Iterative Program Analysis
Abstract Interpretation

Mooly Sagiv
http://www.cs.tau.ac.il/~msagiv/courses/pall.html

Tel Aviv University
0640-6706

Textbook: Principles of Program Analysis
Chapter 4

CC79, CC92

Outline

¢ The abstract interpretation technique
— Precision
— Complexity
— Widening
— Combining Analysis
— Backward Analysis
¢ Later
— Interprocedural Analysis
— Applications
String Analysis
Shape Analysis

Java Safety
Device Drivers

>

v

>

v

>

v

>

v

Constant Propagation Example

If

df[2] = df[1

3 df[3] = df[L:
S df[4] = df[2] [x ~3
df[5] = df[3] [x ~2]

dff1] = [x~T, YT, 2~T]

df[6] = df[4] [y »2] LI df[5] [y ~3]
df[7] = df[6] [z —df[6]x +* dF[6]y]

Precision

¢ We cannot usually have
— a(CS) =df
on all programs
¢ But can we say something about precision in all
programs?

The Join-Over-All-Paths (JOP)

¢ Let paths(v) denote the potentially infinite set
paths from start to v (written as sequences of
edges)
¢ For a sequence of edges [e,, e, ..., e,] define
f#[es, e, ..., e,]: L — L by composing the effects
of basic blocks
fle;, e, ..., e (1) =f(e,) (... (Fi(e,) (Fi(e) (D) ...)
¢ JOP[v] =L{f"[e,, e, ...,e](1)
e, e, ..., e,] € paths(v)}

JOP vs. Least Solution

¢ The df solution obtained by Chaotic iteration satisfies for
every v:
— JOP|v]= df[v]
¢ A function f# is additive (distributive) if
— f(U{z|z € X}) = L{f(2) | z € X}
¢ Ifevery f* ,is additive (distributive) for all the edges
(u,v)
— JOP[v] = df[v]
¢ Examples
— Maybe garbage
— Formal Available expressions

— Constant Propagation
— Points-to

Notions of precision

¢ CS =7y (df)

¢ o(CS) =df

¢ Meet(Join) over all paths

¢ Using best(induced) transformers
¢ Good enough for the client

Complexity of Chaotic Iterations

¢ Usually depends on the height of the lattice
¢ In some cases better bound exist
¢ A function fis fastif f(f(1)) = | L f(I)

¢ For fast functions the Chaotic iterations can be
Implemented in O(nest * |V|) iterations
— nest is the number of nested loop
— |V/| is the number of control flow nodes

¢ Examples
— Maybe garbage
— Formal Available expressions
— Constant Propagation
— Points-to

Widening

¢ Accelerate the termination of Chaotic iterations by
computing a more conservative solution

¢ Can handle lattices of infinite heights

Specialized Chaotic Iterations+ v

Chaotic(G(V, E): Graph, s: Node, L: lattice, 1: L, f: E ->(L -»L)){
foreach vinV to ndo df,[v] := 1L
dffv] =1
WL = {s}
while (WL = @) do
select and remove an element u € WL

for each v, such that. (u, v) €E do
temp = 1:(e)(dfentry[u])

new := dfy, (V) V temp
If (new = df,, [V]) then
dfenin [V] := new;

WL := WL {v}

Example Interval Analysis

¢ Find a lower and an upper bound of the value of a
variable

¢ Usages?

¢ Lattice
L = (ZU{-o0, co}xZ \{-0, o}, C, LI, I, L,T)
— [a,b]= [c,d]ifc<aandd>D

— [a, b] U [c, d] = [min(a, c), max(b, d)]
— [a, b] 1 [c, d] = [max(a, c), min(b, d)]

Example Program
Interval Analysis

[X:=1];

while [x < 1000]% do

[X =x+1;]®

[x:=1]*

X

[X < 1000]2

exit]*

[X := X+1]°

IntEntry(1) = [minint,maxint]
IntExit(1) = [1,1]
IntEntry(2) = IntExit(1) LI IntEXit(3)

INtEXIit(2) = IntEntry(2)

IntEntry(3) = IntEXit(2) 11 [minint,1000]
IntEXxit(3) = IntEntry(3)+[1,1]

IntEntry(4) = IntExit(2) M [1001,maxint]
IntEXit(4) = IntEntry(4)

Widening for Interval Analysis

¢ 1V [c,d] =]c, d]
¢lab] v[cdl =]
Ifa<c

then a

else -oo,
Ifb>d

then b

else oo

]

Example Program
Interval Analysis

IntEntry(1) = [-00, 00]

