Reminder
In the previous lesson we discussed the theoretical background which is necessary for abstract interpretation and for the chaotic iteration procedure.
Monotone
We say that a function  is monotone if 
Galois Connection
A Galois connection allows us to do a computation in two domains. The idea is that both domains can be arbitrary and one of them is more abstract. The more concrete domain should be defined as  – the powerset on all states that may occur in a real execution of the program. In this case, we can simplify the definition of abstraction.
We call a pair of functions  and  that connect two domains  and  () a Galois connection if:
· 
· 
· Both  and  are monotone
We define the functions for a Galois connection from  into A in the following way:
· We have a state abstraction function, denoted : State  A which takes a concrete state to an abstract state.
· We have an abstraction function, denoted  which takes a group of concrete states to an abstract state.
Notice that  is monotone independent of  since if  then .
· We have a concretization function, denoted  which takes an abstract state to a group of concrete states.
By definition,  is montone, i.e., if  then

· For the way in which we defined  and , it must be that they form a Galois connection as we defined above.
Local Soundness
We say that a computation is locally sound, if applying each of the statements in the abstract domain, does not yield a more accurate result than abstracting the result of the computation on the concrete domain. Formally

Soundness Theorem
The soundness theorem allows us to say when the fixed-point of a computation is sound (will be defined below). It states that if:
· Let  form a Galois connection from  (a concrete domain) to  (an abstract domain)
· Let  be a monotone function
· Let  be a monotone function
· Let any of the following conditions hold:
· 
This condition states that the result of a concrete computation on the concretization of some value, is more accurate than the concretization of the result of the abstract computation. This makes sense, since when doing a computation in the concrete world, we don’t lose information, while an abstract computation may lose lots of information each step and therefore its concretization will be less accurate (will have more “valid” results).
· 
This condition states that the abstraction of the outcome from one step of a concrete computation () is more accurate () than doing a corresponding step in the abstract domain over an abstracted input (). This is because, again, a computation in the abstract domain loses more info than simply abstracting the final result.
· 
Explanation:  is the group of all values whose abstraction is the same () and therefore are undistinguishable in the abstract domain. So, we require that applying an abstraction on the computation on all of them will be at least as accurate as doing the computation in the abstract domain in the first place.
Then the computation of the least-fixed-point is sound, meaning that both of the following properties hold:
· 
This means that the concretization of the result of the abstract computation is less accurate than the result of the actual computation. (We denote  where on the left side we have the more accurate result because it contains fewer options).
· 
This states that the abstraction of the result of a concrete (“real”) computation, is more accurate than the result of doing the entire computation in the abstract domain (which makes sense, like the previous point).
Completeness
Completeness means one of two options:
1. 
Computation over the abstract domain is equivalent to doing the computation in the concrete domain, and then doing an abstraction (i.e., no information is lost for that computation in the abstract domain).
2. 
The concretization of an abstract computation is equivalent to the computation in the real world (for our specific computation).
This can happen for example, in a concrete domain of [0,1] and an abstraction which is  and . This isn’t pointless, since the abstract computation has a different meaning – it comes to check the property in which we are interested (sign in our case).
This result simply says that the abstract state describes all the reachable states and these only! It’s hard since it means the abstract domain can be used to describe precisely all the reachable parts in the concrete domain (but not necessarily all the concrete domain) – this is generally not the case.
These conditions are not equivalent. However, condition number 2 under a Galois Insertion implies condition number 1.
Proof
Let  and  form a Galois insertion, meaning 
Then, start with

Apply an abstraction on both sides:

QED 
Constant Propagation
Constant Propagation is another compiler optimization which can be justified via abstract interpretation. This means that we want to track which values have known constant values at some point of the program. We will define the functions for the Galois connection in the following way:


 takes a state (a mapping from variables to ) to a state in the abstract interpretation world (a mapping from variables to ) and in this case (constant propagation) gives the variable the same value.


 is a mapping from a group of concrete states (where each state is a mapping from variables to values), to a single state in the abstract domain, where in this case (constant propagation) each variable is mapped to the most accurate value as possible using a join () operator. Practically this means that if a variable is given several constants (by different states in ), it will be given , otherwise the variable will be given some constant value (if all states agree on one constant or ). Note that if a variable is given the value , it means that the variable was never assigned any value.

