathrm{n}} \rightarrow \mathrm{L}^{\mathrm{n}}$
- Compute lfp(f)
- The simultaneous least fixed of the system $\left\{\mathrm{x}[\mathrm{i}]=\mathrm{f}_{\mathrm{i}}(\mathrm{x}): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$

$$
\text { for } \mathrm{i}:=1 \text { to } \mathrm{n} \text { do }
$$

$$
x[i]=\perp
$$

$\mathrm{WL}=\{1,2, \ldots, \mathrm{n}\}$
$\underline{\mathrm{x}}:=(\perp, \perp, \ldots, \perp) \quad$ while $(\mathrm{WL} \neq \emptyset)$ do
while $(\underline{f}(\mathrm{x}) \neq \underline{\mathrm{x}})$ do \quad select and remove an element $\mathrm{i} \in \mathrm{WL}$

$$
\begin{aligned}
& \underline{\mathrm{x}}:=\mathrm{f}(\underline{\mathrm{x}}) \\
& \text { new }:=f_{i}(\underline{x}) \\
& \text { if (new } \neq x[i] \text {) then } \\
& x[i]:=\text { new; }
\end{aligned}
$$

Add all the indexes that directly depends on i to WL

Chaotic Iterations

- $\mathrm{L}^{\mathrm{n}}=\mathrm{L} \times \mathrm{L} \times \ldots \times \mathrm{L}$
- A monotone function $\underline{\mathrm{f}}: \mathrm{L}^{\mathrm{n}} \rightarrow \mathrm{L}^{\mathrm{n}}$
- Compute lfp(f)
- The simultaneous least fixed of the system $\left\{x[i]=\underline{f}_{i}(x): 1 \leq i \leq n\right\}$
- Minimum number of non-constant
- Maximum number of \perp

$$
\begin{aligned}
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{n} \text { do } \\
& \quad \mathrm{x}[\mathrm{i}]=\perp \\
& \mathrm{WL}=\{1,2, \ldots, \mathrm{n}\} \\
& \text { while }(\mathrm{WL} \neq \emptyset) \text { do }
\end{aligned}
$$

select and remove an element $i \in W L$

$$
\text { new }:=f_{i}(\underline{x})
$$

$$
\text { if (new } \neq x[i]) \text { then }
$$

$$
\mathrm{x}[\mathrm{i}]:=\text { new; }
$$

Add all the indexes that directly depends on i to WL

Specialized Chaotic Iterations System of Equations

$$
\begin{aligned}
& S= \\
& \left\{\begin{array}{l}
\mathrm{df}_{\text {entry }}[\mathrm{s}]=1 \\
\mathrm{df}_{\text {entry }}[\mathrm{v}]=\sqcup\left\{\mathrm{f}(\mathrm{u}, \mathrm{v})\left(\mathrm{df}_{\text {entry }}[\mathrm{u}]\right) \mid(\mathrm{u}, \mathrm{v}) \in \mathrm{E}\right\} \\
\mathrm{F}_{\mathrm{S}}: \mathrm{L}^{\mathrm{n}} \rightarrow \mathrm{~L}^{\mathrm{n}}
\end{array}\right. \\
& \quad \mathrm{F}_{\mathrm{S}}(\mathrm{X})[\mathrm{s}]=1 \\
& \quad \mathrm{~F}_{\mathrm{S}}(\mathrm{X})[\mathrm{v}]=\sqcup\{\mathrm{f}(\mathrm{u}, \mathrm{v})(\mathrm{X}[\mathrm{u}]) \mid(\mathrm{u}, \mathrm{v}) \in \mathrm{E}\}
\end{aligned}
$$

$$
\operatorname{lfp}(S)=\operatorname{lfp}\left(\mathrm{F}_{\mathrm{S}}\right)
$$

Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, $\mathrm{t}: \mathrm{L}, \mathrm{f}: \mathrm{E} \rightarrow(\mathrm{L} \rightarrow \mathrm{L})$) $\{$
for each v in V to n do $\mathrm{df}_{\text {entry }}[\mathrm{v}]:=\perp$
$\mathrm{df}[\mathrm{s}]=1$
$\mathrm{WL}=\{\mathrm{s}\}$
while (WL $\neq \emptyset$) do
select and remove an element $u \in W L$
for each v, such that. $(u, v) \in E$ do

$$
\begin{aligned}
& \text { temp }=\mathrm{f}(\mathrm{e})\left(\mathrm{df}_{\text {entry }}[\mathrm{u}]\right) \\
& \text { new }:=\mathrm{df}_{\text {entry }}(\mathrm{v}) \sqcup \text { temp } \\
& \text { if }\left(\text { new } \neq \mathrm{df}_{\text {entry }}[\mathrm{v}]\right) \text { then } \\
& \qquad \mathrm{df}_{\text {entry }}[\mathrm{v}]:=\text { new; } \\
& \quad \text { WL }:=\mathrm{WL} \cup\{\mathrm{v}\}
\end{aligned}
$$

	WL	$\mathrm{df}_{\text {entry }}[\mathrm{v}]$
$[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 0, \mathrm{z} \mapsto 0]$		
$\mathrm{z}=3$	\{2\}	$\mathrm{df}[2]:=[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 0, \mathrm{z} \mapsto 3]$
	\{3\}	$\mathrm{df}[3]:=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 0, \mathrm{z} \mapsto 3]$
$\lambda \mathrm{e} . \mathrm{e}[\mathrm{x} \mapsto 1]$	\{4\}	df[4]:=[x $\mapsto 1, \mathrm{y} \mapsto 0, \mathrm{z} \mapsto 3]$
$3 \xrightarrow[\text { while }(x>0)]{\text { e }}$ if e $\mathrm{x} \leq 0$ then e else \perp	\{5\}	$\mathrm{df}[5]:=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 0, \mathrm{z} \mapsto 3]$
λe. if $x>0$ then $\mathrm{e} \quad$ else \perp	\{7\}	$\mathrm{df}[7]:=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 3]$
4 if (x=1)	\{8\}	$\mathrm{df}[8]:=[\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 3]$
	L3\}	$\mathrm{df}[3]:=[\mathrm{X} \mapsto \mathrm{T}, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 3]$
	\{4\}	$\mathrm{df}[4]:=[\mathrm{x} \mapsto \mathrm{T}, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 3]$
$\lambda \mathrm{e} . \mathrm{e}[\mathrm{y} \mapsto>] \quad \lambda \text { e. } \mathrm{e}[\mathrm{y} \mapsto \mathrm{e}(\mathrm{z})+4]$	\{5,6\}	$\mathrm{df}[5]:=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 3]$
x=3 λ 入e.e[xけ3]	\{6,7\}	$\mathrm{df}[6]:=[\mathrm{x} \mapsto \mathrm{T}, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 3]$
	\{7\}	$\mathrm{df}[7]:=[\mathrm{X} \mapsto \mathrm{T}, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 3]$

Complexity of Chaotic Iterations

- Parameters:
- n the number of CFG nodes
-k is the maximum outdegree of edges
- A lattice of height h
-c is the maximum cost of
" applying $f_{(\text {e) }}$
» \sqcup
» L comparisons
- Complexity

$$
\mathrm{O}(\mathrm{n} * \mathrm{~h} * \mathrm{c} * \mathrm{k})
$$

Conclusions

- Chaotic iterations is a powerful technique
- Easy to implement
- Rather precise
- But expensive
- More efficient methods exist for structured programs

