SLAM

- A Microsoft tool for checking safety of device drivers
- Inspired BLAST

BLAST

Berkeley Lazy Abstraction Software * Tool

www.eecs.berkeley.edu/~blast/

Counter Example Guided Refinement CEGAR

Mooly Sagiv

Recap

- Many abstract domains
 - Signs
 - Odd/Even
 - Constant propagation
 - Intervals
 - [Polyhedra]
 - Canonic abstraction
 - Domain constructors
 - ...
- Static Algorithms
 - Iterative Chaotic Iterations
 - Widening/Narrowing
 - Interprocedural Analysis
 - Concurrency
 - Modularity
 - Non-Iterative methods

A Lattice of Abstractions

- Every element is an abstract domain
- $A \sqsubseteq A'$ if there exists a Galois Connection from A to A'

But how to find the appropriate abstract domain

- Precision vs. Scalability
- Sometimes precision improves scalability
- Specialize the abstraction for the desired property

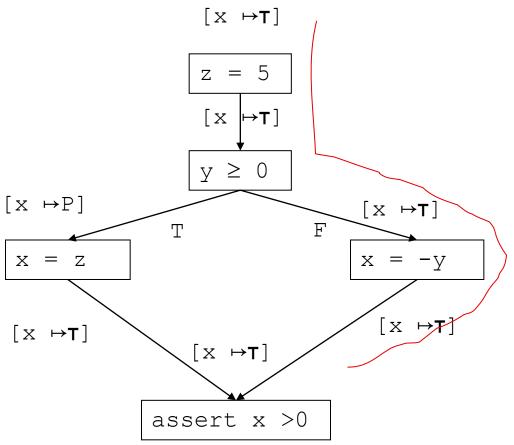
Counter Example

Guided Refinement (CEGAR)

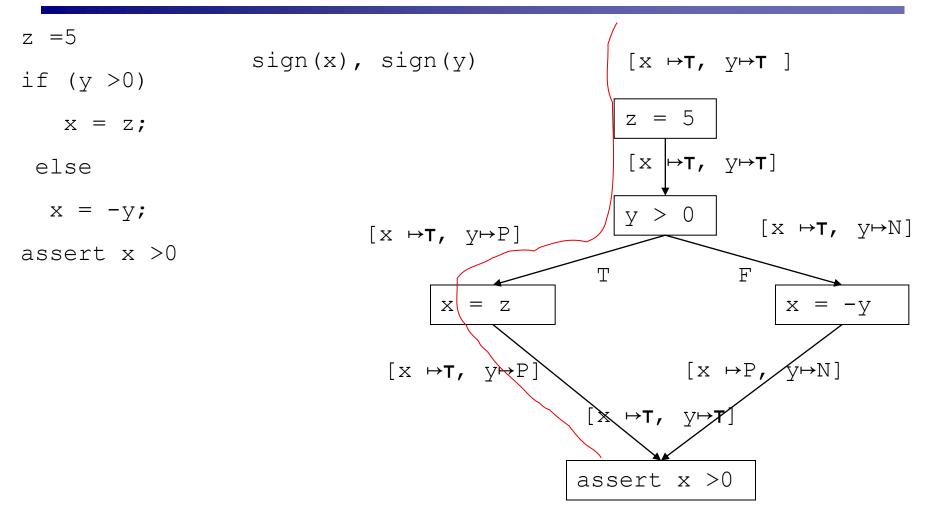
- Run the analysis with a simple abstract domain
- When the analysis verifies the property declare done
- If the analysis reports an error employs a theorem prover to identify if the error is feasible
 - If the error is feasible generate a concrete trace
 - If the error is spurious refine the abstract domain and repeat

A Simple Example

z =5 sign(x) if (y >0) X = Z;else x = -y;assert x > 0



A Simple Example



A Simple Example

z =5 sign(x), sign(y), sign(z) $[x \mapsto T, y \mapsto T, z \mapsto T]$ if (y > 0)z = 5X = Z; $[x \mapsto T, y \mapsto T, z \mapsto P]$ else у > О x = -y; $[x \mapsto T, y \mapsto N, z \mapsto P]$ $[x \mapsto T, y \mapsto P, z \mapsto P]$ assert x > 0Т F X = -YX = Z $[x \mapsto P, y \mapsto P, z \mapsto P]$ $[x \mapsto P, y \mapsto N, z \mapsto P]$ $[x \rightarrow P, y \rightarrow T, z \rightarrow P]$ assert x > 0

Simple Example (local abstractions)

z =5 sign(x), sign(y), sign(z) [] if (y > 0)z = 5 X = Z;[z+]₽] else y > 0 x = -y;[y⊷N] $[y \mapsto P, z \mapsto P]$ assert x > 0F Т X = Zx = -y $[x \mapsto P]$ $[x \mapsto P]$ [X] $\rightarrow P$ assert x > 0

Plan

- CEGAR in BLAST (inspired by SLAM) POPL'04
- Limitations

Abstractions from Proofs

Thomas A. Henzinger Ranjit Jhala [UC Berkeley]

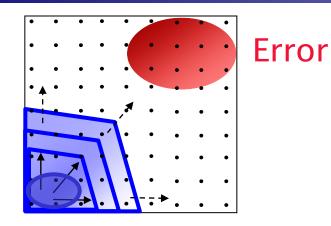
> Rupak Majumdar [UC Los Angeles]

Kenneth L. McMillan [Cadence Berkeley Labs]

Scalable Program Verification

- *Little theorems* about *big programs*
 - Partial Specifications
 - Device drivers use kernel API correctly
 - Applications use root privileges correctly
 - Behavioral, path-sensitive properties

Predicate Abstraction: A crash course



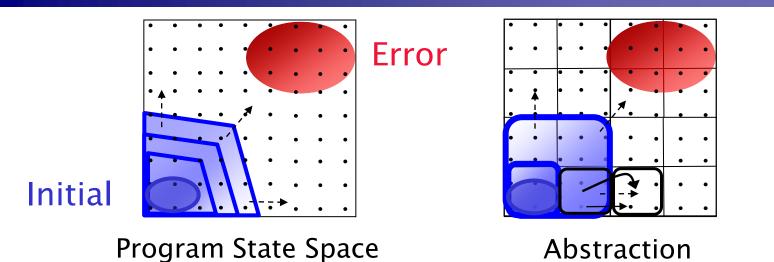
Program State Space

Initial

Abstraction

- Abstraction: *Predicates* on program state
 - Signs: x > 0
 - Aliasing: &x ≠ &y
- States satisfying the same predicates are equivalent
 - Merged into single abstract state