 – is mapping from an abstract state, to the group of all possible concrete states that applying an abstraction on them will give back an abstract state which is more accurate than the current one.
Calculating expressions
The calculation on expressions is defined recursively in the following way:
· For a constant , 
· For a variable , 
· For a complex operation, we define:
· For any operation  and it’s actual meaning 

· Except for  or  which are both 
Calculating abstract expressions
We denote the calculations in the abstract world using . We calculate atomic expressions in the same way, but we will change the calculation of non-atomic (“complex”) expressions. For complex expressions which only contain constants, nothing is changed. The change will be that and  evaluate to  (Except for  or  which both evaluate to ).
The start state is usually one of the following:
· All variables are initialized to 0 (or some other known value)
· All variables are initialized to  - meaning we expect some unknown random value to be placed in each of the variables (this is often the state in the real world)
· All variables are initialized to  - similar to the case with , this symbolizes that variables begin with some unknown value. The advantage of putting  in all of them means that we will be able to detect usage of uninitialized variables and warn about it, in case our analysis discovers that some operation is done where one of the operands is .
In that case, when joining two or more control flows (in the chaotic iteration), if in one of them the value of the variable is  then we will define the join to return  (unlike the usual join operator that would return the other value!) to symbolize that again the variable may be uninitialized.
Soundness and Optimality
We say our computation is locally sound:

This means that an abstract interpretation over an abstract state is less accurate than the abstraction of the computation on an actual state.
Proof of local soundness
The only statement which has any affection on our state is the assignment statement. Obviously, the other statements which do not transform the state (both the abstract and concrete) do not require a proof of soundness.

We want to prove that


Note that  is a concrete state (so we can apply  using it) and therefore it has no  values – only constant values.
For each variable  (where  isn’t ) there is a value in , and that value can either be some constant or . If the value is constant, then for all  the value of  in  is the same constant (by the structure of our lattice). If , then for all ,  will evaluate to some constant (can be a different constant in each ). Applying a join () operator on all these constants will yield something, and that will be more accurate than  (by definition of ) and so, the order of  will be preserved.
For , if  is , then like the rest of the variables, the  relation will hold. If  is a constant, then because of our definition to , the only[footnoteRef:1] way to get a constant is by using a calculation path which has no  value in it – and that path is defined exactly using ’s definition! Therefore  for all  [1:  The only way to receive a constant in a computation with  that includes a  value is when computing  (or ). In that case,  will evaluate to . In addition, by what we just said,  would be computed in a way that  agrees on with  and then applying  on a multiplication with it will also yield a zero!
Note that if that  is also obtained by a recursion with a case like this, it will eventually reach atomic expressions and from there and upward we can construct this agreement of  and .] 

So, we saw that the  relation holds in all cases for all variables.
Q.E.D. 

The constant propagation we defined is sound (by Cousot’s theorem, local soundness implies global soundness). It also “optimal” when talking about assignments of the form  ( is a constant or a variable) or  where  and  are independent variables or constants. Note that this is an analysis on integers and therefore it does not include division[footnoteRef:2]. [2:  Note that extending our analysis for division will not be optimal for division statements, since  should yield 1 for all , and we don’t do that – if  is  we return .] 

Proof – Local optimality
Since we already proved soundness ), proving optimality simply requires to prove “accuracy” in the other direction (). Simply, this means we want to prove that


