
1

Iterative Program Analysis

Abstract Interpretation

Mooly Sagiv

http://www.cs.tau.ac.il/~msagiv/courses/pa11.html

Tel Aviv University

640-6706

Textbook: Principles of Program Analysis

Chapter 4

CC79, CC92

Outline

 The abstract interpretation technique

– Precision

– Complexity

– Widening

– Combining Analysis

– Backward Analysis

 Later

– Interprocedural Analysis

– Applications

» String Analysis

» Shape Analysis

» Java Safety

» Device Drivers

Constant Propagation Example

if

x = 2;

y = 3;

x = 3;

y = 2;

z = x + y;

1

2 3

54

6

7

df[1] = [x, y, z]

df[2] = df[1]

df[3] = df[1]

df[4] = df[2] [x 3]

df[5] = df[3] [x 2]

df[6] = df[4] [y 2]  df[5] [y 3]

df[7] = df[6] [z df[6]x +# df[6]y]

Precision

We cannot usually have

– (CS) =df

on all programs

 But can we say something about precision in all

programs?

The Join-Over-All-Paths (JOP)

 Let paths(v) denote the potentially infinite set

paths from start to v (written as sequences of

edges)

 For a sequence of edges [e1, e2, …, en] define

f #[e1, e2, …, en]: L  L by composing the effects

of basic blocks

f #[e1, e2, …, en](l) = f#(en) (… (f#(e2) (f#(e1) (l)) …)

 JOP[v] = {f#[e1, e2, …,en]()

[e1, e2, …, en]  paths(v)}

JOP vs. Least Solution

 The df solution obtained by Chaotic iteration satisfies for

every v:

– JOP[v] df[v]

 A function f# is additive (distributive) if

– f#({z| z  X}) = {f#(z) | z  X}

 If every f#
(u,v) is additive (distributive) for all the edges

(u,v)

– JOP[v] = df[v]

 Examples

– Maybe garbage

– Formal Available expressions

– Constant Propagation

– Points-to

Notions of precision

 CS =  (df)

 (CS) = df

Meet(Join) over all paths

 Using best(induced) transformers

 Good enough for the client

Complexity of Chaotic Iterations

 Usually depends on the height of the lattice

 In some cases better bound exist

 A function f is fast if f (f(l))  l  f(l)

 For fast functions the Chaotic iterations can be

implemented in O(nest * |V|) iterations

– nest is the number of nested loop

– |V| is the number of control flow nodes

 Examples

– Maybe garbage

– Formal Available expressions

– Constant Propagation

– Points-to

Widening

 Accelerate the termination of Chaotic iterations by

computing a more conservative solution

 Can handle lattices of infinite heights

Specialized Chaotic Iterations+ 

Chaotic(G(V, E): Graph, s: Node, L: lattice, : L, f: E (L L)){

for each v in V to n do dfentry[v] := 

df[v] = 

WL = {s}

while (WL  ) do

select and remove an element u WL

for each v, such that. (u, v) E do

temp = f(e)(dfentry[u])

new := dfentry(v)  temp

if (new  dfentry[v]) then

dfentry[v] := new;

WL := WL {v}

Example Interval Analysis

 Find a lower and an upper bound of the value of a

variable

 Usages?

 Lattice

L = (Z{-, }Z {-, }, , , , ,)

– [a, b]  [c, d] if c  a and d  b

– [a, b]  [c, d] = [min(a, c), max(b, d)]

– [a, b]  [c, d] = [max(a, c), min(b, d)]

–  =

–  =

Example Program

Interval Analysis

[x := 1]1 ;

while [x  1000]2 do

[x := x + 1;]3

IntEntry(1) = [minint,maxint]

IntExit(1) = [1,1]

IntEntry(2) = IntExit(1)  IntExit(3)

IntExit(2) = IntEntry(2)

[x:=1]1

[x  1000]2

[x := x+1]3

[exit]4

IntEntry(3) = IntExit(2)  [minint,1000]

IntExit(3) = IntEntry(3)+[1,1]

IntEntry(4) = IntExit(2)  [1001,maxint]

IntExit(4) = IntEntry(4)

Widening for Interval Analysis

  [c, d] = [c, d]

 [a, b]  [c, d] = [

if a  c

then a

else -,

if b  d

then b

else 

]