(Predicate) Abstraction: A crash course

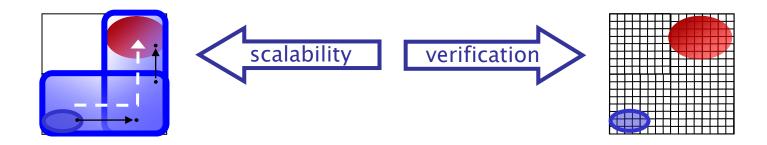


Q1: Which predicates are required to verify a property?

The Predicate Abstraction Domain

- Fixed set of predicates Pred
- The relational domain is $< P(P(Pred)), \emptyset, P(Pred), \cup, \cap >$
 - Join is set union
 - State space explosion
- Special case of canonic abstraction

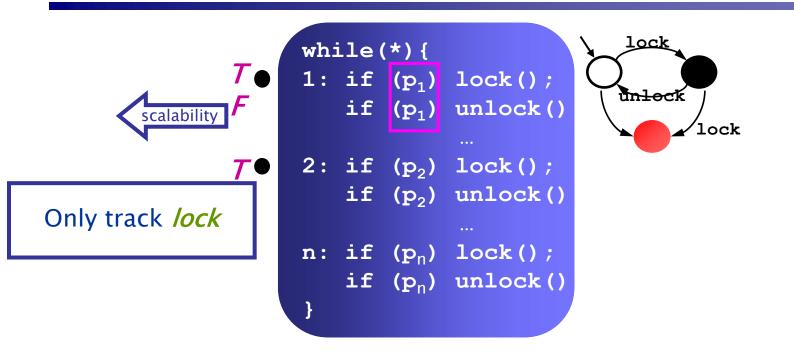
Scalability vs. Verification



- Few predicates tracked
 - e.g. type of variables
- Imprecision hinders Verification
 - Spurious counterexamples

- Many predicates tracked
 e.g. values of variables
- State explosion
 - Analysis drowned in detail

Example



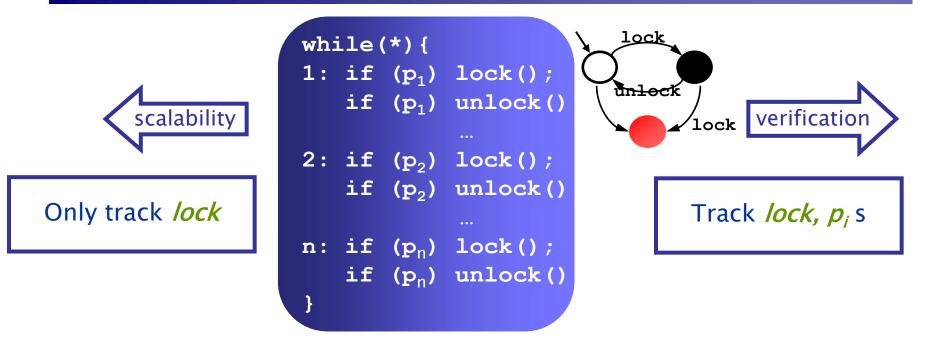
Bogus Counterexample

Must correlate branches

Predicate *p*₁ makes trace *abstractly infeasible*

*p*_i required for verification

Example



Bogus Counterexample

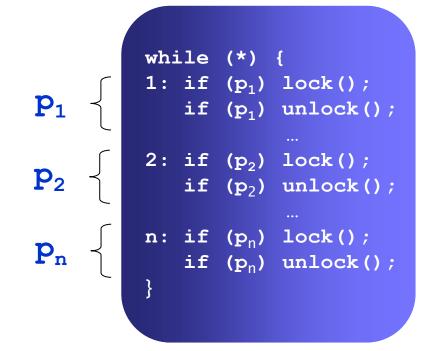
- Must *correlate* branches

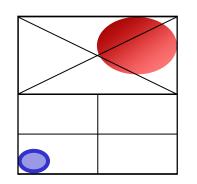
State Explosion

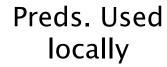
- > 2ⁿ distinct states
- intractable

How can we get scalable verification ?

By Localizing Precision







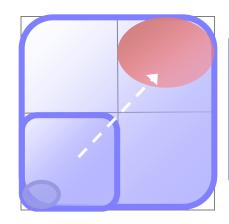
Ex: 2 £ n states

Preds. used globally

Ex: 2ⁿ states

Q2: *Where* are the predicates required ?