For each variable  (where  isn’t ) there is a value in , and that value can either be some constant or . If the value is constant, then for all  the value of  in  is the same constant (by the structure of our lattice). If , then for all ,  will evaluate to some constant (can be a different constant in each ). Since we can choose two or more different constants (since we are talking about all states  more accurate than ), applying a join () operator on all these constants will yield .
So we showed that for each variable  different than , the value of  on both sides is the same.
For  itself, we need to do the separation:
 (constant or variable)
if  is a constant, then like the rest of the variables, the  relation will hold. If  is  (only possible when  is a variable), then  may evaluate to any constant value in , and so in the join we will get a join on many constants – yielding  and preserving the  relation.
 (for two independent variables/constants)
if  is a constant, then like we showed in the soundness proof, there will be an equality for the value of  on both sides of the  operator.
if  evaluates to , then one of the following holds (note that operators are symmetric when it comes to yielding ):
·  where  and W.L.O.G 
In that case we can choose  where  and , and so in the join we will receive a join on two different values of ! This means that the result on the right hand-side of the above identity will also be !
·  where  and W.L.O.G  and 
Similar to the previous case…
· Note that  where  and W.L.O.G  and  simply can’t happen – because of how we defined  on .
Q.E.D. 
A word about independence
Our analysis isn’t always optimal – in fact, it can miss several cases of constants. For example:

This would always evaluate to  in the concrete computation, but our analysis may give it a  when . There can also be more complex examples.
The point is that dependency between variables introduces a new difficulty which is not trivial to solve in order to achieve optimality, and therefore it’s outside the scope of this summary.
Completness
We say it’s not complete, because doing an abstraction over the result of the actual computation does not necessarily yield the same result as doing an abstract computation in the first place. For example:
1. Y = 1;
2. X = (1 or 2);
3. If (X % 2 == 0)
4. 	Y = 4;
5. Do some stuff without X...
6. If (X % 2 == 1)
7. 	Y = 4;
Unless our analysis will be smart enough to figure that lines 3 and 5 are opposite conditions that can’t change between checks, it will not figure out that Y will always finish as 4 – after line 4 Y will be  and it will finish like this. So our analysis is not complete.

And as we can see, both completeness properties don’t hold:


Formal available expressions
Here we try to analyze which formal expressions are available at each step and do not require re-computation (this is useful for caching results instead of computing them again). A state is “good” if we have many available expressions, and it’s “worse” if it has less available expressions.
Non-Formal example
	Sentence
	Expressions available after computing the current sentence

	 
	

	 
	

	 
	

		
	 (note – the original slides had a mistake)

	 
	



Line 4 requires a bit of explanation, so let’s understand what happened there, step by step (a formal explanation is available on the next slide):
· We began with the available expressions from the last step 
· Then we computed a new expression  and added it to the group of available expressions
· Then we assigned a new value for  and by that invalidated all expressions which used the former value of  (including  which we just computed), and therefore we remained only with 
Formal definitions
· 
We denote all the program expressions as , and the domain we are working over is the power set of all the program expressions.
· 
The notation  which we used previously to denote a state as “more accurate” is now used to define which state has more available expressions. I.E.  means  is a “better” state than  since it contains at least all the expressions which were available on .
· 
The lowest upper bound, which previously meant “the most accurate value that is less accurate than all the given ones” is now the intersection of the available expressions – this is as “good” as a state can be, while still being “worse” than the given ones.
· 
The “best” state in which we can be, is when all the program expressions (the group ) are available
· 
The worst state is when we have nothing available.
Finding all the formal expressions
Here we define the computation for our interpretation – this list shows which expressions may be computed (at some potential execution flow) for each statement. This is useful in cases where we want to acquire the list of possible expressions before starting the iteration, for building a finite lattice[footnoteRef:3]. [3:  So in other words, if we agree to start with an empty lattice and add expressions as we encounter them, we can skip this step of passing over all the statements and collecting expressions] 

· 
Obviously, the skip statement does nothing, and therefore computes nothing ().
· In order to compute an assignment statement, we need to computer the expression which is to be assigned to a variable ()
· 
In order to compute two following sentences, we must compute each of the sentences ().
· 
In order to compute a while statement, we must compute the Boolean expression and the following statement, so the total list of expressions that needs to be computed is the union of the ones for the Boolean condition and the ones for the statement (s)
· 
Similar to the while statement, we may need to compute the expression and both statements. (s)
Semantics
We need to explain which expressions are available after each statement. In order to do this formally, we define an instrumented semantics in which a “state” is composed of “variable states” () and “available expressions” (). At each step of the computation we begin with a step  and we define how the current statement  transforms that state into .
Formally, we mark that as

