
SLAM

• A Microsoft tool for checking safety of 
device drivers

• Inspired BLAST



BLAST

www.eecs.berkeley.edu/~blast/

Berkeley Lazy Abstraction 
Software * Tool



Counter Example 
Guided Refinement
CEGAR

Mooly Sagiv



Recap
• Many abstract domains

– Signs
– Odd/Even
– Constant propagation
– Intervals
– [Polyhedra]
– Canonic abstraction
– Domain constructors
– …

• Static Algorithms
– Iterative Chaotic Iterations
– Widening/Narrowing
– Interprocedural Analysis
– Concurrency
– Modularity
– Non-Iterative methods



A Lattice of Abstractions

• Every element is an abstract domain

• A  A’ if there exists a Galois Connection 
from A to A’



But how to find the appropriate 
abstract domain

• Precision vs. Scalability

• Sometimes precision improves scalability

• Specialize the abstraction for the desired 
property



Counter Example 
Guided Refinement (CEGAR)
• Run the analysis with a simple abstract 

domain

• When the analysis verifies the property 
declare done

• If the analysis reports an error employs a 
theorem prover to identify if the error is 
feasible
– If the error is feasible generate a concrete trace

– If the error is spurious refine the abstract 
domain and repeat 



A Simple Example
z =5

if (y >0)

x = z;

else

x = -y;

assert x >0

y  0

x = z x = -y

assert x >0

z = 5

sign(x) [x ]

[x ]

[x ]
T F

[x P]

[x ] [x ]
[x ]



A Simple Example
z =5

if (y >0)

x = z;

else

x = -y;

assert x >0

y > 0

x = z x = -y

assert x >0

z = 5

sign(x), sign(y) [x , y ]

[x , y]

T F

[x , yP] [x , yN]

[x , yP] [x P, yN]

[x , y]



A Simple Example
z =5

if (y >0)

x = z;

else

x = -y;

assert x >0

y > 0

x = z x = -y

assert x >0

z = 5

sign(x), sign(y), sign(z) [x , y, z ]

[x , y, zP ]

T F

[x , yP, zP ] [x , yN, zP ]

[x P, yP, zP ] [x P, yN, zP ]

[x P, y, zP ]



Simple Example (local abstractions)

z =5

if (y >0)

x = z;

else

x = -y;

assert x >0

y > 0

x = z x = -y

assert x >0

z = 5

sign(x), sign(y), sign(z) []

[zP ]

T F

[yP, zP] [yN]

[x P] [x P]

[x P]



Plan

• CEGAR in BLAST (inspired by SLAM) POPL’04

• Limitations



Abstractions from Proofs

Thomas A. Henzinger
Ranjit Jhala

[UC Berkeley]

Rupak Majumdar
[UC Los Angeles]

Kenneth L. McMillan
[Cadence Berkeley Labs]



Scalable Program Verification

• Little theorems about big programs
– Partial Specifications 

• Device drivers use kernel API correctly

• Applications use root privileges correctly 

– Behavioral, path-sensitive properties



Predicate Abstraction: A crash course 

Initial

Error

Program State Space Abstraction

• Abstraction:  Predicates on program state

– Signs: x > 0

– Aliasing: &x  &y

• States satisfying the same predicates are equivalent

– Merged into single abstract state



(Predicate) Abstraction: A crash course

Initial

Error

Program State Space Abstraction

Q1: Which predicates are required to verify a property ?