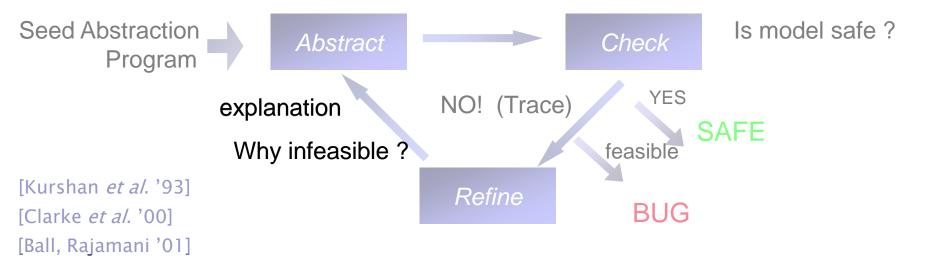
Counterexample Guided Refinement



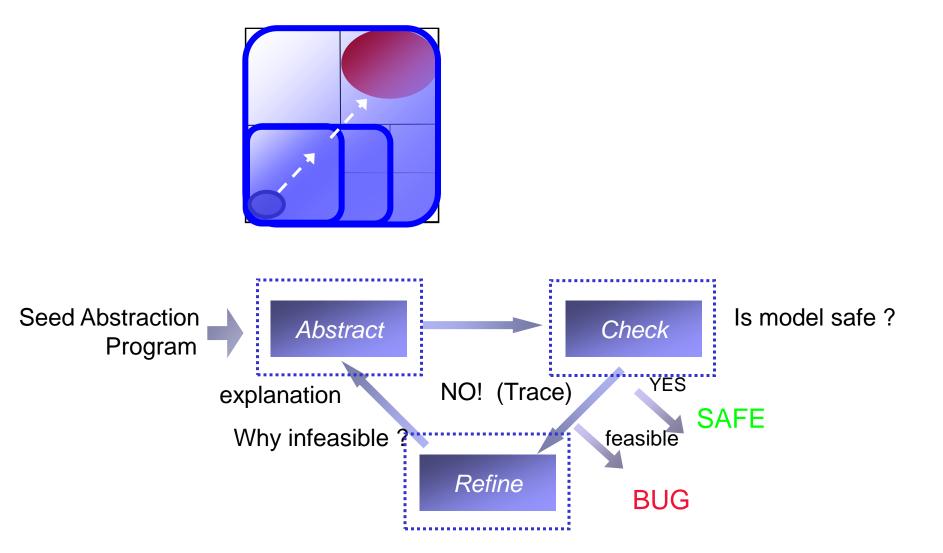
1. What predicates remove trace?

Make it abstractly infeasible

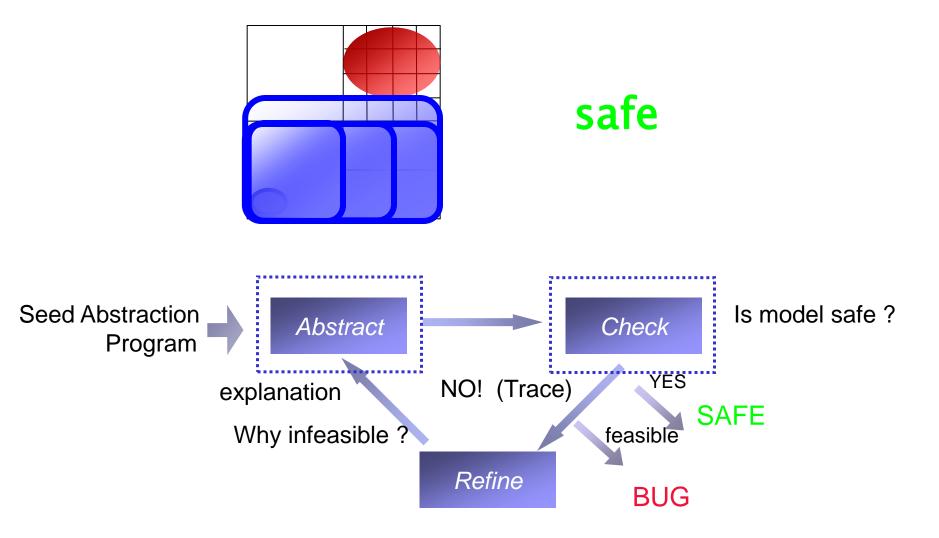
2. Where are predicates needed?



Counterexample Guided Refinement



Counterexample Guided Refinement

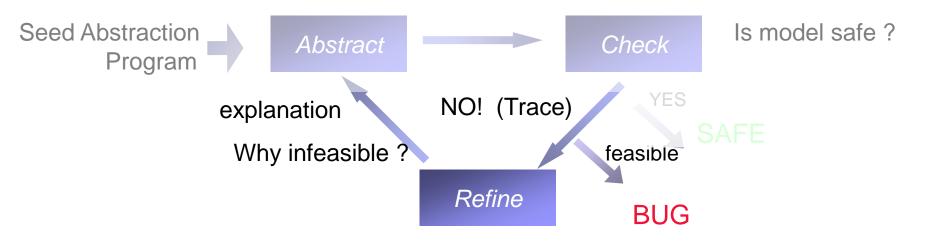


This Talk: Counterexample Analysis

1. What predicates remove trace?

Make it abstractly infeasible

2. Where are predicates needed ?



Plan

1. Motivation

2.Refinement using Traces

- Simple
- Procedure calls

3.Results

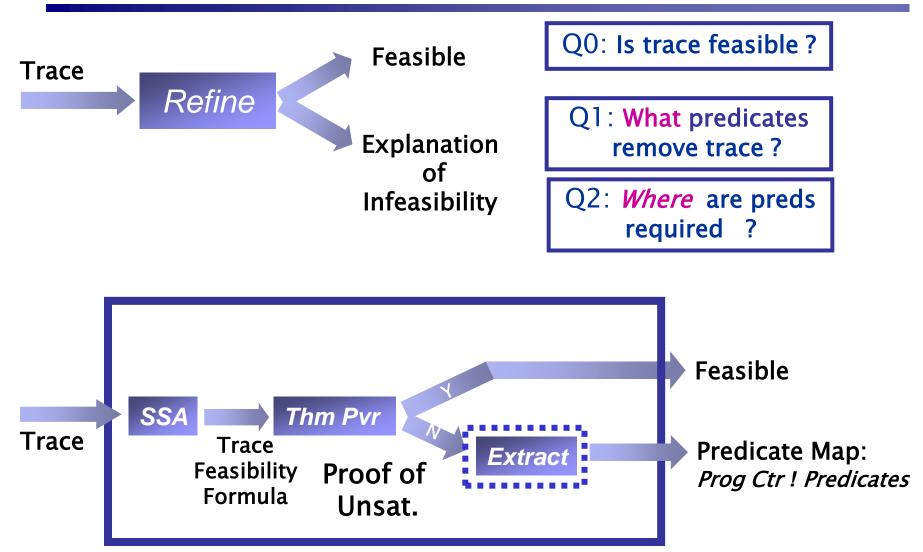
Trace Formulas

- A single abstract trace represents infinite number of traces
 - Different loop iterations
 - Different concrete values
- Solution
 - Only considers concrete traces with the same number of executions
 - Use formulas to represent sets of states