For an assignment we denote

This means that for an assignment statement, the new state is composed out of:
· The old variable state updated with the new value for the variable
· The old list of available expressions combined with the newly computed expression , and from that we remove all the expressions in which  was an argument. We do that since the assignment to  that was done at the end, invalidated all the expressions that depend on  ( now has a new value which means we need to re-compute them).
For a skip statement, nothing has to be done, so the old state (before executing the skip statement) is the same as the new state. We denote this as

After we defined the semantics () for each statement which has a meaning other than control flow (assignment and skip), we now need to define the Collecting Semantics. The Collecting Semantics takes a group of states and a statement, and returns a group of possible result states from applying the given statement on any of the states.


CS Example
Let’s look at an example of collecting semantics, were we begin with the state

	Sentence
	Concrete state after computing this statement
	Abstracted State

	
	
	

	 
	
	

	 
	
	

	
	
	

	…
	
	

	 
	
	

	
	
	


Abstract Interpretation
Now we will define the abstract interpretation for Available Expressions like we did with constant propagation:
First we define  , the abstract interpretation of a single concrete state (composed of variable states and a group of available expressions). The abstract result is a group of available expressions derived from the concrete state:

Then we define  , the abstract interpretation of a group of concrete states. The abstract result is a group of available expressions derived from all the concrete states together – meaning the expressions all of the states agree on:

Finally, we define  , the concretization of an abstract state. The result is a group of concrete states which their abstract interpretation is “better” (as we defined before) than the given abstract state:

Abstract Semantics
Now we will define the abstract semantics for Available Expressions.
For each statement, we show how it affects the state in the abstract interpretation:

· For the skip statement the available expressions stay the same:

· For an assignment we add the calculated expression, and then remove all expressions containing the variable we’ve just changed (because the assignment has just invalidated them):

· All other statements in the while language are irrelevant because they determine only the control flow of the program and have no actual meaning. These will only matter for determining the “neighbors” of each statement when doing the Chaotic Iteration, as we did in the previous lessons.
Example
Now, let’s see an example abstract interpretation (for the previous program):
	Sentence
	Abstract state after the current statement
	Explanation

	
	
	We begin with nothing computed

	 
	
	

	 
	
	We now begin an optional execution branch

	
	
	

	
	
	When finishing the branch, merge it back with the main using a join operator

	…
	
	

	 
	
	

	
	
	We now begin an optional execution branch



Note that the Collecting Semantics is much more accurate (in the CS, at each state we had at least the same expressions available if not more) than our analysis – our analysis will only compute available expressions (unlike the CS which also tracks the variable states) and so it won’t know that we will definitely enter the first “if” statement, making the expression  available in the second “if” statement. In the AI, we can see that we had an  of available expressions, while in the CS (1-2 pages ago) exactly at the same place, we had one available expression! Since our AI will miss an available expression, it is not complete!
Properties of the interpretation:
· Local Soundness:
Note that  and the  at the end is like an array reference, which is meant to return 
Proof
We will prove the local soundness for all types of statements for which we defined some meaning:



* As we can see, in the intersection we can take  (since ) and then we intersect them all, we get the smallest group which is in fact .


First of all let’s show that  is monotone (in the expression list). Let  and  be two expression lists, where . So


We proved local soundness for all statements for which we defined an interpretation (for statements such as while, for which we defined no interpretation, it means that in the AI they serve as identity transforms), and therefore following Cousot’s theorem we gain global soundness. 
· Optimality
In the proof of local soundness, we had an equality and not a , meaning that our AI is indeed locally optimal. 
May-Be-Garbage Analysis
· A variable  may-be-garbage at a program point v if there exists an execution path leading to v which ’s value is unpredictable. We say that a value is unpredictable if one of the following conditions hold:
(1) Was not assigned
(2) Was assigned using an unpredictable expression
· We will define the Lattice as following:
· 
The group of all unpredictable variables.
· A state is “more accurate” if less variables are unknown, so we define “more accurate”=”list of unknown variables is contained in the other one”
· 
The most accurate state is when no variables are unknown
· 
The least accurate state is when all variables are unknown
· 
The most accurate state which is less accurate than two given states, is when the group of unknown variables is the union of the unknown groups of each state
· 
Similar to 
· Initial state is 
All variables are NOT assigned
· The abstract interpretation:
·  
 