The Predicate Abstraction Domain

• Fixed set of predicates Pred

• The relational domain is 

<P(P(Pred)), , P(Pred), , >

– Join is set union

– State space explosion

• Special case of canonic abstraction



Scalability vs. Verification

• Many  predicates tracked

– e.g. values of variables

• State explosion

– Analysis drowned in detail

scalability verification

• Few predicates tracked            

– e.g. type of variables

• Imprecision hinders Verification 

– Spurious counterexamples



Example

while(*){

1: if (p1) lock();

if (p1) unlock();

…

2: if (p2) lock();

if (p2) unlock();

…

n: if (pn) lock();

if (pn) unlock();

}

Only track lock

Bogus Counterexample

– Must correlate branches

scalability

lock

lock

unlock

Predicate p1 makes trace  

abstractly infeasible

pi required for verification

T
F

T



Example

while(*){

1: if (p1) lock();

if (p1) unlock();

…

2: if (p2) lock();

if (p2) unlock();

…

n: if (pn) lock();

if (pn) unlock();

}

Only track lock

Bogus Counterexample

– Must correlate branches

scalability

lock

lock

unlock

Track lock, pi s

State Explosion

– > 2n distinct states

– intractable

verification

How can we get scalable verification ?



By Localizing Precision

while (*) {

1: if (p1) lock();

if (p1) unlock();

…

2: if (p2) lock();

if (p2) unlock();

…

n: if (pn) lock();

if (pn) unlock();

} 

p1

p2

pn Preds. Used 
locally

Ex: 2 £ n states

Preds. used 
globally 

Ex: 2n states

Q2: Where are the predicates required ?



[Clarke et al. ’00]

[Ball, Rajamani ’01]

Counterexample Guided Refinement

YES

SAFE
explanation NO!  (Trace)

BUG

feasible

Seed Abstraction

Program   

Why infeasible ?

Refine

Abstract
Is model safe ?

Check

1. What predicates remove trace ?

• Make it abstractly infeasible

2. Where are predicates needed ?

[Kurshan et al. ’93]

explanation

Why infeasible ?



Counterexample Guided Refinement

YES

SAFE
explanation NO!  (Trace)

BUG

feasible

Seed Abstraction

Program   

Why infeasible ?

Refine

Abstract
Is model safe ?

Check



Counterexample Guided Refinement

YES

SAFE
explanation NO!  (Trace)

BUG

feasible

Seed Abstraction

Program   

Why infeasible ?

Refine

Abstract
Is model safe ?

Check

safe



This Talk: Counterexample Analysis

YES

SAFE
explanation NO!  (Trace)

BUG

feasible

Seed Abstraction

Program   

Why infeasible ?

Refine

Abstract
Is model safe ?

Check

1. What predicates remove trace ?

• Make it abstractly infeasible

2. Where are predicates needed ?



Plan

1.Motivation

2.Refinement using Traces

• Simple 

• Procedure calls

3.Results



Trace Formulas

• A single abstract trace represents infinite 
number of traces

– Different loop iterations

– Different concrete values

• Solution

– Only considers concrete traces with the same 
number of executions

– Use formulas to represent sets of states



Representing States as Formulas

[F]
states satisfying F  {s | s  F }

F
FO formula over prog. vars

[F1]  [F2] F1  F2

[F1]  [F2] F1  F2

[F]  F 

[F1]  [F2] F1 implies F2

i.e. F1   F2  unsatisfiable 



Counterexample Analysis

Refine

Trace

Feasible

Explanation
of

Infeasibility Q2: Where are preds 
required   ?

Q1: What predicates
remove trace ?

Q0: Is trace feasible ?

SSA
Trace

Feasibility
Formula

Trace

Feasible

Thm Pvr 

Proof of 
Unsat.

Extract Predicate Map:
Prog Ctr ! Predicates



Q2: Where are preds 
required   ?

Q1: What predicates
remove trace ?

Q0: Is trace feasible ?

Counterexample Analysis

Refine

Trace

Feasible

Explanation
of

Infeasibility

SSA

Trace

Feasible

Proof of 
Unsat.

Extract Predicate Map:
Prog Ctr ! Predicates

Thm Pvr 
Trace

Feasibility
Formula



Traces

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

y = x +1

pc1: x = ctr;

pc2: ctr = ctr + 1;

pc3: y = ctr;

pc4: if (x = i-1){

pc5:   if (y != i){

ERROR: }

}



Trace Feasibility Formulas

pc1: x = ctr

pc2: ctr = ctr+1

pc3: y = ctr 

pc4: assume(x=i-1)

pc5: assume(yi)

Trace SSA Trace 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

pc1: x1 = ctr0

pc2: ctr1 = ctr0+1

pc3: y1 = ctr1

pc4: assume(x1=i0-1)

pc5: assume(y1i0)

Trace Feasibility
Formula

Theorem:  Trace is Feasible , TFF is Satisfiable

Compact Verification Conditions [Flanagan,Saxe ’00]



Q2: Where are preds 
required   ?