Representing States as Formulas

[F]	F
states satisfying $F \{ s \mid s \models F \}$ $[F_1] \cap [F_2]$	FO formula over prog. vars $F_1 \wedge F_2$
$[F_1] \cup [F_2]$	$F_1 \vee F_2$
[/]	
$[F_1] \subseteq [F_2]$	F_1 implies F_2
	i.e. $F_1 \wedge \neg F_2$ unsatisfiable

Counterexample Analysis



Counterexample Analysis



Traces

pc_1 :	$\mathbf{x} = \mathbf{ctr};$
pc_2 :	ctr = ctr + 1;
pc_{3} :	y = ctr;
pc_4 :	if $(x = i-1)$ {
pc_5 :	if (y != i) {
	ERROR: }
	l

J

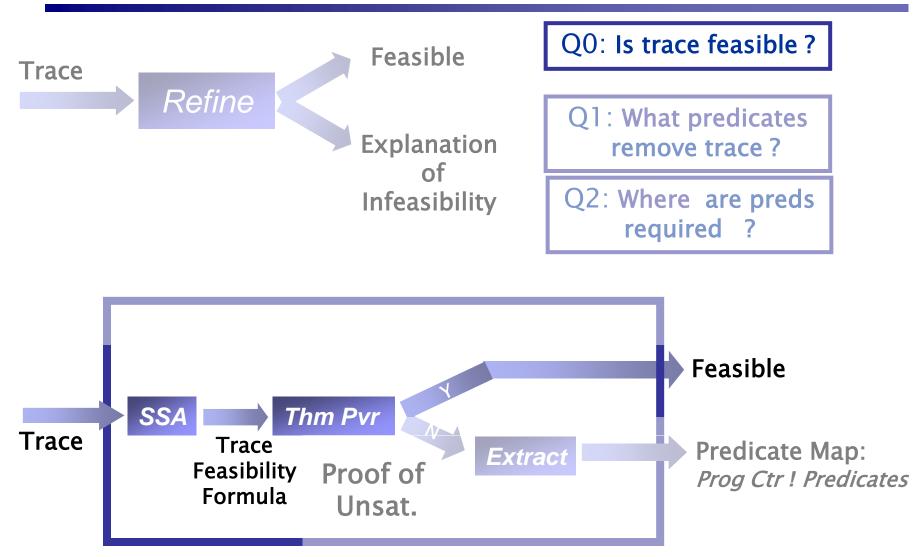
pc_1 :	$\mathbf{x} = \mathbf{ctr}$
	ctr = ctr + 1
pc_3 :	y = ctr assume (x = i-1) $y = x + 1$
pc_4 :	assume $(x = i-1)$
pc_5 :	$assume(y \neq i)$

Trace Feasibility Formulas

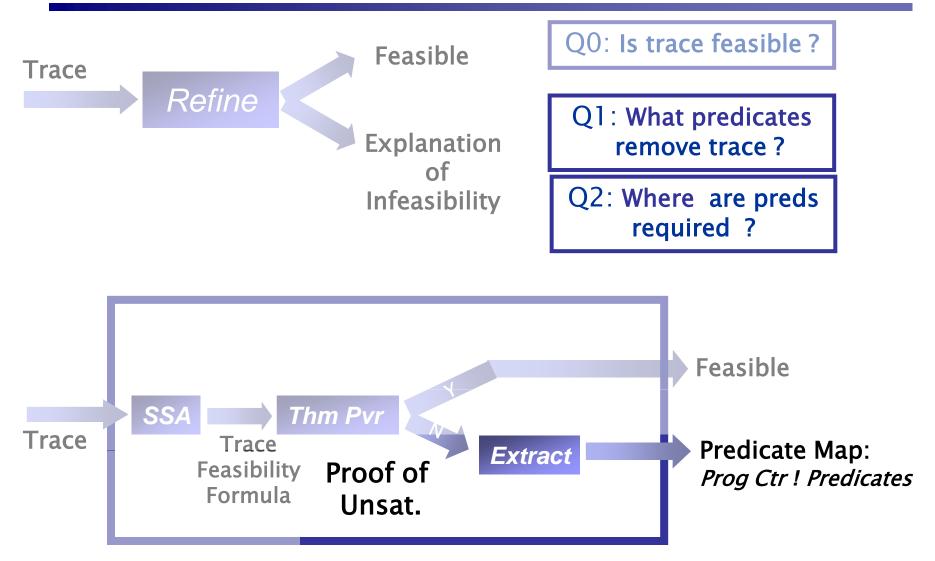
pc_1 : x = ctr	$pc_1: \mathbf{x}_1 = \mathtt{ctr}_0$	$x_1 = ctr_0$	
pc_2 : ctr = ctr+1	pc_2 : $ctr_1 = ctr_0+1$	$\wedge ctr_1 = ctr_0 + 1$	
pc_3 : y = ctr	pc_3 : $y_1 = ctr_1$	$\wedge y_1 = ctr_1$	
pc_4 : assume(x=i-1)	pc_4 : assume(x ₁ =i ₀ -1)	$\wedge \mathbf{X}_1 = \mathbf{i}_0 - 1$	
pc ₅ : assume(y≠i)	pc_5 : assume($y_1 \neq i_0$)	$\land \mathbf{y}_1 \neq \mathbf{i}_0$	
Trace	SSA Trace	Trace Feasibility Formula	
Theorem: Trace is <i>Feasible</i> , TFF is <i>Satisfiable</i>			

Compact Verification Conditions [Flanagan, Saxe '00]

Counterexample Analysis



Counterexample Analysis



Proof of Unsatisfiability

 $x_{1} = ctr_{0}$ $\wedge ctr_{1} = ctr_{0} + I$ $\wedge y_{1} = ctr_{1}$ $\wedge x_{1} = i_{0} - I$ $\wedge y_{1} \neq i_{0}$

 $x_{1} = ctr_{0} \quad x_{1} = i_{0} - 1$ $ctr_{0} = i_{0} - 1 \quad ctr_{1} = ctr_{0} + 1$ $ctr_{1} = i_{0} \quad y_{1} = ctr_{1}$ $y_{1} = i_{0} \quad y_{1} \neq i_{0}$;

Trace Formula

Proof of Unsatisfiability

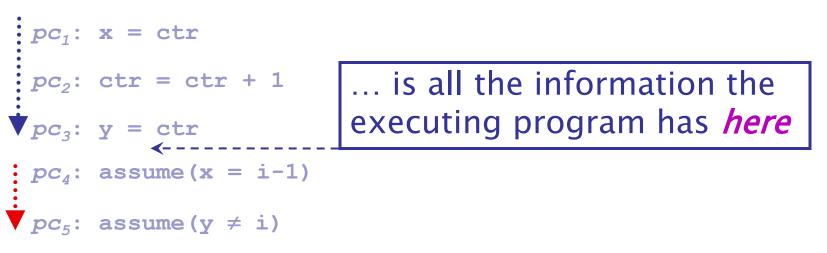
PROBLEM

Proof uses entire *history* of execution

Information flows up and down

No *localized* or *state* information !