·  and  are defined accordingly.
· The abstract semantics: [arg(exp) means the arguments in the expression)
· 
Properties
· Galois Connection
Proof
Let  be a group of variables (representing the may-be-garbage variables)

Let  be a group of concrete states

We can easily see that  and  are monotone, since  does not change the state – it only takes its second field.
· Soundness
Proof




Case 1:  (which implies  for)

Case 2: Else (not case 1) (which implies  will be in the union, when )

We can see that in both cases . 
· Optimality – In the proof of local soundness, we had an equality and not a , meaning that our AI is indeed locally optimal. 
· Not complete
· Similarly to the constant propagation, not tracking concrete values can miss control flows that will initialize things
The PWhile programming language (while language with pointers)
We will begin by defining the syntax of the new language
 
 
 	
	 
Concrete semantics for PWhile
In PWhile, we changed our previous definition of states. Instead of having a mapping from a variable to its value, we define a mapping from a location (which corresponds to the (memory) location of that variable) to another location or (integer) value:

For every atomic statement S we define the semantic function:

· We define loc(x) as the location of variable x.
· ] where:
· For a constant , 
· For a variable , 
· For a variable , 
Meaning in an assignment the location of x will change to the value in  of the location of y. (it is possible its value is another location)
· For a variable , Meaning in an assignment the location of x will change to the value of the value in  of the location of y.
· Intuition: &y is the address (location) of y, y is the value of y, and *y is the value of y’s inner address.
Meaning in an assignment the location of x will change to the location of y.
· 
· 
Meaning the inner value of x (the value of the location it points to) will change to the semantics of  (as defined in ).
[bookmark: _GoBack]
Points-To-Analysis - Which Variables points to which variable
What do we need Points-To Analysis for?
Basically, we need this for every analysis on a language which supports pointers. For example, if in C we would like to do constant propagation, we would want to know when assigning through pointers, which variables may be affected. Since our points-to analysis may produce more pointers than the actual pointing-state, whenever an assignment through a pointer does not agree with the previous value, we will put a  on that variable. This will allow us to keep the soundness of the constant propagation, since we won’t generate more constants than any concrete run.
Formal definition
The point of this analysis is not to miss any points-to relation between two variables (such as  points at ) and we define a state as “more accurate”/”better” if it has “less” point-to relations.
· We will define the Lattice Lpt as following:
· L = 
The lattice is composed of the group of all variable pairs (the first one points to the second)
· 
A state is “more accurate” if it’s group of point-to pairs is contained inside the group of the other state.
· 
When we don’t know anything, assume all variables are pointing at all the others, since we don’t want to miss any points-to pair.
· 
The most accurate state in this analysis (where we don’t want to miss any point-to pair) is when we know nothing points at nothing.
· 
When we need to find the most accurate state which is less accurate than all given states, create a union of the points-to pairs, to make sure we are least accurate than all given states
· 
Similar logic to , but reversed
· Abstraction:

The  function takes a state  and returns the group of all pairs of variables <x,y>, which the value of the location of x is the location of y (meaning that x points to y):

The  function takes a group of states and returns the union of the abstraction of each state (meaning all the “variable points-to” option that exists in them):