Q1: What predicates
remove trace ?

Counterexample Analysis

Refine

Trace

Feasible

Explanation
of

Infeasibility

SSA

Trace

Feasible

Proof of 
Unsat.

Extract Predicate Map:
Prog Ctr ! Predicates

Thm Pvr 
Trace

Feasibility
Formula

Q0: Is trace feasible ?



Trace
Feasibility
Formula

Q0: Is trace feasible ?

Counterexample Analysis

Refine

Trace

Feasible

Explanation
of

Infeasibility

SSA

Trace

Feasible

Proof of 
Unsat.

Extract Predicate Map:
Prog Ctr ! Predicates

Thm Pvr 

Q2: Where are preds 
required  ?

Q1: What predicates
remove trace ?



Proof of Unsatisfiability

Trace Formula

x1 = ctr0

ctr1 = ctr0 + 1

y1 = ctr1

 x1 = i0 - 1

y1  i0

x1 = ctr0 x1 = i0 -1

ctr0 = i0-1 ctr1= ctr0+1

ctr1 = i0 y1= ctr1

y1= i0 y1 i0

;

Proof of Unsatisfiability 

PROBLEM
Proof uses entire history of execution
• Information flows up and down

No localized or state information ! 



The Present State…

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace

… is all the information the 
executing program has here

1. … after executing trace prefix

2. … knows present values of variables

3. … makes trace suffix infeasible

State…

At pc4, which predicate on 
present state shows 
infeasibility of suffix ? 



What Predicate is needed ? 
Trace

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Formula (TF) 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

1. … after executing trace prefix

2. … has present values of variables

3. … makes trace suffix infeasible

State…

… implied by TF prefix

Predicate …



What Predicate is needed ? 
Trace

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Formula (TF) 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

1. … after executing trace prefix

2. … has present values of variables

3. … makes trace suffix infeasible

State…

… implied by TF prefix

… on common variables 

Predicate …

x1

x1



What Predicate is needed ? 
Trace

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Formula (TF) 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

1. … after executing trace prefix

2. … has present values of variables

3. … makes trace suffix infeasible

State…

… implied by TF prefix

… on common variables 

… & TF suffix is unsatisfiable

Predicate …



What Predicate is needed ? 
Trace

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Formula (TF) 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

1. … after executing trace prefix

2. … knows present values of variables

3. … makes trace suffix infeasible

State…

… implied by TF prefix

… on common variables 

… & TF suffix is unsatisfiable

Predicate …



Craig’s Interpolation Theorem [Craig ’57]

Given formulas - , + s.t. - + is unsatisfiable

There exists an Interpolant  for  - , + , s.t.

1. - implies 

2.  has symbols common to -, +

3.   + is  unsatisfiable

+-
 



Examples of Craig’s Interpolation 

• - = b  (b c) 
+ = c

• - = x1 =ctr0  ctr1=ctr0+1 y1=ctr1

+ = x1=i0 -1 y1i0
– y1 = x1 + 1



Craig’s Interpolation Theorem [Craig ’57]

Given formulas - , + s.t. -Æ + is unsatisfiable

There exists an Interpolant  for  - , + , s.t.

1. - implies 

2.  has only symbols common to -, +

3.   + is  unsatisfiable

 computable from Proof of Unsat. of -  +

[Krajicek ’97] [Pudlak ’97]

(boolean) SAT-based Model Checking [McMillan ’03]



Interpolant = Predicate !