The Present State...



State...

- 1. ... after executing trace *prefix*
- 2. ... knows *present values* of variables
- 3. ... makes trace *suffix* infeasible

At *pc*₄, which predicate on *present state* shows infeasibility of *suffix*?

What Predicate is needed?

Trace

 pc_1 : x = ctr

```
pc_2: ctr = ctr + 1
```

```
\mathbf{v}_{pc_3}: \mathbf{y} = \mathbf{ctr}
```

```
pc_4: assume(x = i-1)
```

```
pc_5: assume(y \neq i)
```

State...

after executing trace *prefix* has *present values* of variables
 makes trace *suffix* infeasible

Trace Formula (TF) $x_1 = ctr_0$ $\wedge ctr_1 = ctr_0 + 1$ $\checkmark y_1 = ctr_1$ $\wedge x_1 = i_0 - 1$ $\wedge y_1 \neq i_0$

Predicate ...

... implied by TF *prefix*

What Predicate is needed?

Trace

 pc_1 : x = ctr

 pc_2 : ctr = ctr + 1

 pc_3 : y = ctr

 pc_4 : assume(x = i-1)

 pc_5 : assume(y \neq i)

State...

1. ... after executing trace *prefix*

2. ... has *present values* of variables

3. ... makes trace *suffix* infeasible

Trace Formula (TF) $x_1 = ctr_0$ $\wedge ctr_1 = ctr_0 + 1$ $\wedge y_1 = ctr_1$ $\wedge x_1 = i_0 - 1$ $\wedge y_1 \neq i_0$

Predicate ...

... implied by TF *prefix*

... on *common* variables

What Predicate is needed ?

Trace

 pc_1 : x = ctr

```
pc_2: ctr = ctr + 1
```

 pc_3 : y = ctr

```
pc_4: assume(x = i-1)
```

```
pc_5: assume(y \neq i)
```

State...

... after executing trace *prefix* ... has *present values* of variables
 ... makes trace *suffix* infeasible

Trace Formula (TF) $x_1 = ctr_0$ $\wedge ctr_1 = ctr_0 + 1$ $\bigwedge y_1 = ctr_1$ $\wedge x_1 = i_0 - 1$ $\wedge y_1 \neq i_0$

Predicate ...

... implied by TF *prefix*

... on *common* variables

... & TF *suffix* is *unsatisfiable*

What Predicate is needed ?

Trace

 pc_1 : x = ctr

 pc_2 : ctr = ctr + 1

 pc_3 : y = ctr

 pc_4 : assume(x = i-1)

 pc_5 : assume(y \neq i)

State...

... after executing trace *prefix* ... knows *present values* of variables
 ... makes trace *suffix* infeasible

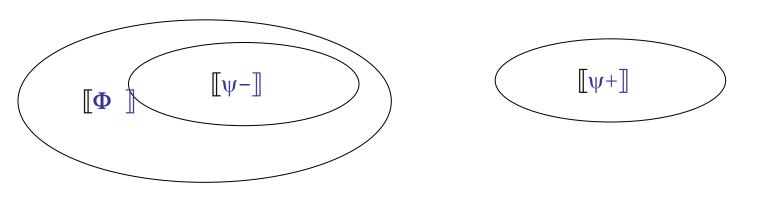
Trace Formula (TF) $x_1 = ctr_0$ $\wedge ctr_1 = ctr_0 + 1$ $\wedge y_1 = ctr_1$ $\wedge x_1 = i_0 - 1$ $\wedge y_1 \neq i_0$

Predicate ...

... implied by TF *prefix*... on *common* variables
... & TF *suffix* is *unsatisfiable*

Craig's Interpolation Theorem [Craig '57]

- Given formulas ψ^- , ψ^+ s.t. $\psi^- \land \psi^+$ is *unsatisfiable*
- There exists an *Interpolant* Φ for ψ^- , ψ^+ , s.t.
 - 1. ψ^- *implies* Φ
 - 2. Φ has symbols *common* to ψ^- , ψ^+
 - 3. $\Phi \land \psi^+$ is *unsatisfiable*



Examples of Craig's Interpolation

•
$$\psi^- = b \land (\neg b \lor c)$$

 $\psi^+ = \neg c$

• $\psi^{-} = \mathbf{x}_{1} = \operatorname{ctr}_{0} \wedge \operatorname{ctr}_{1} = \operatorname{ctr}_{0} + 1 \wedge \mathbf{y}_{1} = \operatorname{ctr}_{1}$ $\psi^{+} = \mathbf{x}_{1} = \mathbf{i}_{0} - 1 \wedge \mathbf{y}_{1} \neq \mathbf{i}_{0}$ - $\mathbf{y}_{1} = \mathbf{x}_{1} + 1$

Craig's Interpolation Theorem [Craig '57]

- Given formulas ψ^- , ψ^+ s.t. $\psi^- \mathcal{E} \psi^+$ is *unsatisfiable*
- There exists an *Interpolant* Φ for ψ^- , ψ^+ , s.t.
 - 1. ψ^- *implies* Φ
 - 2. Φ has only symbols *common* to ψ^- , ψ^+ 3. $\Phi \land \psi^+$ is *unsatisfiable*

Φ computable from *Proof of Unsat.* of $\psi^- \land \psi^+$

[Krajicek '97] [Pudlak '97] (boolean) SAT-based Model Checking [McMillan '03]

Interpolant = Predicate !