[x:=1J; IntExit(1) = [1,1]
while [x < 1000]% do
[Xi=x+ 13 MENIYR) = EXit@) v (IntExit(d) L IntExit(3)

INtEXIit(2) = IntEntry(2)

Ix=1]t IntEntry(3) = IntExit(2) 1 [-00,1000]
X INtExit(3) = IntEntry(3)+[1,1]

[X < 1000]2 exit]*

IntEntry(4) = IntExit(2) M [1001, o]

[X := X+1]° INtEXit(4) = IntEntry(4)

Requirements on Widening

¢ Forallelementsl, UL, =1, VI,

¢ For all ascending chains

Lhelh=lhe..

t%e fo]llowmg sequence is finite
- Yo=1y
— Vi1 =YV by
¢ For a monotonic function

f:L—>L
define

— Xp =1
— X =%V (%)

¢ Theorem:

— There exits k such that X,,; = x,
— X,eRed(P) ={l: L, f() = I}

Narrowing

¢ Improve the result of widening
® YCX=>VYE (XAY) T X
For all decreasing chains X, 3 x; 3....
the following sequence is finite
— Yo =X%p
— Yir1 = VYi & Xjp
¢ For a monotonic function
f.Lo>LandxeRed(f)={l:1eL, f()= I}
define
— Yo =X
— Yin =Yi A f(y;)

¢ Theorem:

— There exits k such that vy,,, =y,
~ yeeRed(f) ={l: 1 e L, f(l) = I}

Narrowing for Interval Analysis

¢ [a,b]lAaiL=]a b]
¢lablafcd =]
If a =-00
then c
else a,
Ifb=o0
then d
else b

]

Example Program
Interval Analysis

IntEntry(1) = [-00 , o0]

[x:=1J; IntExit(1) = [1,1]
while [x < 1000]% do
[X ‘= x + 1.]3 INtEntry(2) = InExit(2) A(IntExit(1) LI IntEXit(3))

INtEXIit(2) = IntEntry(2)

x=1]t IntEntry(3) = IntExit(2) 1 [-00,1000]
X INtExit(3) = IntEntry(3)+[1,1]

[X < 1000]2 exit]*

IntEntry(4) = IntExit(2) M [1001, o]

[X := X+1]° INtEXit(4) = IntEntry(4)

Non Montonicity of Widening

¢ [01] v [0,2] = [0, o]
¢ [0,2] v [0,2] =1[0,2]

Domains with Infinite Heights for Integers

/)

P

Intervals CC’77: £X; <b

Octagons SKS’00, Mine’01: £x; ty; <b

olyhedra Cousot& Halbwachs’78: Xa;*x; < b

X

Widening and Narrowing
Summary

¢ Very simple but produces impressive precision
¢ Sometimes non-monotonic
¢ The McCarthy 91 function

Int f(X) [-o0, o] {
If x> 100
[101, oo] return x -10 [91, o-10];
else [-o0, 100] return f(f(x+11)) [91, 91] ;

¥

¢ Also useful in the finite case
¢ Can be used as a methodological tool

Backward Analysis

¢ Sometimes interesting information involves the
future of the computation

¢ Apply Chaotic Iterations by following edges
backward

¢ Examples

— Liveness information

» A variable x is live at a program point if there exists a path
from this point to a use of x and that this path does not include
an assignment to X

— Busy expressions

» A formal expression is busy at the program point if all paths
from this point use this expression

Specialized Chaotic Iterations
(Backward)

Chaotic(G(V, E): Graph, e: Node, L: Lattice, v. L, f: E ->(L —L)){
for each vinV tondo df;[v] ==L
dffe] =
WL = {e}
while (WL = @) do

select and remove an element u € WL
for each v, such that. (u, v) eE do
temp = (€)(df,yq [V])
new := df . (u)Ll temp
if (new = df,;,[u]) then
df,;[u] := new;

WL = WL u{u}

Conclusions(1)

¢ Good static analysis =
— Precise enough (for the client)
— Efficient enough

¢ Good static analysis

— Good domain
» Abstract non-important details
» Represent relevant concrete information
» Only maintains important correlations
» Precise and efficient abstract meaning of abstract interpreters
» Efficient join implementation
» Small height or widening

Conclusion

¢ Chaotic iterations is a powerful technique
¢ Easy to implement
¢ Rather precise

¢ But expensive
— More efficient methods exist for structured programs

¢ Abstract interpretation relates runtime semantics
and static information

¢ The concrete semantics serves as a tool In
designing abstractions

— More intuition will be given in the sequel