1.  Predicate  implied by trace prefix

2.  Predicate on common variables
common = current value

3.  Predicate & suffix yields a contradiction

Require:

-

+

Interpolate 

1. - implies 

2.  has symbols common to -,+

3.     + is unsatisfiable

Interpolant:

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Trace Formula 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0



Interpolant = Predicate !

1.  Predicate  implied by trace prefix

2.  Predicate on common variables

3.  Predicate & suffix yields a contradiction

Require:

-

+

Interpolate 

1. - implies 

2.  has symbols common to -,+

3.     + is unsatisfiable

Interpolant:

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Trace Formula 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0
y1 = x1 + 1



Interpolant = Predicate !

1.  Predicate  implied by trace prefix

2.  Predicate on common variables

3.  Predicate & suffix yields a contradiction

Require:

-

+

Interpolate 

1. - implies 

2.  has symbols common to -,+

3.    Æ + is unsatisfiable

Interpolant:

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Trace Formula 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

Predicate at pc4:

y= x+1

y1 = x1 + 1
pc4



Building Predicate Maps

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Trace Formula 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

•Cut + Interpolate at each point

•Pred. Map:  pci  Interpolant from cut i

-

+

Interpolate x1 = ctr0

Predicate Map

pc2: x= ctr

pc2



Building Predicate Maps

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Trace Formula 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

•Cut + Interpolate at each point

•Pred. Map:  pci  Interpolant from cut i

-

+

Interpolate

Predicate Map

pc2: x = ctr
pc3: x= ctr-1

x1= ctr1-1
pc3



x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

Building Predicate Maps

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Trace Formula 

•Cut + Interpolate at each point

•Pred. Map:  pci  Interpolant from cut i

-

+

Interpolate

Predicate Map

pc2: x = ctr
pc3: x = ctr-1
pc4: y = x+1
pc5: y= i

y1= i0
pc5



Building Predicate Maps

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr 

pc4: assume(x = i-1)

pc5: assume(y  i)

Trace Trace Formula 

x1 = ctr0

 ctr1 = ctr0 + 1

 y1 = ctr1

 x1 = i0 - 1

 y1  i0

Predicate Map

pc2: x = ctr
pc3: x = ctr-1
pc4: y = x+1
pc5: y = i

Theorem: Predicate map makes trace abstractly infeasible



Plan

1.Motivation

2.Refinement using Traces

• Simple 

• Procedure calls

3. Results



Traces with Procedure Calls

Trace Formula

i

pc1: x1 = 3

pc2: assume (x1>0)

pc3: x3 = f1(x1)

pc4: y2 = y1

pc5: y3 = f2(y2)

pc6: z2 = z1+1

pc7: z3 = 2*z2

pc8: return z3

pc9: return y3
pc10: x4 = x3+1

pc11: x5 = f3(x4)

pc12: assume(w1<5)

pc13: return w1
pc14: assume x4>5

pc15: assume (x1=x3+2)

pc1: x1 = 3

pc2: assume (x1>0)

pc3: x3 = f1(x1)

pc4: y2 = y1

pc5: y3 = f2(y2)

pc6: z2 = z1+1

pc7: z3 = 2*z2

pc8: return z3

pc9: return y3
pc10: x4 = x3+1

pc11: x5 = f3(x4)

pc12: assume(w1<5)

pc13: return w1
pc14: assume x4>5

pc15: assume(x1=x3+2)

Trace 

i

Find predicate 
needed at point i



Interprocedural Analysis

Trace Formula

i

Trace 

i

Procedure Summaries [Reps,Horwitz,Sagiv ’95] 

Polymorphic Predicate Abstraction [Ball,Millstein,Rajamani ’02]

Require at each point i:

Well-scoped predicates

YES: Variables visible at i

NO: Caller’s local variables 

Find predicate 
needed at point i

YES

NO

NO



Problems with Cutting

Trace Formula

i

Trace 

i

-

+

Caller variables common to  - and +

• Unsuitable interpolant: not well-scoped



Interprocedural Cuts

Trace Formula

i

Call begins 

Trace 

i



Interprocedural Cuts

-+

Trace Formula

i

Call begins 

Trace 

i

Predicate at  pci = Interpolant from cut i



Common Variables

Formals

Current locals

Trace Formula

Predicate at  pci = Interpolant from i-cut

i

Trace 

i
-+

Common Variables

Formals

Well-scoped



Plan

1.Motivation

2.Refinement using Traces

• Simple 

• Procedure calls

3. Results



Implementation

• Algorithms implemented in BLAST
– Verifier for C programs, Lazy Abstraction [POPL ’02]

• FOCI : Interpolating decision procedure

• Examples:
– Windows Device Drivers (DDK)

– IRP Specification: 22 state FSM

– Current: Security properties of Linux programs



Results

Program LOC* Previous

Time

New

Time

Predicates

Total        Average

kbfiltr 12k 1m12s 3m48s 72 6.5

floppy 17k 7m10s 25m20s 240 7.7

diskperf 14k 5m36s 13m32s 140 10

cdaudio 18k 20m18s 23m51s 256 7.8

parport 61k DNF 74m58s 753 8.1

parclass 138k DNF 77m40s 382 7.2

Windows DDK

IRP 

22 state

* Pre-processed



Localizing works…

Program LOC* Previous

Time

New

Time

Predicates

Total        Average

kbfiltr 12k 1m12s 3m48s 72 6.5

floppy 17k 7m10s 25m20s 240 7.7

diskperf 14k 5m36s 13m32s 140 10

cdaudio 18k 20m18s 23m51s 256 7.8

parport 61k DNF 74m58s 753 8.1

parclass 138k DNF 77m40s 382 7.2

Windows DDK

IRP 

22 state

* Pre-processed



Conclusion

• Scalability and Precision by localizing

• Craig Interpolation
– Interprocedural cuts give well-scoped predicates

• Some Current and Future Work:

– Multithreaded Programs

• Project local info of thread to predicates over globals

– Hierarchical trace analysis



Limitations of CEGAR

• Limited to powerset/relational abstract 
domains

• Interpolant computations

• Interactions with widening

• Starting on the right foot

• Unnecessary refinement steps

• Long and infinite number of refinement 
steps

• Long traces



Unnecessary Refinements

x = 0

while (x < 106) do

x = x + 1

assert x < 100



Unsuccessful Refinement Set

x = malloc();

y = x ;

while (…)

t = malloc();

t->next = x

x = t;

…

while (x !=y) do

assert x != null;

x = x->next  



Long Traces
Example ( ) {
1:c = 0;
2:for(i=1;i<1000;i++)
3:   c = c + f(i);

4:if (a>0) {
5:   if (x==0) {
ERR:  ;

}
}

}

• Assume f always terminates

• ERR is reachable

– a and x are unconstrained

• Any feasible path to error must 
unroll the loop 1000 times AND
find feasible paths through f

• Any other path must be 
dismissed as a false positive



Long Traces

Example ( ) {

1:c = 0;

2:for(i=1;i<1000;i++)

3:   c = c + f(i);

4:if (a>0) {

5:   if (x==0) {

ERR:  ;

}

}

}

• Intuitively, the for loop is 
irrelevant

• ERR reachable as long as there 
exists  some path from 2 to 4 
that does not modify a or x

• Can we use static analysis to 
precisely report a statement is 
reachable without finding a 
feasible path?



Long Traces

Example ( ) {

1:c = 0;

2:for(i=1;i<1000;i++)

3:   c = c + f(i);

4:if (a>0) {

5:   if (x==0) {

ERR:  ;

}

}

}

c =  0

1

i = 1

2

i¸1000

2’

3

c = c + f(i);i++

4

2’

i<1000

a>0

x==0

5

1

4

a>0

x==0

5



Path Slice (PLDI’05)

The path slice of a program path  is a 
subsequence of the edges of  such that if 
the sequence of operations along the 
subsequence is: 

1. infeasible, then  is infeasible, and

2. feasible, then the last location of  is 
reachable (but not necessarily along )