TraceTrace Formula $pc_1: x = ctr$ $x_1 = ctr_0$ $pc_2: ctr = ctr + 1$ $\wedge ctr_1 = ctr_0 + 1 \quad \Psi^ pc_3: y = ctr$ $\wedge y_1 = ctr_1$ $pc_4: assume (x = i-1)$ $\wedge x_1 = i_0 - 1$ $pc_5: assume (y \neq i)$ $\wedge y_1 \neq i_0$

Require:

- 1. Predicate *implied* by trace *prefix*
- 2. Predicate on *common* variables common = *current* value
- 3. Predicate & *suffix* yields a *contradiction*

Interpolant:

- 1. ψ^- implies Φ
- 2. Φ has symbols *common* to ψ^- , ψ^+
- 3. $\Phi \land \psi^+$ is *unsatisfiable*

Interpolant = Predicate !

TraceTrace Formula $pc_1: x = ctr$ $x_1 = ctr_0$ $pc_2: ctr = ctr + 1$ $\wedge ctr_1 = ctr_0 + 1$ $pc_3: y = ctr$ $\wedge y_1 = ctr_1$ $pc_4: assume (x = i-1)$ $\wedge x_1 = i_0 - 1$ $pc_5: assume (y \neq i)$ $\wedge y_1 \neq i_0$

Require:

- 1. Predicate *implied* by trace *prefix*
- 2. Predicate on *common* variables
- 3. Predicate & *suffix* yields a *contradiction*

Interpolant:

- 1. ψ^- implies Φ
- 2. Φ has symbols *common* to ψ^- , ψ^+
- *n* 3. $\Phi \wedge \psi^+$ is *unsatisfiable*

Interpolant = Predicate !

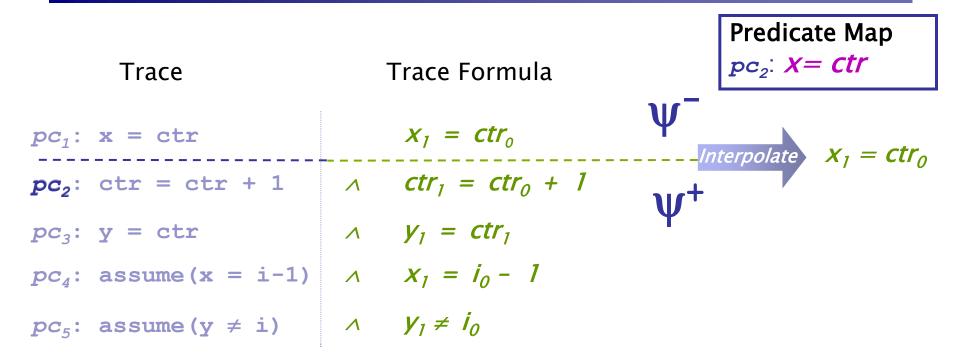
TraceTrace Formula $pc_1: x = ctr$ $x_1 = ctr_0$ $pc_2: ctr = ctr + 1$ $\wedge ctr_1 = ctr_0 + 1$ $pc_3: y = ctr$ $\wedge y_1 = ctr_1$ $pc_4: assume (x = i-1)$ $\wedge x_1 = i_0 - 1$ $pc_5: assume (y \neq i)$ $\wedge y_1 \neq i_0$

Require:

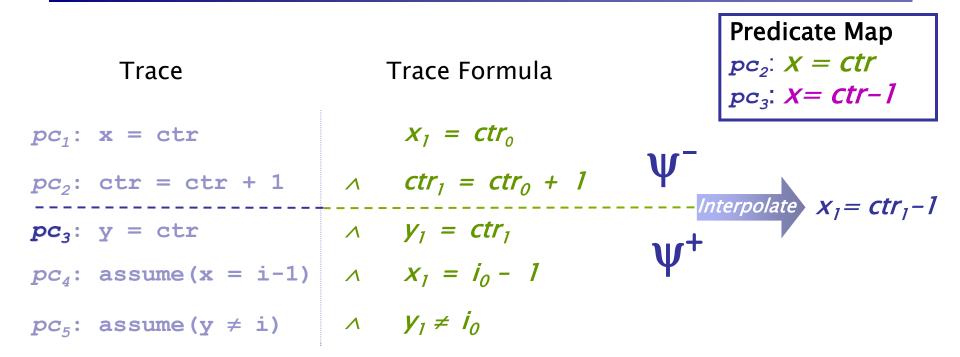
- 1. Predicate *implied* by trace *prefix*
- 2. Predicate on *common* variables
- 3. Predicate & *suffix* yields a *contradiction*

Interpolant:

- 1. ψ^- implies Φ
- 2. Φ has symbols *common* to ψ^-, ψ^+
- 3. $\Phi \not = \psi^+$ is *unsatisfiable*



- •Cut + Interpolate at *each* point
- Pred. Map: $pc_i \mapsto$ Interpolant from cut i



- •Cut + Interpolate at *each* point
- Pred. Map: $pc_i \mapsto$ Interpolant from cut i

Trace		Trace Formula	Predicate Map pc ₂ : X = Ctr pc ₃ : X = Ctr-1 pc ₄ : Y = X+1 pc ₅ : Y = i
pc_1 : x = ctr		$\boldsymbol{x}_1 = \boldsymbol{ctr}_0$	$pc_4: Y = X + 1$
pc_2 : ctr = ctr + 1	Λ	$ctr_1 = ctr_0 + 1$	pc_5 . $y - 1$
pc_3 : y = ctr	~	$y_1 = ctr_1$	
pc_4 : assume(x = i-1)	^	$x_1 = i_0 - 1$	Ψ
pc_5 : assume(y \neq i)	Λ	$y_1 \neq i_0$	Ψ^+

- •Cut + Interpolate at *each* point
- Pred. Map: $pc_i \mapsto$ Interpolant from cut i