Abstract Semantics
Let  be an abstract state (i.e., a group of point-to pairs). We will now analyze the abstract semantics for assignment statements:
· 
If we assign a constant  to a variable , remove all the pairs in which  points at some other variable
· 
If we assign the value of a variable  to a variable , like before remove all the pairs in which  points at some other variable, and for each pair that  points at , add a pair of  pointing at 
· 
If we assign the location of the variable  to a variable , remove all the pairs in which  points at some other variable, and add a pair saying that  points to 
· 
If we assign the value pointed by a variable  to a variable , like before remove all the pairs in which  points at some other variable, and for each pair that  points at  and  points at , add a pair of  pointing at 
· 
If we assign the value of a variable  to the variable pointed by  (we mark the variable pointed by  as ), if  indeed points at most at one variable  (This is the condition ) then remove all the pairs in which  points at some other variable. Then for each pair that  points at , add a pair of  pointing at .
It wouldn’t be sound to delete the group of pointers of the form  when  points at more than one variable . Why? We’ll demonstrate below.
· Continuing ,  and  is done in a similar way
Example for un-soundness in 
Why would it be unsound to delete the pointer group
when  points at more than one variable in our analysis?
Let’s begin with some concrete state in which  on the following example
	Sentence
	state after the current statement

	
	Concrete
	Abstract

	
	
	

	y := &b;
	
	

	z := &c;
	
	

	if x>0
	
	

	   then x:= &y;
	
	

	   else x:= &z;
	Not executed
	

	
	
	

	*x := &t;
	
	


We defined the accuracy of our analysis by forcing it to include at least all the pointers that the concrete computation will have, but it missed the point-to pair ! Therefore, it’s not sound.
Good Example with correct semantics
	Sentence
	Abstract state after the current statement
	Explanation

	
	
	We begin with nothing pointing at anything

	t := &a;
	
	

	y := &b;
	
	

	z := &c;
	
	

	if x>0
	
	

	   then p:= &y;
	
	Potential execution #1

	   else p:= &z;
	
	Potential execution #2

	
	
	When finishing all potential executions, merge to a main branch using a join operator

	*p := t;
	
	 pointed at more than one variable ( and ), so we did not remove the pairs of the form  or 



Properties
· Galois Connection
Proof
Let  be a group of variable pairs (representing the potential points-to relations)

We will mark . Since  was any state for which it’s abstraction was more accurate than  (which means it’s subgroup of variables pointing one to another was contained in ), we can have such a  so that .


Let  be a group of concrete states

We will mark  where the same properties hold as in the previous definition.

For each , we can choose  and then  and so we have  in that group. From here we can see that

We can easily see that  and  are monotone;  is monotone because of its union-like operation, and  is monotone because of a similar reason. 
· Soundness
Proof
We will prove only 2 out of 8 statements, the rest are very similar. What we want to prove is

Or simply

Let’s begin
Constant assignment


We know that  does not contain any pair of the form  because  points at a constant  and therefore cannot point at a variable. So the union  does not contain any pair of the form .
Now, let’s assume  and show that . If , there exists a  so that

Because  we can see that according to ’s definition


Now, since ,  and so 
In total, we got


Assignment into pointer




Let  be a pair in   there exists a  so that 
Case 1 - 
Then like previously, we can see that 
Case 2 -  (the pair is now )
Then obviously , so there exists some variable  so that:

In that case, by ’s definition,  and  will be in , and since  then these relations also exist in  which is included in .


So, from both cases we get

Flow-Insensitive Points-To Analysis
Our analysis of points-to was potentially expensive, since we need to check the neighbor nodes (in the chaotic iteration) and potentially do many iterations in different branches where for each one we need to compute the union of the two sets.
Another approach for the points-to analysis works by ignoring the control-flow and saying that all statements are “neighbors” in the program flow graph. In order to make our analysis sound with such random execution, we never remove any pairs from the set of point-to pairs – we just keep iterating over all the sentences in the program until we reach a fixed-point (i.e., passing on any sentence now will not make any difference to the group of points-to pairs).
Since we only keep one set of point-to pairs, and we never remove pairs, we can use a union-find data structure, which allows us to add pairs and check for their existence in almost linear time (amortized inverse Ackerman if we want to be exact).
Example
	Sentence
	Abstract state after the current statement

	
	

	t := &a;
	

	y := &b;
	

	z := &c;
	

	if x>0
	

	   then p:= &y;
	

	   else p:= &z;
	

	*p := t;
	



The final point-to set is

You can see that if we re-iterate with it, it will not change – so this will be the set of point-to pairs that we will use for all the locations in the program (since we ignored control-flow we can’t say that some are only valid in some place).