Example Program

Interval Analysis

[x := 1]1 ;

while [x  1000]2 do

[x := x + 1;]3

IntEntry(1) = [-, ]

IntExit(1) = [1,1]

IntEntry(2) = InExit(2)  (IntExit(1)  IntExit(3))

IntExit(2) = IntEntry(2)

[x:=1]1

[x  1000]2

[x := x+1]3

[exit]4

IntEntry(3) = IntExit(2)  [-,1000]

IntExit(3) = IntEntry(3)+[1,1]

IntEntry(4) = IntExit(2)  [1001, ]

IntExit(4) = IntEntry(4)

Requirements on Widening

 For all elements l1  l2  l1  l2

 For all ascending chains
l0  l1  l2  …
the following sequence is finite
– y0 = l0

– yi+1 = yi  li+1

 For a monotonic function
f: L  L
define
– x0 = 
– xi+1 = xi  f(xi)

 Theorem:
– There exits k such that xk+1 = xk

– xk Red(f) = {l: l  L, f(l)  l}

Narrowing

 Improve the result of widening

 y  x  y  (x y)  x

 For all decreasing chains x0  x1 …
the following sequence is finite
– y0 = x0

– yi+1 = yi  xi+1

 For a monotonic function
f: L  L and x Red(f) = {l: l  L, f(l)  l}
define
– y0 = x

– yi+1 = yi  f(yi)

 Theorem:
– There exits k such that yk+1 =yk

– yk Red(f) = {l: l  L, f(l)  l}

Narrowing for Interval Analysis

 [a, b]   = [a, b]

 [a, b]  [c, d] = [

if a = -

then c

else a,

if b = 

then d

else b

]

Example Program

Interval Analysis

[x := 1]1 ;

while [x  1000]2 do

[x := x + 1;]3

IntEntry(1) = [- , ]

IntExit(1) = [1,1]

IntEntry(2) = InExit(2) (IntExit(1)  IntExit(3))

IntExit(2) = IntEntry(2)

[x:=1]1

[x  1000]2

[x := x+1]3

[exit]4

IntEntry(3) = IntExit(2)  [-,1000]

IntExit(3) = IntEntry(3)+[1,1]

IntEntry(4) = IntExit(2)  [1001, ]

IntExit(4) = IntEntry(4)

Non Montonicity of Widening

 [0,1]  [0,2] = [0, ]

 [0,2]  [0,2] = [0,2]

Domains with Infinite Heights for Integers

y

x

Intervals CC’77: xi  b

Octagons SKS’00, Mine’01: xi yi  b

Polyhedra Cousot& Halbwachs’78: ai*xi  b

Widening and Narrowing

Summary

 Very simple but produces impressive precision

 Sometimes non-monotonic

 The McCarthy 91 function

 Also useful in the finite case

 Can be used as a methodological tool

int f(x) [- , ] {

if x > 100

[101, ] return x -10 [91, -10];

else [-, 100] return f(f(x+11)) [91, 91] ;

}

Backward Analysis

 Sometimes interesting information involves the

future of the computation

 Apply Chaotic Iterations by following edges

backward

 Examples

– Liveness information

» A variable x is live at a program point if there exists a path

from this point to a use of x and that this path does not include

an assignment to x

– Busy expressions

» A formal expression is busy at the program point if all paths

from this point use this expression

Specialized Chaotic Iterations

(Backward)

Chaotic(G(V, E): Graph, e: Node, L: Lattice, : L, f: E (L L)){

for each v in V to n do dfexit[v] := 

df[e] = 

WL = {e}

while (WL  ) do

select and remove an element u WL

for each v, such that. (u, v) E do

temp = f(e)(dfexit[v])

new := dfexit(u) temp

if (new  dfexit[u]) then

dfexit[u] := new;

WL := WL {u}

Conclusions(1)

 Good static analysis =

– Precise enough (for the client)

– Efficient enough

 Good static analysis

– Good domain

» Abstract non-important details

» Represent relevant concrete information

» Only maintains important correlations

» Precise and efficient abstract meaning of abstract interpreters

» Efficient join implementation

» Small height or widening

Conclusion

 Chaotic iterations is a powerful technique

 Easy to implement

 Rather precise

 But expensive

– More efficient methods exist for structured programs

 Abstract interpretation relates runtime semantics

and static information

 The concrete semantics serves as a tool in

designing abstractions

– More intuition will be given in the sequel