Trace	Trace Formula		
pc_1 : x = ctr	$x_1 = ctr_0$		
pc_2 : ctr = ctr + 1	$\wedge ctr_1 = ctr_0 + 1$		
pc_3 : y = ctr	$\wedge \mathbf{y}_1 = \mathbf{ctr}_1$		
pc_4 : assume(x = i-1)	$\wedge X_1 = i_0 - 1$		
pc_5 : assume(y \neq i)	$\wedge \mathbf{y}_1 \neq \mathbf{i}_0$		

Predicate Map pc₂: X = ctr pc₃: X = ctr-1 pc₄: Y = X+1 pc₅: Y = i

Theorem: *Predicate map* makes trace *abstractly infeasible*

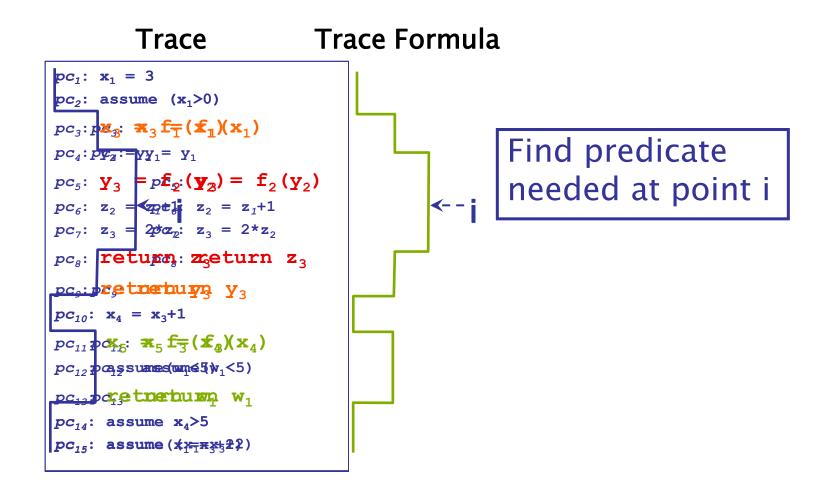
1. Motivation

2.Refinement using Traces

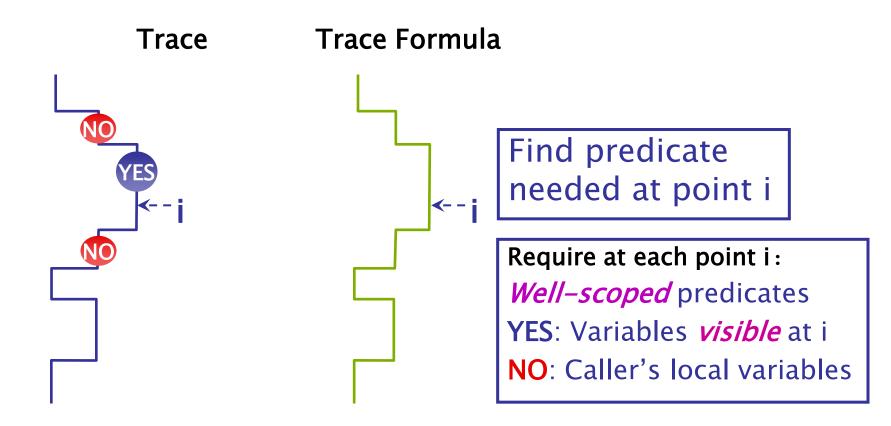
- Simple
- Procedure calls

3. Results

Traces with Procedure Calls

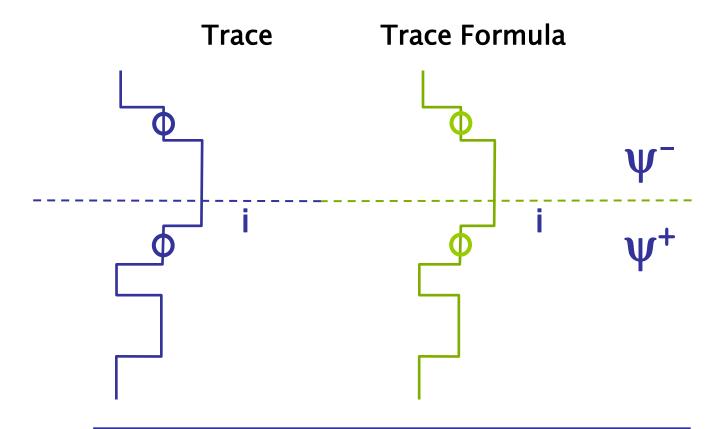


Interprocedural Analysis



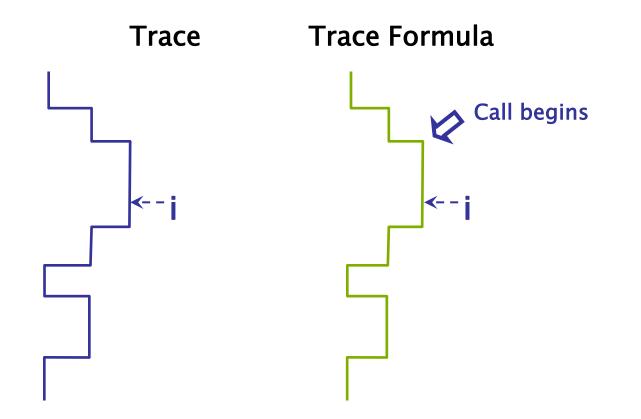
Procedure Summaries [Reps,Horwitz,Sagiv '95] Polymorphic Predicate Abstraction [Ball,Millstein,Rajamani '02]

Problems with Cutting

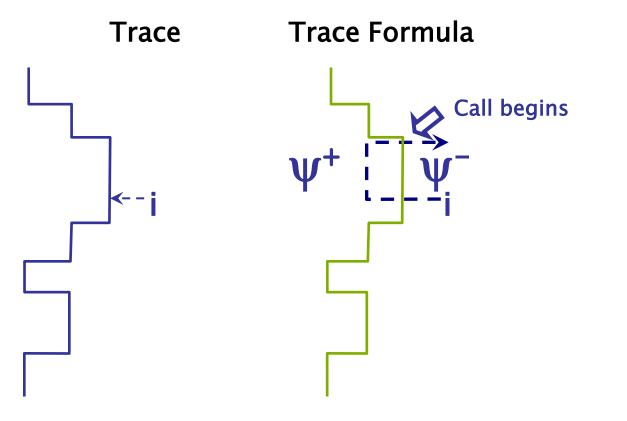


Caller variables common to ψ^- and ψ^+ • Unsuitable interpolant: not well-scoped

Interprocedural Cuts

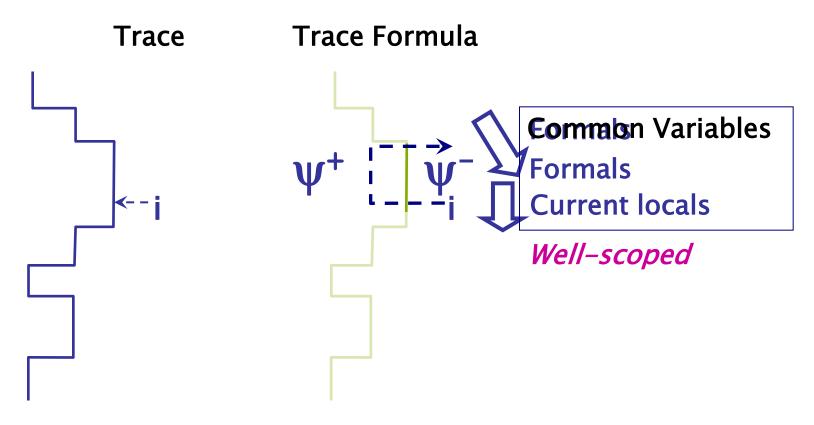


Interprocedural Cuts



Predicate at pc_i = Interpolant from cut i

Common Variables



Predicate at pc_i = Interpolant from i-cut

1. Motivation

2.Refinement using Traces

- Simple
- Procedure calls

3. Results

Implementation

- Algorithms implemented in BLAST
 Verifier for C programs, Lazy Abstraction [POPL '02]
- FOCI : Interpolating decision procedure
- Examples:
 - Windows Device Drivers (DDK)
 - IRP Specification: 22 state FSM
 - Current: Security properties of Linux programs

Windows DDK

IRP

22 state

Results

Program	LOC*	Previous	New	Predic	Predicates	
		Time	Time	Total	Average	
kbfiltr 💻	12k	1m12s	3m48s	72	6.5	
floppy =	17k	7m10s	25m20s	240	7.7	
diskperf	14k	5m36s	13m32s	140	10	
cdaudio	18k	20m18s	23m51s	256	7.8	
parport 💻	61k	DNF	74m58s	753	8.1	
parclass -	138k	DNF	77m40s	382	7.2	

* Pre-processed

Windows DDK

IRP

22 state

Localizing works...

Program	LOC*	Previous	New	Predie	Predicates	
		Time	Time	Total	Average	
kbfiltr 💻	12k	1m12s	3m48s	72	6.5	
floppy =	17k	7m10s	25m20s	240	7.7	
diskperf	14k	5m36s	13m32s	140	10	
cdaudio	18k	20m18s	23m51s	256	7.8	
parport 💻	61k	DNF	74m58s	753	8.1	
parclass <mark>-</mark>	138k	DNF	77m40s	382	7.2	

* Pre-processed

Conclusion

- Scalability and Precision by localizing
- Craig Interpolation
 - Interprocedural cuts give well-scoped predicates
- Some Current and Future Work:
 - Multithreaded Programs
 - Project local info of thread to predicates over globals
 - Hierarchical trace analysis

Limitations of CEGAR

- Limited to powerset/relational abstract domains
- Interpolant computations
- Interactions with widening
- Starting on the right foot
- Unnecessary refinement steps
- Long and infinite number of refinement steps
- Long traces

Unnecessary Refinements

x = 0while (x < 10⁶) do x = x + 1assert x < 100

Unsuccessful Refinement Set

```
x = malloc();
y = x;
while (...)
     t = malloc();
     t \rightarrow next = x
     x = t;
...
while (x !=y) do
     assert x != null;
     x = x - next
```

Long Traces

Example () { 1:c = 0; 2:for(i=1;i<1000;i++) 3: c = c + f(i);

```
4:if (a>0) {
5: if (x==0) {
ERR: ;
    }
}
```

- Assume f always terminates
- ERR is reachable
 a and x are unconstrained
- Any feasible path to error must unroll the loop 1000 times AND find feasible paths through f
- Any other path must be dismissed as a false positive

Long Traces

```
Example () {

1:c = 0;

2:for(i=1;i<1000;i++)

3: c = c + f(i);
```

```
4:if (a>0) {
5: if (x==0) {
ERR: ;
    }
}
```

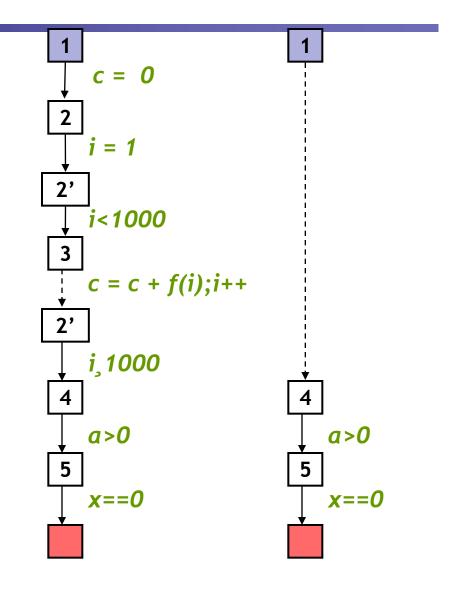
 Intuitively, the for loop is irrelevant

- ERR reachable as long as there exists some path from 2 to 4 that does not modify a or x
- Can we use static analysis to precisely report a statement is reachable *without* finding a feasible path?

Long Traces

Example () { 1:c = 0; 2:for(i=1;i<1000;i++) 3: c = c + f(i);

4:if (a>0) {
5: if (x==0) {
ERR: ;
 }
}



Path Slice (PLDI'05)

- The path slice of a program path π is a subsequence of the edges of π such that if the sequence of operations along the subsequence is:
- 1. infeasible, then π is infeasible, and
- 2. feasible, then the last location of π is reachable (but not necessarily along π)